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Abstract

Deep equilibrium models (DEQs) refrain from the traditional layer-stacking
paradigm and turn to find the fixed point of a single layer. DEQs have achieved
promising performance on different applications with featured memory efficiency.
At the same time, the adversarial vulnerability of DEQs raises concerns. Several
works propose to certify robustness for monotone DEQs. However, limited efforts
are devoted to studying empirical robustness for general DEQs. To this end, we
observe that an adversarially trained DEQ requires more forward steps to arrive at
the equilibrium state, or even violates its fixed-point structure. Besides, the forward
and backward tracks of DEQs are misaligned due to the black-box solvers. These
facts cause gradient obfuscation when applying the ready-made attacks to evaluate
or adversarially train DEQs. Given this, we develop approaches to estimate the
intermediate gradients of DEQs and integrate them into the attacking pipelines. Our
approaches facilitate fully white-box evaluations and lead to effective adversarial
defense for DEQs. Extensive experiments on CIFAR-10 validate the adversarial
robustness of DEQs competitive with deep networks of similar sizes.

1 Introduction

Conventional deep networks employ multiple stacked layers to process data in a feedforward manner
[17]. During training, network parameters are optimized by backpropagating loss updates through the
consecutive layers [36]. Recently, [3] propose deep equilibrium models (DEQs), whose forward pass
involves finding the fixed point (i.e., equilibrium state) of a single layer. With implicit differentiation,
the backward pass of DEQs is formulated as another linear fixed-point system. Training DEQs with
black-box root solvers only consumes O(1) memory, which enables DEQs to achieve performance
competitive with conventional networks in large-scale applications, including language modelling
[3], image classification and segmentation [4], density modelling [24, 16], and graph modelling [23].

Considering the fixed point as a local attractor, DEQs are expected to be stable to small input pertur-
bations. However, empirical observations show the opposite that a vanilla DEQ is also vulnerable to
adversarial attacks [16]. Along this routine, several works are proposed to investigate the certified
robustness for monotone DEQs [40, 34, 27, 20, 28, 10]. Inspired from the monotone operator splitting
theories, monotone DEQs are designed with the guarantee of existence and convergence of equilib-
rium points. However, the layer parameterization of monotone DEQs and the limited scalability of
certification methods narrow the scope of these previous studies. On the other hand, [16] explore the
adversarial robustness for general DEQs. They incorporate the adversarial generation process into
the equilibrium solver to accelerate the PGD attack [25]. Nevertheless, the PGD attack is originally
designed for deep networks, requiring for end-to-end white-box differentiation. In contrast, DEQs
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rely on black-box solvers and could obfuscate the gradients used in PGD: as shown in Fig. 2-(a), in
DEQs trained with different configurations, the intermediate states always exhibit higher robustness
than the final state under ready-made PGD attacks. Compared to the extensive literature on the
adversarial robustness of deep networks [6, 38, 15, 26, 22, 25, 43, 35, 29], much less is known about
the adversarial robustness of general DEQs, especially under a well-elaborate white-box setting. This
motivates us to disentangle the modules in DEQs and provide a fair evaluation of their robustness.

In this paper, we first summarize the challenges of training robust DEQs (see Sec. 3), including
(i) convergence of the black-box solvers and (ii) misalignment between the forward and backward
passes. The off-the-shelf attacks work in a gray-box setting as they have no access to the intermediate
states in the forward pass. To thoroughly evaluate the robustness, we propose two methods for
intermediate gradient estimation: the first one is iterating adjoint gradient estimations simultaneously
in the forward pass, as formally described in Sec. 4.1; the second one is estimating intermediate
gradients by unrolling, as seen in Sec. 4.2. Then in Sec. 5, we develop approaches to integrate the
estimated gradients into the ready-made attacks towards fully white-box adversaries. We also design
defense strategies for DEQs to boost their robustness under white-box attacks.

We use PGD-AT to train large-sized and XL-sized DEQs on CIFAR-10. To benchmark their robustness
[12], the parameter sizes of the DEQs are set to be comparable with ResNet-18 [18] and WideResNet-
34-10 [42], respectively. We observe that the adversarially trained DEQs with the exact gradient [3]
require more forward steps to arrive at the equilibrium state, or even violate their fixed-point structures.
We also find an intriguing robustness accumulation effect that the intermediate states in the forward
pass are more robust under ready-made attacks. These phenomena exhibit gradient obfuscation [2],
which verifies the necessity of intermediate gradient estimation to construct white-box attacks and
defense strategies. Robustness performance under the white-box evaluation shows that DEQs achieve
competitive or stronger adversarial robustness than deep networks of similar parameter amounts. Our
investigation sheds light on the pros and cons with respect to the adversarial robustness of DEQs.

2 Background

This section includes the background on DEQs and adversarial robustness for deep networks.

2.1 Deep equilibrium models

We first briefly introduce the modelling of deep equilibrium models (DEQs) [3, 4]. Consider a T -layer
weight-tied input-injected neural network:

zn = fθ(zn−1;x), n = 1, . . . , T, (1)

where x ∈ Rl is the input, zn ∈ Rd is the output of the n-th layer, and θ is the network weights
shared across different layers. One can cast the evolution of {zn} as a fixed-point iteration process.
When n → ∞, zn converges to the fixed point z∗ which satisfies the equation z∗ = fθ(z

∗;x).

Deep equilibrium models rely on the fixed-point equation and leverage a black-box solver to directly
solve for z∗ in the forward pass. The backward pass of DEQs can also be formulated as a fixed-point
iteration process. With the loss function L(z∗, y) and implicit differentiation, we can compute the
gradient with respect to θ or x with

∂L

∂(·)
=

(
∂fθ(z

∗;x)

∂(·)

)(
I − ∂fθ(z

∗;x)

∂z

)−1
∂L(z∗, y)

∂z︸ ︷︷ ︸
u∗

, (2)

where (∂a/∂b)ij = ∂aj/∂bi and u∗ satisfies

u∗ =

(
∂fθ(z

∗;x)

∂z

)
u∗ +

∂L(z∗, y)

∂z
. (3)

According to Eq. (3), the backward pass can also be executed with a black-box fixed-point solver,
and this iteration process is independent of that in the forward pass.

Several techniques have been proposed to improve the training stability of DEQs. [5] propose
to regularize the Jacobian matrix in Eq. (2) during training so that the nonlinear forward system
and the backward linear system enjoy appropriate contractivity. [14] propose unrolling-based and
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Figure 1: The gradients proposed for DEQs. (a): the exact gradient [3] solved by an independent
fixed-point iteration process. (b): the unrolling-based phantom gradient [14] returned by automatic
differentiation on a computational subgraph where the equilibrium state z∗ is unrolled. (c): si-
multaneous adjoint process along with the forward iterations described in Sec. 4.1. (d): unrolling
the intermediate states zn for gradient estimation in Sec. 4.2. We leverage (c) and (d) to estimate
intermediate gradients and design fully white-box attacks to evaluate the robustness of DEQs.

Neumann-series-based phantom gradients to replace the exact gradient in Eq. (2) for acceleration.
The unrolling-based phantom gradient is defined as

λ

k∑
t=1

(
∂fθ (ẑN+t;x)

∂(·)

)
P

(t)
λ,zN

∂L(ẑN+k, y)

∂z
, (4)

where

P
(t)
λ,zN

=

k∏
s=t+1

(
λ
∂fθ (ẑN+s;x)

∂z
+ (1− λ)I

)
, (5)

ẑN+t = (1− λ)ẑN+t−1 + λfθ (ẑN+t−1;x) (6)
are the k unrolling steps with 1 ≤ t ≤ k, starting from ẑN = z∗ returned by the forward solver.

