
A Details on the training data

In Tab. 3 we provide the detailed set of parameters used in our data generator. The probabilities of
the unary operators were selected to match the natural frequencies appearing in the Feynman dataset.

In Fig. 6, we show the statistics of the data generation.The number of expressions diminishes with
the input dimension and number of unary operators because of the higher likelihood of generating
out-of-domain inputs. One could easily make the distribution uniform by enforcing to retry as long as
a valid example is not found, however we find empirically that having more easy examples than hard
ones eases learning and provides better out-of-domain generalization, which is our ultimate goal.

In Fig. 7, we show some examples of the input distributions generated by our multimodal approach.
Notice the diversity of shapes obtained by this procedure.

Table 3: Parameters of our generator.
Parameter Description Value

Dmax Max input dim 10

Daff Distrib of (a,b)
sign ∼ U{−1, 1},

mantissa ∼ U(0, 1),
exponent ∼ U(−2, 2)

bmax Max binary ops 5 +D
Ob Binary operators add:1, sub:1, mul:1
umax Max unary ops 5

Ou Unary operators
inv:5, abs:1, sqr:3, sqrt:3,

sin:1, cos:1, tan:0.2, atan:0.2,
log:0.2, exp:1

Nmin Min number of points 10D
Nmax Max number of points 200
kmax Max num clusters 10

5 10
Input dimension

0.00

0.05

0.10

0.15

0 100 200
Number of input pairs

0.000

0.005

0.010

0.015

0 10 20 30
Number of binary ops

0.00

0.02

0.04

0.06

ad
d

m
ul

su
b

di
v

Binary operators

0

1000

2000

3000

0 2 4
Number of unary ops

0.0

0.2

0.4
in

v
co

s
si

n
ex

p
po

w
2

ab
s

po
w

3
sq

rt
ar

ct
an lo
g

ta
n

Unary operators

0

50

100

Figure 6: Statistics of the synthetic data. We calculated the latter on 10, 000 generated examples.

Figure 7: Diversity of the input distributions generated by the multimodal approach. Here we
show distributions obtained for D = 2.

14

B Examples of expressions generated

Below, we give some typical examples of the expressions generated by our random generator for
dimensions between 1 and 3 (Tab. 4), as well as some examples of equations from the Feynman
dataset (Tab. 5).

Cx0 − Cx0

Cx0+C
− C

(
Cx0 (Cx0 + C)

3
+ C

)3
+ C

Cx0 + C |Cx0 + C|+ C
Cx0x1 (Cx0 + C log (Cx0 + C)) + C

C + x0 (−Cx1 + Cx2)
2

C + x0x2 (Cx0 + Cx1 − C sin (Cx0 − C sin (Cx1x2 + C)))
Cx0 + Cx2 + C + C

Cx1

√
Cx0+C+Ce

Cx0− C
Cx2+C

Cx0 + Cx1 + C

C (Cx0 + C)
3

+ C − C
Cx1

Cx2+C+C

C sin (Cx0 + C) + C + C
Cx1+C

−Cx1
(

Cx2

Cx0+C
+ C

)2
+ Cx2 + C sin (Cx1 + C) + C tan (Cx0 + C) + C

C + x0 (Cx0 − Cx1 + C |Cx1 + C|)
C + x2 (Cx0 + Cx1)

(
Cx0 + C

Cx0+C

)
C − x2 sin

(
Cx0 + Cx1 − Cx2

Cx2+C

)
−Cx0 + C

(
Cx0

Cx0+C
+ C

)2
+ C

Cx0

(
Cx0x1x2 + C

Cx2+C

)
+ Cx1 + C (Cx1 + C)

2
+ C

Table 4: A few examples of equations from our random generator.

