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Abstract

Deep equilibrium models (DEQs) refrain from the traditional layer-stacking
paradigm and turn to find the fixed point of a single layer. DEQs have achieved
promising performance on different applications with featured memory efficiency.
At the same time, the adversarial vulnerability of DEQs raises concerns. Several
works propose to certify robustness for monotone DEQs. However, limited efforts
are devoted to studying empirical robustness for general DEQs. To this end, we
observe that an adversarially trained DEQ requires more forward steps to arrive at
the equilibrium state, or even violates its fixed-point structure. Besides, the forward
and backward tracks of DEQs are misaligned due to the black-box solvers. These
facts cause gradient obfuscation when applying the ready-made attacks to evaluate
or adversarially train DEQs. Given this, we develop approaches to estimate the
intermediate gradients of DEQs and integrate them into the attacking pipelines. Our
approaches facilitate fully white-box evaluations and lead to effective adversarial
defense for DEQs. Extensive experiments on CIFAR-10 validate the adversarial
robustness of DEQs competitive with deep networks of similar sizes.

1 Introduction

Conventional deep networks employ multiple stacked layers to process data in a feedforward manner
[17]. During training, network parameters are optimized by backpropagating loss updates through the
consecutive layers [36]. Recently, [3] propose deep equilibrium models (DEQs), whose forward pass
involves finding the fixed point (i.e., equilibrium state) of a single layer. With implicit differentiation,
the backward pass of DEQs is formulated as another linear fixed-point system. Training DEQs with
black-box root solvers only consumes O(1) memory, which enables DEQs to achieve performance
competitive with conventional networks in large-scale applications, including language modelling
[3], image classification and segmentation [4], density modelling [24, 16], and graph modelling [23].

Considering the fixed point as a local attractor, DEQs are expected to be stable to small input pertur-
bations. However, empirical observations show the opposite that a vanilla DEQ is also vulnerable to
adversarial attacks [16]. Along this routine, several works are proposed to investigate the certified
robustness for monotone DEQs [40, 34, 27, 20, 28, 10]. Inspired from the monotone operator splitting
theories, monotone DEQs are designed with the guarantee of existence and convergence of equilib-
rium points. However, the layer parameterization of monotone DEQs and the limited scalability of
certification methods narrow the scope of these previous studies. On the other hand, [16] explore the
adversarial robustness for general DEQs. They incorporate the adversarial generation process into
the equilibrium solver to accelerate the PGD attack [25]. Nevertheless, the PGD attack is originally
designed for deep networks, requiring for end-to-end white-box differentiation. In contrast, DEQs
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rely on black-box solvers and could obfuscate the gradients used in PGD: as shown in Fig. 2-(a), in
DEQs trained with different con�gurations, the intermediate statesalwaysexhibit higher robustness
than the �nal state underready-madePGD attacks. Compared to the extensive literature on the
adversarial robustness of deep networks [6, 38, 15, 26, 22, 25, 43, 35, 29], much less is known about
the adversarial robustness of general DEQs, especially under a well-elaborate white-box setting. This
motivates us to disentangle the modules in DEQs and provide a fair evaluation of their robustness.

In this paper, we �rst summarize the challenges of training robust DEQs (see Sec. 3), including
(i) convergence of the black-box solvers and (ii ) misalignment between the forward and backward
passes. The off-the-shelf attacks work in a gray-box setting as they have no access to the intermediate
states in the forward pass. To thoroughly evaluate the robustness, we propose two methods for
intermediate gradient estimation: the �rst one is iterating adjoint gradient estimations simultaneously
in the forward pass, as formally described in Sec. 4.1; the second one is estimating intermediate
gradients by unrolling, as seen in Sec. 4.2. Then in Sec. 5, we develop approaches to integrate the
estimated gradients into the ready-made attacks towards fully white-box adversaries. We also design
defense strategies for DEQs to boost their robustness under white-box attacks.