Eq. (4) is calculated by the automatic differentiation framework [30] on the computational subgraph
in Eq. (6). It is demonstrated that the unrolling-based phantom gradient imposes implicit Jacobian
regularization effect to DEQ training [14]. DEQs trained by either the exact or the phantom gradients
are competitive to deep neural networks in terms of natural accuracy. In our work, we leverage
adversarial defense strategies to train DEQs to improve their robustness.

2.2 Adversarial robustness for deep networks

Much research has been dedicated to adversarial attacks and defenses of deep neural networks. On the
one hand, white-box adversarial attack techniques like PGD [25] construct adversaries by iteratively
perturbing inputs in the gradient ascent direction. The robustness of deep networks is benchmarked
by AutoAttack [12], which consists of four attacks including two PGD variants with adaptive stepsize
and the query-based SQUARE attack [1]. On the other hand, adversarial training (AT) [25] is one
of the most effective defense strategies. By early stopping the training procedure as in [35], the
primary PGD-AT framework still achieves competitive robustness performance compared with the
state-of-the-art defense techniques like TRADES [43]. It is worth mentioning that many defense
approaches claim robustness improvement by obfuscating gradients, which proves to be a false sense
of security under adaptive attacks designed specifically [2]. In our work, we train DEQs with PGD-AT
and investigate their adversarial robustness by designing customized defenses and adaptive attacks.

3 Challenges for robust general DEQs

This section describes the challenges encountered when we aim to train robust general DEQs.

Misalignment between forward & backward passes. The central idea of DEQs is directly solving
for the equilibrium state z∗ and differentiating through the fixed point equation z∗ = fθ(z

∗;x) for
efficient forward and backward passes. Fig. 1-(a) sketches the calculation of the exact gradient
[3]. Independent from the forward iterations (the blue curve), the exact gradient is acquired by
solving for a linear fixed-point system that only depends on the equilibrium state z∗ (the orange
curve). Fig. 1-(b) shows the calculation of the unrolling-based phantom gradient [14]. z∗ as the
final state in the forward pass is unrolled (the gray iteration), and the gradient is obtained from the
automatic differentiation on the loss function. However, when iterating the gradient computations,
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the intermediate states {zn} in the forward pass are bypassed by both methods. The misalignment
between the forward and backward tracks results in a gray-box setting for the ready-made attacks.

Convergence of the black-box solvers. In contrast with monotone DEQs, there is no guarantee for the
existence and convergence of the equilibrium states in general DEQs. It is thus unknown whether the
black-box solvers in DEQs still converge to equilibrium states under input perturbations. Adversarial
training also adds the concern on equilibrium convergence. The well-known effect of adversarial
training for deep networks is the trade-off between robustness and accuracy [37, 39, 43, 32]. A similar
drop in standard accuracy (from 78% to 55%) is also observed for tiny-sized adversarially-trained
DEQs [16]. The robustness-accuracy trade-off brings training instability for general DEQs, which
may take more iterations in the solvers for equilibrium convergence, or even violate their fixed-point
structures. Finally, the robustness comparison is still under-explored between large-sized general
DEQs and deep networks with similar parameter counts.

4 On intermediate gradient estimation
As the forward and backward tracks in DEQs are misaligned, the intermediate states in the forward
pass are inaccessible to off-the-shelf attacks, which causes gradient obfuscation and results in false
positive robustness. Therefore, it is necessary to estimate the intermediate gradients. With the
integration of the estimated gradients, the attacks can validate the robustness of DEQs in a fully
white-box setting. In this section, we propose two methods for intermediate gradient estimation.

4.1 Simultaneous adjoint in the forward pass

Inspired by the adjoint process in neural ODE models [9], we propose the adjoint process for
intermediate gradient estimation in DEQs. The adjoint process in neural ODE models is characterized
by an adjoint ODE [31]. For DEQs, we propose to iterate the updates of adjoint states subject to
zn in the forward pass. We investigate the simultaneous adjoint with Broyden’s method [7] as the
forward solver. In the forward pass, Broyden’s method updates the intermediate state zn based on the
residual gθ(zn;x) = fθ(zn;x)− zn and Bn, the low-rank approximation of the Jacobian inverse:

zn+1 = zn − αBngθ(zn;x), z0 = 0 (7)

Bn+1 = Bn +
∆zn+1 −Bn∆gn+1

∆zTn+1Bn∆gn+1
∆zTn+1Bn, (8)

where 0 ≤ n ≤ N − 1, B0 = −I , ∆zn+1 = zn+1 − zn, ∆gn+1 = gθ(zn+1;x)− gθ(zn;x), and α
is the step size. To maintain a simultaneous adjoint, we start from u0 = 0 and use Broyden’s method
to solve Eq. (3). Similar with the residual function gθ(·;x) for zn, the fixed-point equation in Eq. (3)
defines the residual of the adjoint state. However, we propose to replace the z∗ in Eq. (3) by zn, and
integrate the approximated Jacobian inverse Bn to force the alignment of the adjoint state update:

vn =

(
∂fθ(zn;x)

∂z

)
un +

∂L(zn, y)

∂z
− un, (9)

un+1 = un − βBnvn, (10)
where vn is the residual at iteration n, un is the updated adjoint state, and β > 0 is the step size.

We use the following surrogate gradients to construct attacks on the intermediate state zn:[
∂̃L

∂x

]
n

=

(
∂fθ(zn;x)

∂x

)
un. (11)

An illustration for the simultaneous adjoint process is shown in Fig. 1-(c). In the following, we refer
to this method as simultaneous adjoint when constructing intermediate state attacks in Sec 5.1.
Remark 4.1. We show in Appendix B that under mild assumptions, the {un} converges to u∗ when
0 < β < 1 in Eq. (10). However in practice, we do not require the convergence of un as we only use
them in Eq. (11) as gradient estimations to construct intermediate attacks.
Remark 4.2. Similar with the update of un in our approach, [16] propose augmented DEQs as an
integration of the iterative updating process of z, u, and x as a whole:

F

([
zn
un

xn

])
=


fθ(zn;xn)(

∂fθ(zn;xn)
∂z

)
un+

∂L(zn,y)
∂z

xn −
(

∂fθ(zn;xn)
∂x

)
un

 (12)
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The augmented DEQs leverage a black-box solver (e.g., Broyden’s method) to find the equilibrium
of the whole state [z∗,u∗,x∗]T. However, several cross-terms exist in the joint Jacobian due to the
coupling of the three iteration processes, which further hinders the convergence. In contrast, the
simultaneous adjoint update in Eq. (10) does not include the update of x. Furthermore, we reuse the
Jacobian inverse approximation matrix Bn in the update of un, which is easy to implement. Because
of the disentanglement of zn and un in the joint Jacobian, our method also enjoys better efficiency
and flexibility as one can early exit the adjoint process without affecting the updates of zn’s.
Remark 4.3. Concurrent work [33] also explores the idea of sharing approximated Jacobian inverse
Bn in bi-level optimization problems. While their motivation is to accelerate DEQ training, we use
the adjoint states to construct gradient estimation and facilitate white-box attacks. We also compare
our work with theirs in terms of intermediate state attacks; See Appendix D for details.

