
End-to-end Symbolic Regression with Transformers

Pierre-Alexandre Kamienny∗1,2, Stéphane d’Ascoli*1,3
Guillaume Lample1, François Charton1

1Meta AI
2ISIR MLIA, Sorbonne Université

3Department of Physics, Ecole Normale Supérieure
pakamienny@meta.com

Abstract

Symbolic regression, the task of predicting the mathematical expression of a
function from the observation of its values, is a difficult task which usually involves
a two-step procedure: predicting the "skeleton" of the expression up to the choice
of numerical constants, then fitting the constants by optimizing a non-convex
loss function. The dominant approach is genetic programming, which evolves
candidates by iterating this subroutine a large number of times. Neural networks
have recently been tasked to predict the correct skeleton in a single try, but remain
much less powerful.
In this paper, we challenge this two-step procedure, and task a Transformer to
directly predict the full mathematical expression, constants included. One can
subsequently refine the predicted constants by feeding them to the non-convex
optimizer as an informed initialization. We present ablations to show that this
end-to-end approach yields better results, sometimes even without the refinement
step. We evaluate our model on problems from the SRBench benchmark and show
that our model approaches the performance of state-of-the-art genetic programming
with several orders of magnitude faster inference.

Introduction

Inferring mathematical laws from experimental data is a central problem in natural science; having
observed a variable y at n points {xi}i∈Nn , it implies finding a function f such that yi ≈ f(xi) for
all i ∈ Nn. Two types of approaches exist to solve this problem. In parametric statistics (PS), the
function f is defined by a small number of parameters that can directly be estimated from the data.
On the other hand, machine learning (ML) techniques such as decision trees and neural networks
select f from large families of non-linear functions by minimizing a loss over the data. The latter
relax the assumptions about the underlying law, but their solutions are more difficult to interpret, and
tend to overfit small experimental data sets, yielding poor extrapolation performance.

Symbolic regression (SR) stands as a middle ground between PS and ML approaches: f is selected
from a large family of functions, but is required to be defined by an interpretable analytical expression.
It has already proved extremely useful in a variety of tasks such as inferring physical laws [1, 2].

SR is usually performed in two steps. First, predicting a “skeleton”, a parametric function using a
pre-defined list of operators – typically, the basic operations (+,×,÷) and functions (sqrt, exp, sin,
etc.). It determines the general shape of the law up to a choice of constants, e.g. f(x) = cos(ax+ b).
Then, the constants in the skeleton (a, b) are estimated using optimization techniques, typically the
Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS).

∗equal contribution

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

0.0 0.2 0.4 0.6 0.8 1.0
Black-box median R2

100

102

104

In
fe

re
nc

e
tim

e
(s

ec
on

ds
)

AFP
AFP_FE

AIFeynman

AdaBoost

BSR

DSR

EPLEX

FEAT

FFX

GP-GOMEA
ITEA

KernelRidge

LGBM

Linear

MLP

MRGP

Operon

Ours

Ours (no ref) Ours (skel)

RandomForest

SBP-GP

XGB

gplearn

0.2 0.4 0.6 0.8 1.0
Feynman mean accuracy (R2 > 0.99)

102

103

104

AFP

AFP_FEAIFeynmanBSR

DSR

EPLEX

FEAT

FFX

GP-GOMEA

ITEA

MRGP

Operon

Ours
Ours (no ref)

Ours (skel)

SBP-GP

gplearn

DL-based SR GP-based SR ML methods

Figure 1: Our model outperforms previous DL-based methods and offers at least an order of
magnitude inference speedup compared to SOTA GP-based methods. Pareto plot comparing the
average test performance and inference time of our models with baselines provided by the SRbench
benchmark [7], both on Feynman SR problems [1] and black-box regression problems. We use colors
to distinguish three families of models: deep-learning based SR, genetic programming-based SR
and classic machine learning methods (which do not provide symbolic solutions). A similar Pareto
plot against formula complexity is provided in Fig. 11.

The leading algorithms for SR rely on genetic programming (GP). At each generation, a population
of candidates is predicted, and the fittest ones are selected based on the data, and mutated to build the
next generation. The algorithm iterates this procedure until a satisfactory accuracy level is achieved.

While GP algorithms achieve good prediction accuracy, they are notably slow (see the Pareto plot
of Fig. 1). Indeed, the manually predefined function space to search is generally vast, and each
generation involves a costly call to the BFGS routine. Also, GP does not leverage past experience:
every new problem is learned from scratch. Inference time, i.e. time required to output a satisfactory
expression, for most GP algorithms is both long and unbounded (the longer, the better the results),
therefore this property has been neglected by the SR community, however fast inference can be useful
to improve search-based SR algorithms, e.g. by reducing search space or providing initial guesses, as
well as to tackle practical applications with time constraints, e.g. control or reinforcement learning
[3, 4].