We use PGD-AT to train large-sized and XL-sized DEQs on CIFAR-10. To benchmark their robustness
[12], the parameter sizes of the DEQs are set to be comparable with ResNet-18 [18] and WideResNet-
34-10 [42], respectively. We observe that the adversarially trained DEQs with the exact gradient [3]
require more forward steps to arrive at the equilibrium state, or even violate their �xed-point structures.
We also �nd an intriguing robustness accumulation effect that the intermediate states in the forward
pass are more robust under ready-made attacks. These phenomena exhibit gradient obfuscation [2],
which veri�es the necessity of intermediate gradient estimation to construct white-box attacks and
defense strategies. Robustness performance under the white-box evaluation shows that DEQs achieve
competitive or stronger adversarial robustness than deep networks of similar parameter amounts. Our
investigation sheds light on the pros and cons with respect to the adversarial robustness of DEQs.

2 Background

This section includes the background on DEQs and adversarial robustness for deep networks.

2.1 Deep equilibrium models

We �rst brie�y introduce the modelling of deep equilibrium models (DEQs) [3, 4]. Consider aT-layer
weight-tied input-injected neural network:

zn = f � (zn � 1; x); n = 1 ; : : : ; T; (1)

wherex 2 Rl is the input,zn 2 Rd is the output of then-th layer, and� is the network weights
shared across different layers. One can cast the evolution off zn g as a �xed-point iteration process.
Whenn ! 1 , zn converges to the �xed pointz� which satis�es the equationz� = f � (z� ; x).

Deep equilibrium models rely on the �xed-point equation and leverage a black-box solver todirectly
solve forz� in the forward pass. The backward pass of DEQs can also be formulated as a �xed-point
iteration process. With the loss functionL(z� ; y) and implicit differentiation, we can compute the
gradient with respect to� or x with
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According to Eq. (3), the backward pass can also be executed with a black-box �xed-point solver,
and this iteration process is independent of that in the forward pass.

Several techniques have been proposed to improve the training stability of DEQs. [5] propose
to regularize the Jacobian matrix in Eq. (2) during training so that the nonlinear forward system
and the backward linear system enjoy appropriate contractivity. [14] propose unrolling-based and
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Figure 1: The gradients proposed for DEQs. (a): the exact gradient [3] solved by an independent
�xed-point iteration process. (b): the unrolling-based phantom gradient [14] returned by automatic
differentiation on a computational subgraph where the equilibrium statez� is unrolled. (c): si-
multaneous adjoint process along with the forward iterations described in Sec. 4.1. (d): unrolling
the intermediate stateszn for gradient estimation in Sec. 4.2. We leverage (c) and (d) to estimate
intermediate gradients and design fully white-box attacks to evaluate the robustness of DEQs.

Neumann-series-based phantom gradients to replace the exact gradient in Eq. (2) for acceleration.
The unrolling-based phantom gradient is de�ned as
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ẑN + t = (1 � � )ẑN + t � 1 + �f � (ẑN + t � 1; x) (6)
are thek unrolling steps with1 � t � k, starting fromẑN = z� returned by the forward solver.

Eq. (4) is calculated by the automatic differentiation framework [30] on the computational subgraph
in Eq. (6). It is demonstrated that the unrolling-based phantom gradient imposes implicit Jacobian
regularization effect to DEQ training [14]. DEQs trained by either the exact or the phantom gradients
are competitive to deep neural networks in terms of natural accuracy. In our work, we leverage
adversarial defense strategies to train DEQs to improve their robustness.

2.2 Adversarial robustness for deep networks

Much research has been dedicated to adversarial attacks and defenses of deep neural networks. On the
one hand, white-box adversarial attack techniques like PGD [25] construct adversaries by iteratively
perturbing inputs in the gradient ascent direction. The robustness of deep networks is benchmarked
by AutoAttack [12], which consists of four attacks including two PGD variants with adaptive stepsize
and the query-based SQUARE attack [1]. On the other hand, adversarial training (AT) [25] is one
of the most effective defense strategies. By early stopping the training procedure as in [35], the
primary PGD-AT framework still achieves competitive robustness performance compared with the
state-of-the-art defense techniques like TRADES [43]. It is worth mentioning that many defense
approaches claim robustness improvement by obfuscating gradients, which proves to be a false sense
of security under adaptive attacks designed speci�cally [2]. In our work, we train DEQs with PGD-AT
and investigate their adversarial robustness by designing customized defenses and adaptive attacks.