4.2 Unrolling the intermediate states

We also propose to estimate the gradient at the state zn by unrolling. Depicted in Fig. 1-(d), zn is
involved in an artificially constructed computational graph. We can thus estimate the intermediate
gradient by backpropagation with automatic differentiation. Formally, applying Eq. (4) to zn yields[

∂̂L

∂x

](k)
n

= A
(k)
λ,zn

∂L(ẑn+k, y)

∂z
, (13)

where

A
(k)
λ,zn

= λ

k−1∑
t=0

(
∂fθ(ẑn+t;x)

∂x

)
P

(k)
λ,zn

, (14)

P
(k)
λ,zn

=

k−1∏
s=t+1

(
λ
∂fθ(ẑn+s;x)

∂z
+ (1− λ)I

)
, (15)

and the state sequence ẑn, ẑn+1, · · · , ẑn+k represents the damped unrolling iteration:

ẑn+t = (1− λ)ẑn+t−1 + λfθ(ẑn+t−1;x), (16)

with t = 1, 2, · · · , k and ẑn = zn. While Eq. (4) is proposed as an approximation of the exact
gradient, we unroll the states zn for intermediate gradient estimation. Similar to the case of Eq. (11),
we use Eq. (13) as estimation to design intermediate attacks for DEQs. We refer to this method as
unrolled intermediates in the following when incorporating Eq. (13) into the white-box attacks.

5 White-box attacks and defenses for DEQs

This section describes different types of white-box attacks and defense strategies for DEQs.

5.1 White-box attacks for DEQs
The existing attacks leverage the gradients calculated at the final state outputted by the forward solver.
Based on the surrogate intermediate gradients in Eq. (11) or Eq. (13), we can involve the zn in the
forward pass into the construction of adversaries. A direct white-box approach is to use the estimated
gradient at an early state zn as an alternative for input perturbations. Another simple yet effective
method is to average the intermediate gradients as the gradient ensemble for attacks. For example,
the average of all intermediate gradients along the simultaneous adjoint process is given by∑

n

[
∂̃L

∂x

]
n

=
∑
n

(
∂fθ(zn;x)

∂x

)
un. (17)

The gradient ensemble can be viewed as the fusion of all perturbation directions indicated by all zn’s.

5.2 Defenses with intermediate states
In addition to the final state z∗, the unused intermediate states can be leveraged as well for the
defenses of DEQs. A simple yet effective defense strategy is to early exit the forward solver during
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Figure 2: Challenges in benchmarking adversarial robustness of DEQs. (a) Gradient obfuscation
issues arise in the DEQs trained with different configurations. With different iteration settings in the
DEQ solver or different gradient formulations, the intermediate state always exhibit higher robustness
than the final state under ready-made PGD-10 attack. (b) Exact-trained DEQ with small iterations
violate the fixed-point structure and require more iterations to retain it (analyzed in Sec. 6.1). Both
observations motivate us to design adaptive attacks for white-box robustness evaluation for DEQs.

inference. We can evaluate the robustness of DEQs with the early state zn in the forward pass, as
zn and z∗ have the same shape. We determine the optimal timing for early exit by selecting the top
robustness performance of all zn’s on the development set under the ready-made PGD-10 attack.

The input-injected neural network provides an interpretation for the early-state defense. From Eq. (1),
the distortion of zn comes from both the perturbed zn−1 and the biased transformation fθ(·;x+∆x).
By early exiting the forward process, one obtains a less distorted intermediate state.

Another defense strategy for DEQs is leveraging the ensemble of intermediate states. Similar with Eq.
(17), we average the intermediate states {zn} to defend against attacks. Instead of early stopping, the
intermediate state ensemble exploits the state representations at all iterations in the forward solver.

While the proposed defense techniques leverage the intermediate states, they still require only O(1)
memory. For early state defense, we determine the optimal time to early exit the solver on the
development set offline for once and then fix the early exit step during testing. For ensemble state
defense, we maintain an accumulator to sum up {zn} along the forward pass without storing them.

6 Experiments

Following the settings in [5], we experiment with the large-sized DEQ with its parameter count
similar to ResNet-18 [17]. We also experiment with an XL-sized DEQ with its parameter count
similar to WideResNet-34-10 [42] to enable a fair comparison with the empirical robustness of the
deep networks. The detailed experimental settings are listed in Appendix A. We first train DEQs on
CIFAR-10 [21] with the PGD-AT framework [25], then test the adaptive attacks and defense strategies
proposed in Sec. 5 on the adversarially-trained DEQs. We refer to a DEQ as “exact-trained” when
using the exact gradient, and “unrolling-trained” when using the unrolling-based phantom gradient in
the PGD-AT framework to generate adversaries and optimize for model parameters. Unless specified,
all DEQs are adversarially trained in this paper. During training, we use 10-step PGD with the step
size of 2/255 to generate adversaries within the range of ℓ∞ = 8/255. For the specific type of
attacks, we use PGD and AutoAttack (AA) [13] to instantiate the white-box attacks in Sec. 5.1.

6.1 The retention of the fixed-point structure
We start with the observation on the fixed-point structure. Shown in Fig. 2-(b), the lines illustrate
the relative error ∥fθ(zn;x)− zn∥2/∥fθ(zn;x)∥2 for each zn

2. We find that for the exact-trained
DEQ with small iteration settings (8 forward / 7 backward iterations), all the relative errors are larger
than 0.75, i.e., the forward solver in the DEQ fails to converge to an equilibrium. Such phenomenon

2The 9-th intermediate state comes from the implementation in DEQs. In the exact-trained DEQ, z9 =
fθ(z8;x). In the unrolling-trained DEQ, z9 is the final state after unrolling z8. For the exact-trained DEQ with
18 forward / 20 backward iterations, we only plot the first 9 states for an easy comparison.
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Table 2: Performance (%) of the unrolling-trained DEQ-Large with the small (8/7) iteration setting
and the exact-trained DEQ-Large with the large (50/50) iteration setting under PGD-10. The “final”
rows and columns represent the original DEQ output and the ready-made attacks at the final state. The
“early” rows indicate early state defense, and the “intermediate” columns indicate the performance
of the strongest intermediate attacks. The rows and the columns of “ensemble” demonstrate the
ensemble defense and the white-box attacks based on gradient ensemble. Under the (underlined)
strongest attacks, the ensemble defense achieves the best robustness performance (in bold).

Training Configurations Defense Clean Simultaneous Adjoint Unrolled Intermediates

Final Intermediate Ensemble Final Intermediate Ensemble

(8/7) Unrolling-Trained
Final 78.03 49.81 59.49 54.91 42.67 62.24 51.52
Early 79.57 54.90 39.19 42.76 51.90 29.38 34.20

Ensemble 79.67 51.52 52.43 49.47 49.02 55.10 47.12

(50/50) Exact-Trained
Final 73.51 37.77 70.52 43.70 36.70 69.29 48.08
Early 86.98 75.25 12.44 40.12 73.93 18.24 26.22

Ensemble 75.12 40.20 72.41 45.06 39.18 68.83 49.10

reflect the challenge on the convergence of the black-box solvers in DEQs mentioned in Section
3. It is shown that a larger iteration setting is required (18 forward / 20 backward iterations) for
exact-trained DEQs to retain the fixed-point structure. In contrast, we find the small iteration setting
(8/7) is enough for the unrolling-trained DEQ to retain the fixed-point structure.

Table 1: Performance (%) of the exact-trained
DEQ-Large with the small (8/7) solver iterations
under different attacks. The high accuracy under
PGD-10 with the exact gradient is deteriorated us-
ing the unrolling-based phantom gradient. Leverag-
ing the query-based SQUARE leads to even lower
accuracy. These observations indicate that the
DEQ with violated fixed-point structure suffers
severe robustness degradation.