Supervised training neural networks built for language modelling on large datasets of synthetic
examples has recently been proposed for SR [5, 6]. These references follow the two-step procedure
(predicting the skeleton then fitting the constants) inherited from GP. Once the model is trained, at
inference, the skeleton is predicted via a simple forward pass, and a single call to BFGS is needed,
thus resulting in a significant speed-up compared to GP. However, these methods are not as accurate
as state-of-the-art GP, and have so far been limited to low-dimensional functions (D ≤ 3). We argue
that two reasons underlie their shortcomings.

First, skeleton prediction is an ill-posed problem that does not provide sufficient supervision: different
instances of the same skeleton can have very different shapes, and instances of very different skeletons
can be very close. Second, the loss function minimized by BFGS can be highly non-nonconvex: even
when the skeleton is perfectly predicted, the correct constants are not guaranteed to be found. For
these reasons, we believe, and will show, that doing away with skeleton estimation as a intermediary
step can greatly facilitate the task of SR for language models.

Contributions In this paper, we train Transformers over synthetic datasets to perform end-to-end
(E2E) symbolic regression: solutions are predicted directly, without resorting to skeletons. To
this effect, we leverage a hybrid symbolic-numeric vocabulary, that uses both symbolic tokens
for the operators and variables and numeric tokens for the constants. One can then perform a
refinement of the predicted constants by feeding them as informed guess to BFGS, mitigating non-
linear optimization issues. Finally, we introduce generation and inference techniques that allow
our models to scale to larger problems: up to 10 input features against 3 in concurrent works.

2

Evaluated over the SRBench benchmark [7], our model significantly narrows the accuracy gap with
state-of-the-art GP techniques, while providing several orders of magnitude of inference time speedup
(see Fig. 1). We also demonstrate strong robustness to noise and extrapolation capabilities.

Related work SR is a challenging task that traces back from a few decades ago, with a large
number of open-source and commercial softwares, and has already been used to accelerate scientific
discoveries [8, 9, 10]. Most popular frameworks for symbolic regression use GP [11, 12, 13, 14,
15, 16, 17, 18, 19] (see [7] for a recent review), but SR has also seen growing interest from the
Deep Learning (DL) community, motivated by the fact that neural networks are good at identifying
qualitative patterns.

Neural networks have been combined with GP algorithms, e.g. to simplify the original dataset [1],
or to propose a good starting distribution over mathematical expressions[20]. [21, 22] propose
modifications to feed-forward networks to include interpretable components, i.e. replacing usual
activation functions by operators such as cos, sin, however these are hard to optimize and prone to
numerical issues.

Language models, and especially Transformers [23], have been trained over synthetic datasets to solve
various mathematical problems: integration [24], dynamical systems [25], linear algebra [26], formal
logic [27] and theorem proving [28]. A few papers apply these techniques to symbolic regression: the
aforementioned references [6, 5] train Transformers to predict function skeletons, while [29] infers
one-dimensional recurrence relations in sequences of numbers. [30] trains fully-connected networks
to predict simple formulas from tabular data.

The recently introduced SRBench [7] provides a benchmark for rigorous evaluation of SR methods,
in addition to 14 SR methods and 7 ML baselines which we will compare to in this work.

1 Data generation

Our approach consists in training language models on vast synthetic datasets. Each training example
is a pair: a set of N points (x, y) ∈ RD × R as the input, and a function f such that y = f(x) as the
target2 Examples are generated by first sampling a random function f , then a set of N input values
(xi)i∈NN in RD, and computing yi = f(xi).

1.1 Generating functions

To sample functions f , we follow the seminal approach of Lample and Charton [24], and generate
random trees with mathematical operators as internal nodes and variables or constants as leaves. The
procedure is detailed below (see Table 3 in the Appendix for the values of parameters):

1. Sample the desired input dimension D of the function f from U{1, Dmax}.
2. Sample the number of binary operators b from U{D− 1, D+ bmax} then sample b operators

from U{+,−,×}3.
3. Build a binary tree with those b nodes, using the sampling procedure of [24].
4. For each leaf in the tree, sample one of the variables xd, d ∈ ND.
5. Sample the number of unary operators u from U{0, umax} then sample u operators from the

list Ou in Table 3, and insert them at random positions in the tree.
6. For each variable xd and unary operator u, apply a random affine transformation, i.e. replace
xd by axd + b, and u by au+ b, with (a, b) sampled from Daff.

Note that since we require independent control on the number of unary operators (which is indepen-
dent of D) and binary operators (which depends on D), we cannot directly sample a unary-binary tree
as in [24]. Note also that the first D variables are sampled in ascending order to obtain the desired
input dimension, which means functions with missing variables such as x1+x3 are never encountered;
this is not an issue as our model can always set the prefactor of x2 to zero. As discussed quantitatively

2We only consider functions from RD into R; the general case f : RD → RP can be handled as P
independent subproblems.