3 Challenges for robust general DEQs

This section describes the challenges encountered when we aim to train robust general DEQs.

Misalignment between forward & backward passes.The central idea of DEQs isdirectly solving
for the equilibrium statez� and differentiating through the �xed point equationz� = f � (z� ; x) for
ef�cient forward and backward passes. Fig. 1-(a) sketches the calculation of the exact gradient
[3]. Independent from the forward iterations (theblue curve), the exact gradient is acquired by
solving for a linear �xed-point system that only depends on the equilibrium statez� (theorange
curve). Fig. 1-(b) shows the calculation of the unrolling-based phantom gradient [14]. z� as the
�nal state in the forward pass is unrolled (thegray iteration), and the gradient is obtained from the
automatic differentiation on the loss function. However, when iterating the gradient computations,

3



the intermediate statesf zn g in the forward pass are bypassed by both methods. The misalignment
between the forward and backward tracks results in a gray-box setting for the ready-made attacks.

Convergence of the black-box solvers.In contrast with monotone DEQs, there is no guarantee for the
existence and convergence of the equilibrium states in general DEQs. It is thus unknown whether the
black-box solvers in DEQs still converge to equilibrium states under input perturbations. Adversarial
training also adds the concern on equilibrium convergence. The well-known effect of adversarial
training for deep networks is the trade-off between robustness and accuracy [37, 39, 43, 32]. A similar
drop in standard accuracy (from78% to55%) is also observed for tiny-sized adversarially-trained
DEQs [16]. The robustness-accuracy trade-off brings training instability for general DEQs, which
may take more iterations in the solvers for equilibrium convergence, or even violate their �xed-point
structures. Finally, the robustness comparison is still under-explored between large-sized general
DEQs and deep networks with similar parameter counts.

4 On intermediate gradient estimation

As the forward and backward tracks in DEQs are misaligned, the intermediate states in the forward
pass are inaccessible to off-the-shelf attacks, which causes gradient obfuscation and results in false
positive robustness. Therefore, it is necessary to estimate the intermediate gradients. With the
integration of the estimated gradients, the attacks can validate the robustness of DEQs in a fully
white-box setting. In this section, we propose two methods for intermediate gradient estimation.

4.1 Simultaneous adjoint in the forward pass

Inspired by the adjoint process in neural ODE models [9], we propose the adjoint process for
intermediate gradient estimation in DEQs. The adjoint process in neural ODE models is characterized
by an adjoint ODE [31]. For DEQs, we propose to iterate the updates of adjoint states subject to
zn in the forward pass. We investigate the simultaneous adjoint with Broyden's method [7] as the
forward solver. In the forward pass, Broyden's method updates the intermediate statezn based on the
residualg� (zn ; x) = f � (zn ; x) � zn andBn , the low-rank approximation of the Jacobian inverse:

zn +1 = zn � �B n g� (zn ; x); z0 = 0 (7)

Bn +1 = Bn +
� zn +1 � Bn � gn +1

� zT
n +1 Bn � gn +1

� zT
n +1 Bn ; (8)

where0 � n � N � 1, B0 = � I , � zn +1 = zn +1 � zn , � gn +1 = g� (zn +1 ; x) � g� (zn ; x), and�
is the step size. To maintain a simultaneous adjoint, we start fromu0 = 0 and use Broyden's method
to solve Eq. (3). Similar with the residual functiong� (�; x) for zn , the �xed-point equation in Eq. (3)
de�nes the residual of the adjoint state. However, we propose to replace thez� in Eq. (3) byzn , and
integrate the approximated Jacobian inverseBn to force the alignment of the adjoint state update:
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� un ; (9)

un +1 = un � �B n v n ; (10)
wherev n is the residual at iterationn, un is the updated adjoint state, and� > 0 is the step size.