Gradient Clean PGD-10 PGD-1000 SQUARE

Exact 78.24 79.97 80.10 5.95Unrolling 37.07 36.39

It is necessary to retain the fixed-point structure,
otherwise leading to gradient obfuscation issues.
As is derived from the implicit differentiation
on the fixed-point equation z∗ = fθ(z

∗;x), the
exact gradient in Eq. (2) becomes inexact when
the equilibrium point z∗ is not reached. Table 1
shows the empirical performance of the exact-
trained DEQ under the small (8/7) iteration set-
ting. The severe performance degradation under
alternative gradient formulations as well as the
SQUARE attack also indicates gradient obfus-
cation, as suggested in [2] and [8].

While large iterations for the exact-trained
DEQs keep the fixed-point structure, it in-
evitably slows down the training speed (detailed in Appendix E.3). For the exact-trained DEQs with
the small (8/7) iteration setting, we have also tried with varied Jacobian regularization weights to
impose stricter Lipschitz constraints during training, but found the DEQ solver still diverged. We
have also analyzed the instability by tracing the variation of Lipschitz constant during the adversarial
training of DEQs; See Appendix E.4 for details. By comparison, the unrolling-trained DEQ requires
fewer iterations in the forward solver to converge. According to the green line in Fig. 2-(b), the rela-
tive errors become lower consequently and reach 0.04 at the final state. The results coincide with [14]
that the unrolling-based phantom gradient invokes implicit Jacobian regularization during training.

6.2 Robustness of DEQs under white-box attacks

Intriguingly, we discover the robustness accumulation effect in both the exact-trained and the
unrolling-trained DEQs. We plot the highest robustness under the ready-made PGD-10 among
all the intermediate states in Fig. 2-(a), with comparison to the final state robustness. It is shown that
the intermediate states always exhibit much higher robustness. The accumulated robustness comes
from gradient obfuscation, as the ready-made attacks fail to “directly” attack the intermediate states
due to misaligned gradients. This resonates with the first challenge in Sec. 3, and similar results
are observed as well in adversarially-trained neural ODEs: the large error tolerance from the ODE
solvers with adaptive step sizes allows gradient masking after adversarial training [19].

The exact-trained DEQs, as we have discussed in Sec. 6.1, require larger iterations in the solver.
However, it is noticed in Fig. 2-(a) that the larger the iteration is in the exact-trained DEQs, the more
robust the intermediate states are under ready-made PGD-10. On the contrary, the (8/7) unrolling-
trained DEQ still achieves the highest robustness at the final state. To benchmark the white-box
robustness, in this section, we compare the (50/50) exact-trained DEQ-Large with the (8/7) unrolling-
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Table 3: Performance (%) of the unrolling-trained DEQs under PGD-10/AutoAttack. The rows
and the columns represent the same meanings as those in Table 2. Under the (underlined) strongest
attacks, the ensemble defense achieves the best robustness performance (in bold).

Arch. Defense Clean Simultaneous Adjoint (PGD/AA) Unrolled Intermediates (PGD/AA)

Final Intermediate Ensemble Final Intermediate Ensemble

Large
Final 78.03 49.81/51.48 59.49/61.95 54.91/52.95 42.67/37.27 62.24/65.53 51.52/49.66
Early 79.57 54.90/61.12 39.19/55.47 42.76/56.84 51.90/56.86 29.38/25.41 34.20/49.74

Ensemble 79.67 51.52/56.06 52.43/58.69 49.47/55.02 49.02/50.45 55.10/58.63 47.12/48.37

XL
Final 82.92 55.80/58.21 55.80/58.21 67.30/64.24 48.58/43.97 65.94/72.76 58.23/69.83
Early 80.12 51.40/58.92 51.40/58.92 60.78/62.98 52.08/56.58 55.70/62.67 48.88/62.87

Ensemble 81.17 52.87/58.08 52.87/58.08 61.40/62.23 51.70/54.09 59.71/66.90 53.23/56.45

trained one 3. We integrate the estimated intermediate gradients in Sec. 4 as different alternatives in
PGD-10 for white-box evaluation. Among all the attack candidates based on intermediate gradients,
we select the one that leads to the largest robustness deterioration on the early-state defense in Sec.
5.2 and report the results in Table 2. Ablation studies on the performance of the attack candidates
with estimated gradients at different intermediates can be found in Sec. 6.4. We also include the
report of memory usage for the defense strategies in Appendix F.1, and the running time complexity
analysis for the white-box attacks in Appendix F.2.

Shown in Table 2, for the unrolling-trained DEQ, unrolling the intermediate states results in the
strongest attack to the final state and early state defenses. While the robustness accuracies under
final and intermediate attacks are improved and better balanced with the ensemble state defense, the
ensemble attack leads to the largest performance drop in this case, arriving at the overall white-box
robustness of 47.12%. The estimated intermediate gradients based on simultaneous adjoint process
also shows significant attack performance for the exact-trained DEQ with large solver iterations.
After maximizing the minimum robustness under all attacks across all defense techniques, the overall
white-box robustness is 39.18%. In addition, all attacks significantly deteriorate the robustness of the
DEQs without adversarial training, indicating that the attacks leveraged in Table 2 are reliably strong
(detailed in Sec. 6.5). Considering the superior robustness of the unrolling-trained DEQ as well as
its training efficiency, we proceed to experiment with unrolling-trained DEQs for further evaluation.

6.3 Comparison between DEQs and deep networks

In this section, we further provide a thorough evaluation by benchmarking the white-box robustness
performance of the unrolling-trained DEQ-Large and DEQ-XL under both PGD-10 and AutoAttack.

Table 3 shows the robustness performance of the unrolling-trained DEQ-Large and DEQ-XL. Ac-
cording to the results, the gradient ensemble attacks are more effective in defeating the early-state
defense than the final-state defense. The ensemble attack is the most threatening on the ensemble
defense in DEQ-Large. The attack with the gradient at the final state leads to the most substantial
performance drop on the ensemble defense in DEQ-XL.

Table 4: The comparison of robustness perfor-
mance (%) between the DEQs with the ensemble
defense and the deep networks of similar sizes. For
the DEQs, the weakest robustness under all attacks
in Table 3 is reported. For the deep networks, we
report the results in [29].

Arch. Clean PGD-10 AA #Params

ResNet-18 82.52 53.58 48.51 10M
DEQ-Large 79.67 47.12 48.37 10M

WRN-34-10 86.07 56.60 52.19 48M
DEQ-XL 81.17 51.70 54.09 48M

In Table 3, we find that the PGD-10 attack brings
more significant performance drops than Au-
toAttack does in many settings. The results
differ from the case in the robustness of deep
networks [13]. The phenomenon originates
from the difference between intermediate-state
attacks and alternative defense strategies. Au-
toAttack will overfit to the provided gradients
at the intermediate or the averaged states, thus
generating less threatening adversaries on the
defenses based on other states. In addition, the
intermediate gradients can also be inaccurate, as
they only serve as approximations.

The minimum robustness under all types of attacks represents the robustness of a defense strategy.
We thus take the most robust defenses for DEQ-Large and DEQ-XL, and compare them with the

3The robustness of the (8/7) exact-trained DEQ-Large is much lower than its unrolling-trained counterpart
because of the violated fixed-point structure, as shown in Sec. 6.1 and Table 1
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Figure 3: Ablation study on the gradient estimations at different intermediate states. (a) Different
robustness performance under PGD-10 with different intermediate adjoint states un as the surrogate
gradient. For the approach in Sec. 4.1, u4 leads to the largest robustness drop in the early state z3 in
the unrolling-based DEQ. (b) and (c): Different unrolled intermediates zn with different k’s in Eq.
(14). the λ in Eq. (13) is set as 0.5 in (b) and 1 in (c). For the method in Sec. 4.2, unrolling the state
z1 with k = 1 and λ = 1 results in the largest robustness drop in the early state z3.

deep networks of similar parameter counts. Shown in Table 4, the empirical robustness of the DEQs
is competitive with or even slightly higher than that of the ResNet-18 and WRN-34-10 models with
the PGD-AT framework, respectively.