√
2e−

θ2

2

2
√
π

√
2e

− θ2

2σ2

2
√
πσ

√
2e

− (θ−θ1)2

2σ2

2
√
πσ√

(−x1 + x2)
2

+ (−y1 + y2)
2 Gm1m2

(−x1+x2)
2+(−y1+y2)2+(−z1+z2)2

m0√
1− v2

c2

x1y1 + x2y2 + x3y3 Nnµ q1q2
4πεr2q1

4πεr2 Efq2 q (Bv sin (θ) + Ef)
m(u2+v2+w2)

2 Gm1m2

(
1
r2
− 1

r1

)
gmz

kspringx
2

2
−tu+x√
1−u2

c2

t−ux
c2√

1−u2
c2

m0v√
1− v2

c2

u+v
1+uv

c2

m1r1+m2r2
m1+m2

Fr sin (θ) mrv sin (θ)
mx2(ω2+ω2

0)
4

q
C arcsin (n sin (θ2)) 1

n
d2

+ 1
d1

ω
c

√
x21 − 2x1x2 cos (θ1 − θ2) + x22

Int0 sin2 (nθ2)
sin2 (θ2)

arcsin
(
lambd
dn

)
a2q2

6πc3ε
4πEf2cεω4r2

3(ω2−ω2
0)

2

Bqv
p

ω0

1− vc

ω0(1+ v
c)√

1− v2
c2

hω
2π I1 + I2 + 2

√
I1I2 cos (δ) εh2

πmq2

Table 5: A few examples of equations from the Feynman dataset.

15

C Does memorization occur?

It is natural to ask the following question: due to the large amount of data seen during training, is our
model simply memorizing the training set ? Answering this question involves computing the number
of possible functions which can be generated. To estimate this number, calculating the number of
possible skeleton Ns is insufficient, since a given skeleton can give rise to very different functions
according to the sampling of the constants, and even for a given choice of the constants, the input
points {x} can be sampled in many different ways.

Nonetheless, we provide the lower bound Ns as a function of the number of nodes in Fig. 8, using
the equations provided in [24]. For small expressions (up to four operators), the number of possible
expressions is lower or similar to than the number of expressions encountered during training, hence
one cannot exclude the possibility that some expressions were seen several times during training, but
with different realizations due to the initial conditions. However, for larger expressions, the number
of possibilities is much larger, and one can safely assume that the expressions encountered at test
time have not been seen during training.

2 4 6 8 10
Input dimension

108

1013

1018

1023

1028

N
um

be
r

of
 e

xp
re

ss
io

ns Number of skeletons
Seen in one epoch

Figure 8: Our models only see a small fraction of the possible expressions during training. We
report the number of possible skeletons for each number of operators. Even after a hundred epochs,
our models have only seen a fraction of the possible expressions with more than 4 operators.

D Attention maps

A natural question is whether self-attention based architectures are optimally suited for symbolic
regression tasks. In Fig. 9, we show the attention maps produced by the encoder of our Transformer
model, which contains 4 layers avec 16 attention heads (we only keep the first 8 for the sake of space).
In order to make the maps readable, we consider one-dimensional inputs and sort them in ascending
order.

The attention plots demonstrate the complementarity of the attention heads. Some focus on specific
regions of the input, whereas others are more spread out. Some are concentrated along the diagonal
(focusing on neighboring points), whereas others are concentrated along the anti-diagonal (focusing
on far-away points.

Most strikingly, the particular features of the functions studied clearly stand out in the attention plots.
Focus, for example, on the 7th head of layer 2. For the exponential function, it focuses on the extreme
points (near -1 and 1); for the inverse function, it focuses on the singularity around the origin; for the
sine function, it reflects the periodicity, with evenly spaces vertical lines. The same phenomenology
can be acrossed is several other heads.

E Additional in-domain results

Fig. 10, we present a similar ablation as Fig. 4 of the main text but using the R2 score as metric rather
than accuracy.

16

F Additional out-of-domain results

Complexity-accuracy In Fig. 11, we display a Pareto plot comparing accuracy and formula
complexity on SRBench datasets.

Jin benchmark In Fig. 12, we show the predictions of our model on the functions provided in [37].
Our model gets all of them correct except for one.

Black-box datasets In Fig. 13, we display the results of our model on the black-box problems of
SRBench.

Strogatz datasets Each of the 14 datasets from the ODE-Strogatz benchmark is the trajectory of
a 2-state system following a first-order ordinary differential equation (ODE). Therefore, the input
data has a very particular, time-ordered distribution, which differs significantly from that seen at train
time. Unsurprisingly, Fig. 14 shows that our model performs somewhat less well to this kind of data
in comparison with GP-based methods.