We use the following surrogate gradients to construct attacks on the intermediate statezn :
"
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An illustration for the simultaneous adjoint process is shown in Fig. 1-(c). In the following, we refer
to this method assimultaneous adjointwhen constructing intermediate state attacks in Sec 5.1.
Remark4.1. We show in Appendix B that under mild assumptions, thef un g converges tou � when
0 < � < 1 in Eq. (10). However in practice, we donot require the convergence ofun as we only use
them in Eq. (11) as gradientestimationsto constructintermediate attacks.
Remark4.2. Similar with the update ofun in our approach, [16] propose augmented DEQs as an
integration of the iterative updating process ofz, u, andx as a whole:
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The augmented DEQs leverage a black-box solver (e.g., Broyden's method) to �nd the equilibrium
of the whole state[z� ; u � ; x � ]T . However, several cross-terms exist in the joint Jacobian due to the
coupling of the three iteration processes, which further hinders the convergence. In contrast, the
simultaneous adjoint update in Eq. (10) does not include the update ofx. Furthermore, we reuse the
Jacobian inverse approximation matrixBn in the update ofun , which is easy to implement. Because
of the disentanglement ofzn andun in the joint Jacobian, our method also enjoys better ef�ciency
and �exibility as one can early exit the adjoint process without affecting the updates ofzn 's.
Remark4.3. Concurrent work [33] also explores the idea of sharing approximated Jacobian inverse
Bn in bi-level optimization problems. While their motivation is to accelerate DEQ training, we use
the adjoint states to construct gradient estimation and facilitate white-box attacks. We also compare
our work with theirs in terms of intermediate state attacks; See Appendix D for details.

4.2 Unrolling the intermediate states

We also propose to estimate the gradient at the statezn by unrolling. Depicted in Fig. 1-(d),zn is
involved in an arti�cially constructed computational graph. We can thus estimate the intermediate
gradient by backpropagation with automatic differentiation. Formally, applying Eq. (4) tozn yields
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and the state sequenceẑn ; ẑn +1 ; � � � ; ẑn + k represents the damped unrolling iteration:

ẑn + t = (1 � � )ẑn + t � 1 + �f � (ẑn + t � 1; x); (16)

with t = 1 ; 2; � � � ; k andẑn = zn . While Eq. (4) is proposed as an approximation of the exact
gradient, we unroll the stateszn for intermediate gradient estimation. Similar to the case of Eq. (11),
we use Eq. (13) as estimation to design intermediate attacks for DEQs. We refer to this method as
unrolled intermediatesin the following when incorporating Eq. (13) into the white-box attacks.

5 White-box attacks and defenses for DEQs

This section describes different types of white-box attacks and defense strategies for DEQs.

5.1 White-box attacks for DEQs

The existing attacks leverage the gradients calculated at the�nal state outputted by the forward solver.
Based on the surrogate intermediate gradients in Eq. (11) or Eq. (13), we can involve thezn in the
forward pass into the construction of adversaries. A direct white-box approach is to use the estimated
gradient at anearlystatezn as an alternative for input perturbations. Another simple yet effective
method is to average the intermediate gradients as the gradient ensemble for attacks. For example,
the average of all intermediate gradients along the simultaneous adjoint process is given by

X
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�
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The gradient ensemble can be viewed as the fusion of all perturbation directions indicated by allzn 's.

5.2 Defenses with intermediate states

In addition to the �nal statez� , the unused intermediate states can be leveraged as well for the
defenses of DEQs. A simple yet effective defense strategy is toearly exitthe forward solver during
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Figure 2: Challenges in benchmarking adversarial robustness of DEQs. (a) Gradient obfuscation
issues arise in the DEQs trained with different con�gurations. With different iteration settings in the
DEQ solver or different gradient formulations, the intermediate statealwaysexhibit higher robustness
than the �nal state under ready-made PGD-10 attack. (b) Exact-trained DEQ with small iterations
violate the �xed-point structure and require more iterations to retain it (analyzed in Sec. 6.1). Both
observations motivate us to design adaptive attacks for white-box robustness evaluation for DEQs.

inference. We can evaluate the robustness of DEQs with the early statezn in the forward pass, as
zn andz� have the same shape. We determine the optimal timing for early exit by selecting the top
robustness performance of allzn 's on the development set under the ready-made PGD-10 attack.