6.4 Ablation study on different intermediate gradients

In this section, we study the effect of the white-box attacks with gradients estimated at different
intermediate states in the forward solver of the large-sized DEQs.

We first inspect the attacks with intermediate gradients acquired from each adjoint state. Fig. 3-(a)
plots the robustness of the early-state and final-state defense in both the unrolling-trained and the
exact-trained DEQs. For the exact-trained DEQ, due to its violated fixed-point structure, u8 results in
the strongest attack for both the early-state and the final-state defenses. For the unrolling-trained DEQ,
the estimated gradients at the consecutive adjoint states {un} form increasingly stronger attacks on
the robustness of the final state. On the robustness at the early state (z3), the state u4 gives rise to the
strongest attack, which coincides with Eq. (9) and Eq. (10) that un+1 directly depends on zn.

Figure 4: Alignment between the simul-
taneous adjoint process and the forward
pass in the unrolling-trained DEQ.

We further explore whether the simultaneous adjoint pro-
cess are aligned with the forward pass. We use each in-
termediate adjoint state un as the gradient surrogate in
the PGD-10 attack for the unrolling-trained DEQ. Fig. 4
shows the robustness performance of all the intermedi-
ate states zn in the forward pass of the unrolling-trained
DEQ-Large. According to Fig. 4, it always follows that
un+1 results in the largest robustness drop of zn. As un+1

directly depends on zn in Eq. (10), this validates that the
simultaneous adjoint process is aligned with the forward
pass at each iteration in terms of adversarial robustness.

We also study the effect of unrolling different intermediate
states {zn} for surrogate gradient estimation. Fig. 3-
(b)/(c) illustrates the robustness of the early state z3 in the
unrolling-trained DEQ under white-box attacks in different
settings. It is shown that the number of unrolling steps for
intermediate states like z1 and z2 should not be too much in order to obtain a powerful intermediate
attack. The reason of this might be the inaccuracy of the unrolled intermediate gradient estimates.

The gradient estimated by unrolling z1 leads to the most vigorous attack on the robustness of z3. To
understand the circumstance, we note that the unrolling-based intermediate gradient reflects only
the feedback from the loss function at the unrolled state in Eq. (13) and Eq. (14). As a result, the
estimated gradient may be misaligned with the unrolled state: gradients by unrolling z3 compose
weak attack in terms of the robustness of z3. It is inferred that the perturbation from the unrolled
intermediate gradients must still be propagated in the forward pass to induce enough threatening
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Table 5: The performance (%) of the standardly-trained DEQ-Large under ready-made PGD-10.
State z1 z2 z3 z4 z5 z6 z7 z8

Clean Acc. 38.81 82.62 89.63 91.77 92.08 92.29 92.39 92.53
Robust Acc. 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6: Performance (%) of the standardly-trained DEQ-Large [5] with all proposed adaptive attacks
and defense strategies under the PGD attack. The notations for the rows and the columns are similar
with those in Tables 2 and 3. Under the (underlined) strongest attacks, the ensemble defense still
achieves the best robustness performance (in bold).

Defense Clean Simultaneous Adjoint Unrolled Intermediates

Final Intermediate Ensemble Final Intermediate Ensemble

Final 92.53 8.90 11.45 3.69 0.00 0.00 0.00
Early 38.81 6.08 4.54 3.42 2.00 2.94 1.31

Ensemble 87.31 9.12 6.39 3.48 0.00 0.00 0.00

distortion. This explains the delay that the unrolled gradient at z1 affects the robustness of z3. More
ablation studies on the unrolled intermediates can be found in Appendix E.1.

6.5 Performance of the proposed attacks on vanilla DEQ models

In this section, we evaluate the performance of the proposed attacks on the DEQ models without
adversarial training. We train a DEQ-Large on CIFAR-10 with standard training following the recipe
in [5], and use the ready-made PGD-10 to attack the model. The clean accuracy of each state zn, as
well as its robust accuracy is shown in Table 5. Different from the robustness accumulation effect
in the adversarially-trained DEQs (shown in Sec. 6.2, Fig. 2-(a), and Appendix C), the ready-made
PGD-10 already has a dramatic effect in attacking all the states in the standardly-trained DEQ.

We proceed to apply all the proposed attacks and defense strategies. Following Sec. 5.2, we determine
the optimal timing for early exiting the standardly-trained DEQ as state z1. Shown in Table 6, it
can be seen that all the proposed attacks can defeat the DEQ by standard training. As the white-box
robustness of DEQs is assessed by the strongest defense under all attacks (minimum over all columns
in a row, then maximum over the minimum of the rows), the white-box robustness of the vanilla DEQ
is 1.31% with a 38.81% clean accuracy using the early-state defense. When using the final-state and
the ensemble-state defense, the robustness is 0%. These results validate that all the proposed attacks
are reliably strong as they all defeat the DEQ models without adversarial training.

7 Conclusion

We study the adversarial robustness of general DEQs, using the exact gradient and the unrolling-based
phantom gradient in adversarial training for DEQs, respectively. We observe the gradient obfuscation
issues in DEQs under ready-made attacks. Based on the misalignment between the forward and
backward tracks, we leverage intermediate states in the forward pass to construct white-box attacks
and defense strategies and benchmark the white-box robustness performance of DEQs.

While we have performed a serious comparison of white-box robustness between DEQs and deep
networks, it can be seen that the performance of DEQs is on par with that of deep networks. Our
empirical observations indicate that we should explore more advanced AT mechanisms for DEQs, in
order to exploit their local attractor structures. A potential way is to explicitly encourage closed-loop
control during training, similar to the mechanism introduced in [11]. To this end, the gradient
estimation method proposed in this paper would be one of the critical ingredients for solving the
misalignment between the forward/backward pass of DEQs.
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A Experimental settings

We train DEQs on CIFAR-10 with the PGD-AT framework. The detailed experimental settings for
both the unrolling-trained and the exact-trained DEQs are shown in Table 7. The best checkpoint is
selected with the top performance on the development set under the ready-made PGD-10 attack. The
gradient used in the attack for checkpoint selection is the same as the gradient used for training. The
settings on the basics of DEQ training are largely followed from [5]. We leave the integration of the
estimated intermediate gradients for adversary generation into AT for DEQs as future work. We use
NVIDIA-3090 GPUs for all of our experiments.

Table 7: Detailed hyperparameter settings.