Ablation on input dimension In Fig. 15, we show how the performance of our model depends on
the dimensionality of the inputs on Feynamn and black-box datasets.

Ablation on decoding strategy In Fig. 16, we display the difference in performance using two
decoding strategies.

Ablation on the use of i) mixture of distributions during training, ii) scaling during inference
It is generally observed that Transformers struggle to generalize out-of-distribution, especially in
mathematical tasks [39]. We demonstrate that both i) and ii) are necessary to handle datasets involving
input distributions that are (i) neither gaussian nor uniform, and (ii) vary across wide ranges of scales.

For (i), we provide in Fig. 17 a qualitative example on a model trained with Gaussian and uniform
distributions that a distribution-shift at test time can cause failure. Consider the function y =
x1 cos(x0 + x1). Recall the model was trained on datapoints sampled from distributions either
N(0, 1) or U([−1, 1]). As we sample 100 datapoints from U([0, 6]), we see the E2E model makes
good predictions, whereas, adding 100 datapoints, sampled uniformly between U([−7, 5]), degrades
the model prediction.

For (ii), we also provide in Fig. 18 a qualitative example of failure on the same function y =
x1 cos(x0 + x1) and datapoints when scaling is not used. We additionally report results on SRBench
evaluation for our E2E model without scaling in Table 6 and show that changes in scales during
inference put transformers outside their comfort zone.

Table 6: The importance of scaling at inference for transformer-based approaches.

Refinement Scaler Feynman [mean R2>0.99] Black-box [median R2]

With With 0.84 0.87
Without With 0.78 0.70

With Without 0.53 0.64
Without Without 0.06 0.46

Results on SRBench show that scaling is necessary to achieve competitive results. Note that
refinement of constants can improve the performance of the unscaled prediction, however it is not
enough to even catch up with the E2E without refinement model.

G Extended comparison with prior work.

SymbolicGPT [5] and NSRS [6] both train Transformers to predict function skeletons with other
tokenization strategies. SymbolicGPT is prone to training instabilities when considering functions
with high value variations and NSRS’ architecture is not able to scale to high dimensions because the
tokenized input grows linearly with the input dimension. [29] also predicts skeletons but focus on

17

the problem of inferring one-dimensional recurrence relations from small sets of points in case only,
while we estimate functions of many variables over larger sets of points.

Only NSRS [6] provides a pre-trained model, but it was only trained on problems with dimensions
≤ 3, corresponding to a very small subset of SRBench. Note however that even at these low
dimensions, NSRS seems to perform less well than our model: the authors report an accuracy
(defined at R2> 0.95) on the Feynman datasets of ≈ 0.75 in their appendix (Fig. 9), whereas we get
≈ 0.84 on R2> 0.99 on all dimensions.

The benchmark we used for our comparison, SRBench, is currently the most extensive and up-to-date
benchmark for SR, and provides comparisons with other DL-based methods such as DSR [20].
Note also that the ablation of Tables 1 and 2 and Fig. 4 (in-domain), as well as Figures 5 and 13
(out-of-domain) are provided to show the benefit of the E2E approach over skeleton approaches.

Note that an other end-to-end approach[40], very similar to ours, was released two months after us.

H Extension of our model to dimension > 10.

Our method still remains improvable in scaling to larger dimensions. The reason we restricted our
model to dimension ≤ 10 is that the input sequence length becomes prohibitively long beyond,
and that generating high-dimensional functions in an unbiased way becomes increasingly tricky.
Nonetheless, since the objective of SR is to output interpretable formulas, we argue that SR is most
useful for moderately low dimensional problems. For example, 1− 10 dimensional problems already
cover a large class of physical systems : for instance, point objects can be represented by their
position, speed and mass, 7 parameters. Additionally, in many real world problems where more than
10 features are available, some of the features are often irrelevant or heavily correlated. To mitigate
this, one typically carries out feature selection before modeling the data.