The input-injected neural network provides an interpretation for the early-state defense. From Eq. (1),
the distortion ofzn comes from both the perturbedzn � 1 and the biased transformationf � (�; x +� x).
By early exiting the forward process, one obtains a less distorted intermediate state.

Another defense strategy for DEQs is leveraging theensembleof intermediate states. Similar with Eq.
(17), we average the intermediate statesf zn g to defend against attacks. Instead of early stopping, the
intermediate state ensemble exploits the state representations at all iterations in the forward solver.

While the proposed defense techniques leverage the intermediate states, they still require onlyO(1)
memory. For early state defense, we determine the optimal time to early exit the solver on the
development set of�ine for once and then �x the early exit step during testing. For ensemble state
defense, we maintain an accumulator to sum upf zn g along the forward pass without storing them.

6 Experiments

Following the settings in [5], we experiment with the large-sized DEQ with its parameter count
similar to ResNet-18 [17]. We also experiment with an XL-sized DEQ with its parameter count
similar to WideResNet-34-10 [42] to enable a fair comparison with the empirical robustness of the
deep networks. The detailed experimental settings are listed in Appendix A. We �rst train DEQs on
CIFAR-10 [21] with the PGD-AT framework [25], then test the adaptive attacks and defense strategies
proposed in Sec. 5 on the adversarially-trained DEQs. We refer to a DEQ as “exact-trained” when
using the exact gradient, and “unrolling-trained” when using the unrolling-based phantom gradient in
the PGD-AT framework to generate adversaries and optimize for model parameters. Unless speci�ed,
all DEQs are adversarially trained in this paper. During training, we use10-step PGD with the step
size of2=255 to generate adversaries within the range of`1 = 8=255. For the speci�c type of
attacks, we use PGD and AutoAttack (AA) [13] to instantiate the white-box attacks in Sec. 5.1.

6.1 The retention of the �xed-point structure

We start with the observation on the �xed-point structure. Shown in Fig. 2-(b), the lines illustrate
the relative errorkf � (zn ; x) � zn k2=kf � (zn ; x)k2 for eachzn

2. We �nd that for the exact-trained
DEQ with small iteration settings (8 forward / 7 backward iterations), all the relative errors are larger
than0:75, i.e., the forward solver in the DEQ fails to converge to an equilibrium. Such phenomenon

2The9-th intermediate state comes from the implementation in DEQs. In the exact-trained DEQ,z9 =
f � (z8 ; x ). In the unrolling-trained DEQ,z9 is the �nal state after unrollingz8 . For the exact-trained DEQ with
18 forward / 20 backward iterations, we only plot the �rst9 states for an easy comparison.

6



Table 2: Performance (%) of the unrolling-trained DEQ-Large with the small (8/7) iteration setting
and the exact-trained DEQ-Large with the large (50/50) iteration setting under PGD-10. The “�nal”
rows and columns represent the original DEQ output and the ready-made attacks at the �nal state. The
“early” rows indicate early state defense, and the “intermediate” columns indicate the performance
of the strongest intermediate attacks. The rows and the columns of “ensemble” demonstrate the
ensemble defense and the white-box attacks based on gradient ensemble. Under the (underlined)
strongest attacks, the ensemble defense achieves the best robustness performance (in bold).

Training Con�gurations Defense Clean Simultaneous Adjoint Unrolled Intermediates

Final Intermediate Ensemble Final Intermediate Ensemble

(8/7) Unrolling-Trained
Final 78.03 49.81 59.49 54.91 42.67 62.24 51.52
Early 79.57 54.90 39.19 42.76 51.90 29.38 34.20

Ensemble 79.67 51.52 52.43 49.47 49.02 55.10 47.12

(50/50) Exact-Trained
Final 73.51 37.77 70.52 43.70 36.70 69.29 48.08
Early 86.98 75.25 12.44 40.12 73.93 18.24 26.22

Ensemble 75.12 40.20 72.41 45.06 39.18 68.83 49.10

re�ect the challenge on the convergence of the black-box solvers in DEQs mentioned in Section
3. It is shown that a larger iteration setting is required (18 forward / 20 backward iterations) for
exact-trained DEQs to retain the �xed-point structure. In contrast, we �nd the small iteration setting
(8/7) is enough for the unrolling-trained DEQ to retain the �xed-point structure.