Category Settings DEQ-Large DEQ-XL

Architecture

Input Image Size 32 × 32
Number of Scales 4
# of Head Channels for Each Scale [14, 28, 56, 112] [20, 40, 80, 160]
# of Channels for Each Scale [32, 64, 128, 256] [72, 144, 288, 576]
Channel Size of Final Layer 1,680 1,800
Activation Function ReLU
# of Parameters 10M 48M

DEQ Solver

# of Forward Solver Iterations 8
# of Backward Solver Iterations 7
Algo. for Forward Solvers Broyden’s Method
Algo. for Backward Solvers Broyden’s Method

Optimization

Optimizer Adam
Learning Rate Schedule cosine decay
Decay Factor 0.1
Epochs for Decay [30, 60, 90]
Initial Learning Rate 0.001
Nesterov Momentum 0.98
Weight Decay -

Adv. Training

Batch Size 96
Training Epochs 150
Pretraining Steps 16,000

Weight of JR During Pretraining -
Weight of JR During DEQ Training 0.4
Stop Epoch for JR 90

Unrolling-Trained: Steps k 5
Unrolling-Trained: Damping Factor λ 0.5

AT for Pretraining No
Attack in AT for DEQ Training ready-made PGD-10
Grad. for Adv. Generation in AT same with the gradient used in training
Label Smoothing -
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B On the convergence of simultaneous adjoint

We start with the assumption on nonsingularity of the Jacobian inverse of gθ(zn;x) = fθ(zn;x)−zn:

Assumption B.1. For ∀z ∈ Rd and ∀x ∈ Rl, we assume the nonsingularity of Jacobian inverse of
gθ(z;x) = fθ(z;x)− z. Namely,(

∂gθ(z;x)

∂z

)−1

=

(
∂fθ(z;x)

∂z
− I

)−1

(18)

exists.

We also make assumptions on the precision of Bn, which is the approximation of the Jacobian inverse
of gθ(zn;x).

Assumption B.2. Define

B̄n

(
∂gθ(zn;x)

zn

)
= I − ϵn(x). (19)

We assume that ∥ϵn(x)∥ ≤ 1− ϵ < 1 with ϵ > 0 for all x.

With these two assumptions, with 0 < β < 1, we have:

∥un+1 − u∗∥ (20)

=
∥∥un − βB̄nvn − u∗∥∥ (21)

=

∥∥∥∥un − βB̄n

((
∂fθ(zn;x)

∂z

)
un +

∂L(zn, y)

∂z
− un

)
− u∗

∥∥∥∥ (22)

=

∥∥∥∥un − βB̄n

(
∂gθ(zn;x)

∂z

)
un − βB̄n

∂L(zn, y)

∂z
− u∗

∥∥∥∥ (23)

=

∥∥∥∥un − β (I − ϵn(x))un − βB̄n
∂L(zn, y)

∂z
− u∗

∥∥∥∥ (24)

=

∥∥∥∥∥((1− β)I + βϵn(x))un + β (I − ϵn(x))

(
I − ∂fθ(zn;x)

∂z

)−1
∂L(zn, y)

∂z
− u∗

∥∥∥∥∥ (25)

=

∥∥∥∥∥((1− β)I + βϵn(x)) (un − u∗) + β (I − ϵn(x))

((
I − ∂fθ(zn;x)

∂z

)−1
∂L(zn, y)

∂z
− u∗

)∥∥∥∥∥
(26)

≤ ∥(1− β)I + βϵn(x)∥ ∥un − u∗∥+ β ∥I − ϵn(x)∥

∥∥∥∥∥
(
I − ∂fθ(zn;x)

∂z

)−1
∂L(zn, y)

∂z
− u∗

∥∥∥∥∥ .
(27)

Define

wn =

(
I − ∂fθ(zn;x)

∂z

)−1
∂L(zn, y)

∂z
. (28)

According to the definition of u∗ in Eq. (2), it follows that wn → u∗ when zn → z∗. {wn} has the
highest convergence rate to u∗ as it is the most precised estimation of u∗ at step n. According to
Assumption B.2 and 0 < β < 1, the first term in Eq. (27) follows

∥(1− β)I + βϵn(x)∥ ≤ (1− β) + β∥ϵn(x)∥ ≤ 1− βϵ < 1. (29)

Substituting Eq. (29) and the upper bound ϵ0 into Eq. (27), we have

∥un+1 − u∗∥ ≤ (1− βϵ) ∥un − u∗∥+ ∥wn − u∗∥, (30)

thus
∥un+1 − u∗∥
∥un − u∗∥

≤ 1− βϵ+
∥wn − u∗∥
∥un − u∗∥

. (31)

16



We omit the second term in the right-hand side of (31) under the mild assumption of the strictly
higher convergence rate of {wn}. As a result, when n > N with N sufficiently large, it follows that
{un} converges to u∗ as ∥un+1 − u∗∥ < ∥un − u∗∥. However, we do not require the convergence
of un as we only use them in Eq. (11) as gradient estimations to construct intermediate attacks. In
practice, we tune β to facilitate the strongest attacks. For the (8/7) unrolling-trained DEQ-Large/XL,
we set β = 0.5; for the (50/50) exact-trained DEQ-Large, we set β = 0.05.

C The robustness accumulation effect
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Figure 5: The performance of all intermediate states zn in the exact-trained and the unrolling-trained
DEQ-Large with 8 forward and 7 backward iterations. (a) Relative error at each intermediate state zn.
The fixed-point structure in the exact-trained DEQ is violated as all relative errors are higher than
1.0. (b) and (c): Robustness evaluated at different intermediate states in (b) the exact-trained and (c)
the unrolling-trained DEQs. The unrolling-based phantom gradient forms stronger adversaries in
the ready-made PGD-10 attack. The intermediate state z3 exhibits the strongest robustness in the
unrolling-trained DEQ, while z4 exhibits the strongest robustness in the exact-trained DEQ.
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Figure 6: The performance of all intermediate states zn in the exact-trained and the unrolling-trained
DEQ-XL with 8 forward and 7 backward iterations. (a) Relative error at each intermediate state zn.
The fixed-point structure in the exact-trained DEQ is violated as all relative errors are higher than 1.0.
(b) and (c): Robustness evaluated at different intermediate states in (b) the exact-trained and (c) the
unrolling-trained DEQs. The unrolling-based phantom gradient forms stronger adversaries in the
ready-made PGD-10 attack. For both DEQs, the intermediate state z4 exhibits stronger robustness
than other states.

Figures 5 and 6 the robustness accumulation effect in the DEQs with 8 forward and 7 backward
iterations. For both the exact-trained and the unrolling-trained DEQs, the robustness accumulation
effect exists because the black-box solvers have obfuscated the gradients used in the ready-made
attacks. It can also be seen that the fixed-point structures are broken in the exact-trained DEQ-Large
and DEQ-XL under this setting. Figure 2 show that the exact-trained DEQs with more iterations in
the solvers can retain the fixed-point structure (more details in Appendix E.3).
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D Comparison with the adjoint Broyden method

Similar to our simultaneous adjoint design, concurrent work [33] propose the adjoint Broyden method
to share the approximated Jacobian inverse Bn into the backward pass. Their motivation, however, is
to accelerate DEQ training while we integrate the simultaneous adjoint into ready-made attacks to
facilitate white-box robustness evaluation. In this section, we compare the adjoint Broyden method
with our simultaneous adjoint in terms of the effect of intermediate/ensemble attacks.

Table 8: Comparison between the proposed simultaneous adjoint and the adjoint Broyden method.

Arch. Defense Clean PGD : Simultaneous Adjoint / Adjoint Broyden

Final Intermediate Ensemble

DEQ-Large
Final 78.03 49.81/52.34 59.49/58.22 54.91/58.06
Early 79.57 54.90/45.29 39.19/43.48 42.76/45.47

Ensemble 79.67 51.52/49.24 52.43/49.24 49.47/53.04

DEQ-XL
Final 82.92 55.80/65.00 55.80/65.00 67.30/71.20
Early 80.12 51.40/59.26 51.40/59.26 60.78/65.67

Ensemble 81.17 52.87/60.22 52.87/60.22 61.40/66.69

Table 8 shows the comparison between our simultaneous adjoint and the adjoint Broyden method
with PGD as the attack. The proposed simultaneous adjoint results in stronger white-box attacks
in general. The adjoint Broyden method also yields better performance in some cases. We further
compare among the proposed simultaneous adjoint, the adjoint Broyden method, and the unrolled
intermediates in Table 9.