We tested our model on the high-dimensional problems of SRBench (up to 1000 input dimensions),
by feeding to our model only the 10 features most correlated with the output. This naive strategy
already obtained encouraging results (with a median R2 score of 0.72, to compare with 0.58 for DSR
and 0.55 for gplearn, but still well below Operon which stands at 0.91).

18

La
ye

r
1

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

La
ye

r
2

La
ye

r
3

La
ye

r
4

(a) f(x) = x2

La
ye

r
1

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

La
ye

r
2

La
ye

r
3

La
ye

r
4

(b) f(x) = 1/x

La
ye

r
1

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

La
ye

r
2

La
ye

r
3

La
ye

r
4

(c) f(x) = sin(10x)

Figure 9: Attention maps reveal distinctive features of the functions considered. We presented
the model 1-dimensional functions with 100 input points sorted in ascending order, in order to better
visualize the attention. We plotted the self-attention maps of the first 8 (out of 16) heads of the
Transformer encoder, across all four layers. We see very distinctive patterns appears: exploding areas
for the exponential, the singularity at zero for the inverse function, and the periodicity of the sine
function.

19

0 2 4 6 8
Number of unary ops u

0.0

0.2

0.4

0.6

0.8

1.0
R

2
sc

or
e

A

20 40
Num of binary ops b

0.0

0.2

0.4

0.6

0.8

1.0
B

2 4 6 8 10
Input dimension D

0.0

0.2

0.4

0.6

0.8

1.0
C

50 100 150 200
Number of input pairs N

0.0

0.2

0.4

0.6

0.8

1.0

R
2

sc
or

e

D

Skeleton E2E no ref E2E random ref E2E ref

100 101

Test input variance

0.0

0.2

0.4

0.6

0.8

1.0
E Interpolation

Extrapolation

0.000 0.025 0.050 0.075 0.100
Noise variance

0.0

0.2

0.4

0.6

0.8

1.0
F

Figure 10: Ablation over the function difficulty (top row) and input difficulty (bottom row). We
plot the R2 score (Eq. 1). A: number of unary operators. B: number of binary operators. C: input
dimension. D: Low-resource performance, evaluated by varying the number of input points. E:
Extrapolation performance, evaluated by varying the variance of the inputs. F: Robustness to noise,
evaluated by varying the multiplicative noise added to the labels.

0.0 0.2 0.4 0.6 0.8 1.0
Black-box median R2

101

102

103

104

105

Fo
rm

ul
a

co
m

pl
ex

ity

AFP
AFP_FE

AIFeynman

AdaBoost

BSR DSR EPLEX

FEAT

FFX

GP-GOMEA

ITEA

KernelRidge

LGBM

Linear

MLP

MRGP

Operon

Ours

Ours (no ref)
Ours (skel)

RandomForest

SBP-GP

XGB

gplearn

0.0 0.2 0.4 0.6 0.8 1.0
Feynman mean accuracy (R2 > 0.99)

102

103

104

AFP
AFP_FE

AIFeynman

BSR

DSR

EPLEX

FEAT

FFX

GP-GOMEA
ITEA

MRGP

Operon

Ours

Ours (no ref)
Ours (skel)

SBP-GP

gplearn

DL-based SR GP-based SR ML methods

Figure 11: Complexity-accuracy pareto plot. Pareto plot comparing the average test performance
and formula complexity of our models with baselines provided by the SRbench benchmark [7], both
on Feynman SR problems [1] and black-box regression problems. We use colors to distinguish three
families of models: deep-learning based SR, genetic programming-based SR and classic machine
learning methods (which do not provide an interpretable solution).