Table 1: Performance (%) of the exact-trained
DEQ-Large with the small (8/7) solver iterations
under different attacks. The high accuracy under
PGD-10 with the exact gradient is deteriorated us-
ing the unrolling-based phantom gradient. Leverag-
ing the query-based SQUARE leads to even lower
accuracy. These observations indicate that the
DEQ with violated �xed-point structure suffers
severe robustness degradation.

Gradient Clean PGD-10 PGD-1000 SQUARE

Exact 78.24 79.97 80.10 5.95Unrolling 37.07 36.39

It is necessary to retain the �xed-point structure,
otherwise leading to gradient obfuscation issues.
As is derived from the implicit differentiation
on the �xed-point equationz� = f � (z� ; x), the
exact gradient in Eq. (2) becomes inexact when
the equilibrium pointz� is not reached. Table 1
shows the empirical performance of the exact-
trained DEQ under the small (8/7) iteration set-
ting. The severe performance degradation under
alternative gradient formulations as well as the
SQUARE attack also indicates gradient obfus-
cation, as suggested in [2] and [8].

While large iterations for the exact-trained
DEQs keep the �xed-point structure, it in-
evitably slows down the training speed (detailed in Appendix E.3). For the exact-trained DEQs with
the small (8/7) iteration setting, we have also tried with varied Jacobian regularization weights to
impose stricter Lipschitz constraints during training, but found the DEQ solver still diverged. We
have also analyzed the instability by tracing the variation of Lipschitz constant during the adversarial
training of DEQs; See Appendix E.4 for details. By comparison, the unrolling-trained DEQ requires
fewer iterations in the forward solver to converge. According to the green line in Fig. 2-(b), the rela-
tive errors become lower consequently and reach0:04at the �nal state. The results coincide with [14]
that the unrolling-based phantom gradient invokes implicit Jacobian regularization during training.

6.2 Robustness of DEQs under white-box attacks

Intriguingly, we discover the robustness accumulation effect in both the exact-trained and the
unrolling-trained DEQs. We plot the highest robustness under the ready-made PGD-10 among
all the intermediate states in Fig. 2-(a), with comparison to the �nal state robustness. It is shown that
the intermediate states always exhibit much higher robustness. The accumulated robustness comes
from gradient obfuscation, as the ready-made attacks fail to “directly” attack the intermediate states
due to misaligned gradients. This resonates with the �rst challenge in Sec. 3, and similar results
are observed as well in adversarially-trained neural ODEs: the large error tolerance from the ODE
solvers with adaptive step sizes allows gradient masking after adversarial training [19].

The exact-trained DEQs, as we have discussed in Sec. 6.1, require larger iterations in the solver.
However, it is noticed in Fig. 2-(a) that the larger the iteration is in the exact-trained DEQs, the more
robust the intermediate states are under ready-made PGD-10. On the contrary, the (8/7) unrolling-
trained DEQ still achieves the highest robustness at the �nal state. To benchmark the white-box
robustness, in this section, we compare the (50/50) exact-trained DEQ-Large with the (8/7) unrolling-
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Table 3: Performance (%) of the unrolling-trained DEQs underPGD-10/AutoAttack . The rows
and the columns represent the same meanings as those in Table 2. Under the (underlined) strongest
attacks, the ensemble defense achieves the best robustness performance (in bold).