Table 9: Comparison among the proposed simultaneous adjoint, the adjoint Broyden method, and the
(proposed) unrolled intermediates with PGD.

Arch. Defense Clean PGD : Simultaneous Adjoint / Adjoint Broyden / Unrolling Intermediates

Final Intermediate Ensemble

DEQ-Large
Final 78.03 49.81/52.34/42.67 59.49/58.22/62.24 54.91/58.06/51.52
Early 79.57 54.90/45.29/51.90 39.19/43.48/29.38 42.76/45.47/34.20

Ensemble 79.67 51.52/49.24/49.02 52.43/49.24/55.10 49.47/53.04/47.12

DEQ-XL
Final 82.92 55.80/65.00/48.58 55.80/65.00/65.94 67.30/71.20/58.23
Early 80.12 51.40/59.26/52.08 51.40/59.26/55.70 60.78/65.67/48.88

Ensemble 81.17 52.87/60.22/51.70 52.87/60.22/59.71 61.40/66.69/56.45

Table 9 shows that the unrolled intermediates still have the dominant effect in facilitating white-box
attacks in general. In the future work, we will integrate our simultaneous adjoint/the adjoint Broyden
method into the adversarial training process of DEQs and validate their white-box robustness.
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E Ablation studies

E.1 Settings of the unrolled intermediates

(a) Exact-trained, defense with the final state (b) Exact-trained, defense with the early state

Figure 7: Ablation on unrolling different intermediate states with different steps in exact-trained
DEQ-Large.

(a) Unrolling-trained, defense with the final state (b) Unrolling-trained, defense with the final state

Figure 8: Ablation on unrolling different intermediate states with different steps in unrolling-trained
DEQ-Large.

E.2 The backward solver iteration threshold in attacks with exact gradients

The exact gradient in Eq. (2) is solved by an independent fixed-point iteration process solely based on
z∗. While this iteration process is not aligned with the forward pass, one might still question whether
the intermediate states in the backward solver can lead to strong attacks.

We address the question by experimenting with the unrolling-trained DEQ-Large. We use the exact
gradient solved by a backward solver for adversary generation in PGD-10. While the default iteration
threshold is 7, we investigate the capability of all the 7 intermediate states in constructing adversaries.
We also increase the number of the iterations up to 20 to see whether the robustness is degraded. The
results are shown in Fig. 9.

From Fig. 9, it can be seen that the gradients from less iterations result in less powerful attacks for
both the final and the early states. With increased backward iterations, the robustness of both states
is dropped by about 1%. However, as shown in Table 2, PGD-10 with the unrolling-based phantom
gradient results in the robustness of 42.67 for the final state and 51.90 for the early state, both of which
lower than those in Fig. 9. It is thus concluded that alternating the backward iterations in the exact
gradient does not have significant effect on deteriorating the robustness of the unrolling-trained DEQ.
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Figure 9: Robustness of the final state as well as the early state in the unrolling-trained DEQ-Large
under PGD-10. The gradients in the attacks are returned from the backward solver with different
iterations.

E.3 Solver iteration thresholds in the exact-trained DEQs

We increase the iteration thresholds of the forward and the backward solvers in the exact-trained
DEQs to stabilize adversarial training. We experiment with the exact-trained DEQ-Large and report
the results in Table 10 (which is also illustrated in Fig. 2-(a)).

Table 10: Exact-trained DEQ-Large with larger iteration thresholds in the forward and the backward
solvers during training. The “PGD, Unroll” column, demonstrating the accuracy of the final and the
top intermediate state under ready-made PGD attacks with the unrolling-based phantom gradient, is
used to illustrate Fig. 2-(a).

Training (ForIter,/BackIter) Defense Clean PGD, Exact PGD, Unroll Speed (Samples/s) Note

Exact

(8/7)
Final 78.24 79.97 37.07 28.3 Grad. Obfus.Early 73.12 63.95 53.09

(18/20)
Final 73.16 39.92 40.00 22.3 -Early 72.02 51.44 51.07

(30/30)
Final 81.17 41.51 37.12 7.6 -Early 87.72 65.22 62.74

(50/50)
Final 73.51 37.29 36.70 5.3 -Early 86.98 74.04 73.93

Unrolling (8/7)
Final 78.03 48.03 42.67 35.4 -Early 79.57 54.01 51.90

From Table 10, it is witnessed that increasing the forward and the backward iterations imposes
stabilization effect on DEQ training with the exact gradient. As a consequence, no false-positive
robustness is observed in the settings of iteration pairs (18/20). The relative error for each state zn
in the forward pass under the (18/20) setting is shown in Fig. 10-(a).

In this setting, the forward solver may require less number of iterations than the threshold 18. Here
we plot the relative errors of the first 11 states in the forward solver. From Fig. 10-(a) (also the blue
line in Fig. 2-(b)), the (18/20) exact-trained DEQ does not violate its fixed-point structure, thus the
gradient obfuscation issue is avoided. However, both of its training speed and robustness performance
are outperformed by the unrolling-trained DEQ in the (8/7) setting.

Similar to Figures 5 and 6, we also compare the robustness accumulation effect between the (18/20)
exact-trained DEQ with the (8/7) unrolling-trained DEQ. Figure 10-(b) shows the comparison: clean
and PGD-10 accuracies of both the final and the top intermediate states in the (18/20) exact-trained
DEQ are lower than the (8/7) unrolling-trained DEQ. This is similar with the conclusion drawn from
Table 2.

E.4 Jacobian regularization weights during training

Another way to stabilize the adversarial training process is to impose stricter regularization on the
DEQs. [5] propose Jacobian regularization to stabilize the standard training of DEQs. In this section,
we vary the weight γ of the Jacobian regularization during DEQ training to its effect. In standard

20



1 2 3 4 5 6 7 8 9 10 11
10-3

10-2

10-1

100
Exact, (18, 20)

1 2 3 4 5 6 7 8 9
0

10
20
30
40
50
60
70
80
90

Exact-Trained, Clean Acc.
Exact-Trained, PGD-10 Acc.
Unrolling-Trained, Clean Acc.
Unrolling-Trained, PGD-10 Acc.

A
cc

ur
ac

y
(%

)

Intermediate State

(b)

Intermediate State

R
el

at
iv

e
Er

ro
r

(a)

Figure 10: Performance of the (18/20) exact-trained DEQ-Large. (a) The relative error of each state
zn in the forward pass of the exact-trained DEQ-Large under the (18/20) setting. (b) Robustness
accumulation effect in DEQ-Large: the (18/20) exact-trained DEQ v.s. the (8/7) exact-trained DEQ.

training, the weight is set as 0.4. In this section, we sweep γ over {0.4, 0.8, 1.2, 1.6, 2.0, 3.2} to train
DEQ-Large with the exact gradient with 8 forward and 7 backward iterations (8/7).

Similar to Fig. 2-(b), we plot the relative error at each zn’s under different γ’s settings.
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Figure 11: Relative errors at each intermediate state zn under different γ’s settings.

Illustrated in Fig. 11, all of the relative errors are larger than 0.6, indicating the violation of the
fixed-point structure. We have also explored the stability of the adversarial training process in the
γ = 3.2, (8/7) exact-trained setting and the γ = 0.4, (8/7) unrolling-trained setting. We calculate the
averaged spectral radius on the development set for all the checkpoints along the training, and plot
them, together with their accuracy under the ready-made PGD-10 attack, in Figs 12 and 13.