20

4 2 0 2 4

4

2

0

2

4

2.5 * x4
0 1.3 * x3

0 + 0.5 * x2
1 1.7 * x1

4 2 0 2 4

4

2

0

2

4

Predicted

0
200
400
600
800
1000
1200
1400
1600

0
200
400
600
800
1000
1200
1400
1600

(a) Jin-1

4 2 0 2 4

4

2

0

2

4

8.0 * x2
0 + 8.0 * x3

1 15.0

4 2 0 2 4

4

2

0

2

4

Predicted

1000
750
500
250

0
250
500
750
1000

1000
750
500
250

0
250
500
750
1000

(b) Jin-2

4 2 0 2 4

4

2

0

2

4

0.2 * x3
0 0.5 * x0 + 0.5 * x3

1 1.2 * x1

4 2 0 2 4

4

2

0

2

4

Predicted

80
60
40
20

0
20
40
60
80

80
60
40
20

0
20
40
60
80

(c) Jin-3

4 2 0 2 4

4

2

0

2

4

1.5 * exp(x0) + 5.0 * cos(x1)

4 2 0 2 4

4

2

0

2

4

Predicted

0
25
50
75
100
125
150
175
200
225

0
40
80
120
160
200
240
280
320
360

(d) Jin-4

4 2 0 2 4

4

2

0

2

4

6.0 * sin(x0) * cos(x1)

4 2 0 2 4

4

2

0

2

4

Predicted

5.00
3.75
2.50
1.25

0.00
1.25
2.50
3.75
5.00

8
6
4
2

0
2
4
6
8

(e) Jin-5

4 2 0 2 4

4

2

0

2

4

1.35 * x0 * x1 + 5.5 * sin((x0 1.0) * (x1 1.0))

4 2 0 2 4

4

2

0

2

4

Predicted

30.0
22.5
15.0
7.5

0.0
7.5
15.0
22.5
30.0

30.0
22.5
15.0
7.5

0.0
7.5
15.0
22.5
30.0

(f) Jin-6

Figure 12: Illustration of our model on a few benchmark datasets from the litterature. We show
the prediction of our model on six 2-dimensional datasets presented in [37] and used as a comparison
point in a few recent works [38]. The input points are marked as black crosses. Our model retrieves
the correct expression in all but one of the cases: in Jin5, the prediction matches the input points
correctly, but extrapolates badly.

0.0 0.2 0.4 0.6 0.8 1.0

Operon
FEAT

SBP-GP
Ours

EPLEX
XGB

GP-GOMEA
LGBM

RandomForest
ITEA

AdaBoost
KernelRidge

AFP
AFP_FE

Ours (skel)
Ours (no ref)

FFX
gplearn

MLP
DSR

MRGP
Linear

BSR
AIFeynman

Mean R2

102 104

Formula complexity

100 102 104

Inference time (seconds)

Figure 13: Performance metrics on black-box datasets.

21

0.0 0.2 0.4 0.6 0.8 1.0

Operon
GP-GOMEA

SBP-GP
AFP_FE

AFP
FEAT
BSR
FFX

EPLEX
Ours

gplearn
DSR

MRGP
ITEA

Ours (skel)
Ours (no ref)

AIFeynman

Mean R2

101 102 103 104

Formula complexity

Target Noise
0.0
0.001
0.01
0.1

101 102 103 104

Inference time (seconds)

Figure 14: Performance metrics on Strogatz datasets.

2 3 4 5 6 7 8 9 10
Input dimension

0.0

0.2

0.4

0.6

0.8

1.0

R
2

algorithm
Ours
Operon
DSR
gplearn

(a) Black-box

1 2 3 4 5 6 7 8 9
Input dimension

0.5

0.6

0.7

0.8

0.9

1.0

R
2

algorithm
Ours
Operon
DSR
gplearn

(b) Feynman

Figure 15: Performance metrics on SRBench, separated by input dimension.

22

0 20 40 60 80 100
Number of samples C

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

R
2

Decoding strategy
Sampling
Beam search

Figure 16: Median R2 of our method without refinement on black-box datasets when B = 1,
varying the number of decoded function samples. The beam search [34] used in [6] leads to
low-diversity candidates in our setup due to expressions differing only by small modifications of the
coefficients.

U([0,6]]) at inference time

0.5 U([0,6]]) + 0.5 U([-7,-5])
 at inference time

Works!

Does not work!

Figure 17: Transformers do not generalize well to distribution-shift.

Figure 18: Transformers do not generalize well to scale-shift.

23

	Details on the training data
	Examples of expressions generated
	Does memorization occur?
	Attention maps
	Additional in-domain results
	Additional out-of-domain results
	Extended comparison with prior work.
	Extension of our model to dimension >10.