Arch. Defense Clean Simultaneous Adjoint (PGD/AA) Unrolled Intermediates (PGD/AA)

Final Intermediate Ensemble Final Intermediate Ensemble

Large
Final 78.03 49.81/51.48 59.49/61.95 54.91/52.95 42.67/37.27 62.24/65.53 51.52/49.66
Early 79.57 54.90/61.12 39.19/55.47 42.76/56.84 51.90/56.86 29.38/25.41 34.20/49.74

Ensemble 79.67 51.52/56.06 52.43/58.69 49.47/55.02 49.02/50.45 55.10/58.6347.12/48.37

XL
Final 82.92 55.80/58.21 55.80/58.21 67.30/64.24 48.58/43.97 65.94/72.76 58.23/69.83
Early 80.12 51.40/58.92 51.40/58.92 60.78/62.98 52.08/56.5855.70/62.67 48.88/62.87

Ensemble 81.17 52.87/58.08 52.87/58.08 61.40/62.2351.70/54.09 59.71/66.90 53.23/56.45

trained one3. We integrate the estimated intermediate gradients in Sec. 4 as different alternatives in
PGD-10 for white-box evaluation. Among all the attack candidates based on intermediate gradients,
we select the one that leads to the largest robustness deterioration on the early-state defense in Sec.
5.2 and report the results in Table 2. Ablation studies on the performance of the attack candidates
with estimated gradients at different intermediates can be found in Sec. 6.4. We also include the
report of memory usage for the defense strategies in Appendix F.1, and the running time complexity
analysis for the white-box attacks in Appendix F.2.

Shown in Table 2, for the unrolling-trained DEQ, unrolling the intermediate states results in the
strongest attack to the �nal state and early state defenses. While the robustness accuracies under
�nal and intermediate attacks are improved and better balanced with the ensemble state defense, the
ensemble attack leads to the largest performance drop in this case, arriving at the overall white-box
robustness of47:12%. The estimated intermediate gradients based on simultaneous adjoint process
also shows signi�cant attack performance for the exact-trained DEQ with large solver iterations.
After maximizing the minimum robustness under all attacks across all defense techniques, the overall
white-box robustness is39:18%. In addition, all attacks signi�cantly deteriorate the robustness of the
DEQs without adversarial training, indicating that the attacks leveraged in Table 2 are reliably strong
(detailed in Sec. 6.5). Considering the superior robustness of the unrolling-trained DEQ as well as
its training ef�ciency, we proceed to experiment with unrolling-trained DEQs for further evaluation.

6.3 Comparison between DEQs and deep networks

In this section, we further provide a thorough evaluation by benchmarking the white-box robustness
performance of the unrolling-trained DEQ-Large and DEQ-XL under both PGD-10 and AutoAttack.

Table 3 shows the robustness performance of the unrolling-trained DEQ-Large and DEQ-XL. Ac-
cording to the results, the gradient ensemble attacks are more effective in defeating the early-state
defense than the �nal-state defense. The ensemble attack is the most threatening on the ensemble
defense in DEQ-Large. The attack with the gradient at the �nal state leads to the most substantial
performance drop on the ensemble defense in DEQ-XL.

Table 4: The comparison of robustness perfor-
mance (%) between the DEQs with the ensemble
defense and the deep networks of similar sizes. For
the DEQs, the weakest robustness under all attacks
in Table 3 is reported. For the deep networks, we
report the results in [29].

Arch. Clean PGD-10 AA #Params

ResNet-18 82.52 53.58 48.51 10M
DEQ-Large 79.67 47.12 48.37 10M

WRN-34-10 86.07 56.60 52.19 48M
DEQ-XL 81.17 51.70 54.09 48M

In Table 3, we �nd that the PGD-10 attack brings
more signi�cant performance drops than Au-
toAttack does in many settings. The results
differ from the case in the robustness of deep
networks [13]. The phenomenon originates
from the difference between intermediate-state
attacks and alternative defense strategies. Au-
toAttack will over�t to the provided gradients
at the intermediate or the averaged states, thus
generating less threatening adversaries on the
defenses based on other states. In addition, the
intermediate gradients can also be inaccurate, as
they only serve as approximations.

The minimum robustness under all types of attacks represents the robustness of a defense strategy.
We thus take the most robust defenses for DEQ-Large and DEQ-XL, and compare them with the

3The robustness of the (8/7) exact-trained DEQ-Large is much lower than its unrolling-trained counterpart
because of the violated �xed-point structure, as shown in Sec. 6.1 and Table 1
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