Shown in Fig. 13, the γ = 0.4, (8/7) unrolling-trained DEQ-Large model always has a spectral radius
less than or around 1.0. In contrast, the spectral radius of the γ = 3.2, (8/7) exact-trained DEQ-Large
model becomes far larger than 1.0 since the 65-th checkpoint in Fig. 12. This coincides with the
violated fixed-point structure, although achieving high (> 60, but false-positive) accuracy under the
ready-made PGD-10 attack. In this work, we use the checkpoint with the highest robustness under
the ready-made PGD10 along the adversarial training process for our study. We leave the study of the
white-box robustness evaluation for other checkpoints in future work.

When the fixed-point structure is broken, query-based attacks have a drastic effect on reducing
the classification accuracy of DEQs (see Table 1). We use SQUARE to attack these exact-trained
DEQ-Large models with varied Jacobian regularization weight γ’s.

Table 11 compares the performance of the models with different γ’s under SQUARE and the ready-
made PGD attack. For the (8/7) exact-trained DEQ-Large with varied γ’s, the SQUARE attack
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Figure 12: γ = 3.2, (8/7) exact-trained DEQ-Large. The trace of spectral radius on the development
set and the accuracy of each checkpoint under the ready-made PGD-10 attack. The blue line traces
the spectral radius, and the orange line traces the accuracy under ready-made PGD-10.
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Figure 13: γ = 0.4, (8/7) unrolling-trained DEQ-Large. The trace of spectral radius on the develop-
ment set and the accuracy of each checkpoint under the ready-made PGD-10 attack. The blue line
traces the spectral radius, and the orange line traces the accuracy under ready-made PGD-10.

appears to be more powerful than the ready-made (gradient-based) PGD attack and always leads to
severe robustness degradation. According to [2, 8], such a phenomenon indicates gradient obfuscation.
For the exact-trained DEQ-Large with more iterations in the DEQ solver and the unrolling-trained
DEQ-Large, as they have retained the fixed-point structure (Fig. 2-(b) and Fig. 10-(a)), we find the
gradient-based PGD attack to be more effective. However, we emphasize that the two models still
suffer from gradient obfuscation: shown in Fig. 10-(b), robustness accumulation effect is observed in
both of the models (despite the retained fixed-point structure). The reason of the effect, as we have
mentioned in Sec. 6.2, is that the black-box solver in DEQs results in misaligned gradients, which
avoids the ready-made attacks to “directly” attack the intermediate states. This has motivated us to
propose intermediate/ensemble attacks and defenses for white-box robustness evaluation.

To summarize, we have studied two types of gradient obfuscation in our work (see Table 12). The
violated fixed-point structure can be remedied by different techniques: we adopt unrolling-trained
DEQs in Sec. 6.1, increase the solver iterations in Sec. 6.2 and Appendix E.3, and attempt with
stricter regularization in Appendix E.4. We will explore with more regularization techniques in future
work. However, the robustness accumulation effect always exists. This ultimately urges the necessity
of white-box robustness evaluation, and we propose several white-box attacks and defenses in this
work. The two types of gradient obfuscation also echo with the two challenges in Sec. 3.
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Table 11: (8/7) exact-trained DEQ-Large with varied Jacobian regularization weight γ’s, in compari-
son with (γ = 0.4): the (18/20) exact-trained DEQ-Large and the (8/7) unrolling-trained DEQ-Large.
γ 0.4 0.8 1.2 1.6 2.0 3.2 0.4 (18/20) 0.4 (Unroll)

Clean 78.24 82.27 80.64 78.82 67.34 66.70 73.16 78.03
PGD (ready-made) 79.97 71.00 48.71 62.23 61.77 65.22 39.92 42.67
SQUARE 5.95 10.00 32.54 23.85 4.21 2.72 47.20 45.34

Table 12: To summarize our work: the two types of gradient obfuscation that we have studied, and
what we have done for our white-box robustness evaluation.

State investigated Phenomenon observed The reason of the phenomenon What we have done

Final SQUARE is more effective Violated fixed-point structure

“Fix” the structure by:
Using the unrolling-trained DEQs;
Increasing the iterations in the solver;
Attempting with varied regularization weights.

Intermediate Robustness accumulation Black-box solvers Propose several white-box attacks and defenses.

F Memory and time complexity

F.1 On the O(1) memory concern of the proposed attacks and defenses

The unique property of DEQs lies in its O(1) memory consumption. It is therefore necessary to study
whether the O(1) memory constraint still applies in the proposed attacks and defenses.

Table 13: The memory usage of different defense
strategies used in the (8/7) unrolling-trained DEQ-
Large. No extra computation is needed.

Defense Mem (GB)

Final 3.77
Early 3.77

Ensemble 3.77

From the attacking aspect, white-box attackers
are assumed to have full access to the model,
therefore they are allowed to “open the black
box” to trace all the intermediate steps in the
solver. To fully evaluate the worst-case perfor-
mance of models, white-box attackers are usu-
ally not constrained by the O(1) memory. From
the defending aspect, as stated in Sec. 5.2, our
defense methods still require only O(1) mem-
ory. For early state defense, we determine the
optimal time to early exit the solver on the de-
velopment set offline for once and then fix the early exit step during testing. For ensemble state
defense, we maintain an accumulator (ret+= zn) without storing the intermediate states of zn and
output with ret/N instead of zN : Table 13 shows the empirical results on memory usage.

F.2 On the time complexity concern of simultaneous adjoint

The core idea of the simultaneous adjoint is to reuse the approximated Jacobian inverse Bn in the
forward calculation of zn when calculating the adjoint state un. As a result, the ”approximated
Jacobian inverse” in the simultaneous adjoint does not need extra calculation. This is different from
the original DEQ design where the forward and the backward passes are decoupled by separate
fixed-point solvers, where different Bn’s need to be maintained separately.

Specifically, compared with the original forward pass (Eqs. (7) and (8)), the simultaneous adjoint
calculation augments it with Eqs. (9) and (10). The time complexity of Eq.(10) is equilavent to Eq.(7).
Eq. (9) calculates the residual of Eq.(3), the fixed-point equation of the backward pass, at u∗ = un

and z∗ = zn. The complexity of this calculation is equivalent to just the residual evaluation when
solving for the exact gradient in Eq.(3).

In practice, the running time for the adaptive PGD-10 attack with the final adjoint state in ”Simultane-
ous Adjoint” is 6,479ms per batch. In comparison, the running time for the adaptive PGD-10 attack
with the unrolled final state in ”Unrolled Intermediates” is 5,369ms per batch. It can be seen that the
introduced computational burden of Eqs.(9) and (10) does not take the majority of the running time.
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G Limitations and Broader Impact

Adversarial attacks are fatal to deep learning methods, causing severe security risks in model
deployment. To this end, reliable techniques are needed to defend against the attacks. In this work, we
study the white-box robustness of general DEQ models. We observe the gradient obfuscation effect
with ready-made attacks and propose several white-box attacks and defenses to facilitate white-box
robustness evaluation. Our work contributes to the safety of general DEQs in white-box settings.

In this work, we did not test our methods on the adversarially-trained DEQs on ImageNet due to
the time limit. Recent work [4, 5] has shown that DEQ models work well on large-scale vision
tasks, including ImageNet and Cityscapes. Given this, we could apply advanced adversarial training
algorithms [41] to DEQs, which preserves the scalability of our methods. We also leave the white-box
robustness evaluations on ImageNet as our future work. In addition, future work also includes
efficient stabilization of the adversarial training procedure, as well as advanced white-box attacks and
defense strategies for DEQs.
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