3Note that although the division operation is technically a binary operator, it appears much less frequently
than additions and multiplications in typical expressions [31], hence we replace it by the unary operator
inv:x → 1/x.

3

=

⎡

⎣

⎢
⎢

𝑥1

𝑥2

𝑦

⎤

⎦

⎥
⎥

⎡

⎣

⎢
⎢

2

3

7

⎤

⎦

⎥
⎥

Scale

Embedder Transformer

Refine

Input

Output

=

⎡

⎣

⎢
⎢

𝑥 ̃ 1

𝑥 ̃ 2

𝑦

⎤

⎦

⎥
⎥

⎡

⎣

⎢
⎢

−1

0.5

7

⎤

⎦

⎥
⎥

Scaled
input

Scaled
output

Encode DecodeTokenize FFN

(𝑁, 3(𝐷+1))𝑑𝑒𝑚𝑏

⎡

⎣

⎢
⎢

−, 1000, 𝐸−3

+, 5000, 𝐸−4

+, 2500, 𝐸−3

⎤

⎦

⎥
⎥

Embedder Transformer

(𝑁,)𝑑𝑒𝑚𝑏

𝑁 Output

Target

𝑦 = +𝑥2
1

𝑥2

𝑦 = +𝑥2
1

𝑥2

Cross-entropy

=

⎡

⎣

⎢
⎢

𝑥1

𝑥2

𝑦

⎤

⎦

⎥
⎥

⎡

⎣

⎢
⎢

−1

0.5

2.5

⎤

⎦

⎥
⎥

(𝑁, 𝐷+1)

Input

Training Inference

Unscale

𝑦 = (+ 3.1 + 0.9(+ 2.6)𝑥 ̃
1)2 𝑥 ̃

2

𝑦 = +𝑥2
1

𝑥2
𝑦 = (+ 3 + (+ 2.5)𝑥 ̃

1)2 𝑥 ̃
2

Figure 2: Sketch of our model. During training, the inputs are all whitened. At inference, we
whiten them as a pre-processing step; the predicted function must then be unscaled to account for the
whitening.

in App. C, the number of possible skeletons as well as the random sampling of numerical constants
guarantees that our model almost never sees the same function twice, and cannot simply perform
memorization. See App. B for examples of the skeleton of generated expressions.

1.2 Generating inputs

For each function f : RD → R, we sample N ∈ U{10D,Nmax} input values xi ∈ RD from the
distribution Dx described below, and compute the corresponding output values yi = f(xi). If any
xi is outside the domain of definition of f or if any yi is larger 10100, the process is aborted, and we
start again by generating a new function. Note that rejecting and resampling out-of-domain values of
xi, the obvious and cheaper alternative, would provide the model with additional information about
f , by allowing it to learn its domain of definition.

To maximize the diversity of input distributions seen during training, we sample our inputs from a
mixture of distributions (uniform or gaussian), centered around k random centroids4, see App. A for
some illustrations at D = 2. Input samples are generated as follows:

1. Sample a number of clusters k ∼ U{1, kmax} and k weights wi ∼ U(0, 1), which are then
normalized so that

∑
i wi = 1.

2. For each cluster i ∈ Nk, sample a centroid µi ∼ N (0, 1)D, a vector of variances σi ∼
U(0, 1)D and a distribution shape (gaussian or uniform) Di ∈ {N ,U}.

3. For each cluster i ∈ Nk, sample bwiNc input points from Di(µi, σi) then apply a random
rotation sampled from the Haar distribution.

4. Finally, concatenate all the points obtained and whiten them by substracting the mean and
dividing by the standard deviation along each dimension.

1.3 Tokenization

Following [26], we represent numbers in base 10 floating-point notation, round them to four significant
digits, and encode them as sequences of 3 tokens: their sign, mantissa (between 0 and 9999), and
exponent (from E-100 to E100).

To represent mathematical functions as sequences, we enumerate the trees in prefix order, i.e. direct
Polish notation, as in [24]: operators and variables and integers are represented as single autonomous
tokens, and constants are encoded as explained above.

For example, the expression f(x) = cos(2.4242x) is encoded as [cos,mul,+,2424,E-3,x]. Note
that the vocabulary of the decoder contains a mix of symbolic tokens (operators and variables) and
numeric tokens, whereas that of the encoder contains only numeric tokens5.

4For k → ∞, such a mixture could in principe approximate any input distribution.
5The embeddings of numeric tokens are not shared between the encoder and decoder.

4

La
ye

r
1

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

La
ye

r
2

Figure 3: Attention heads reveal intricate mathematical analysis. We considered the expression
f(x) = sin(x)/x, with N = 100 input points sampled between −20 and 20 (red dots; the y-axis is
arbitrary). We plotted the attention maps of a few heads of the encoder, which are N ×N matrices
where the element (i, j) represents the attention between point i and point j. Notice that heads 2, 3
and 4 of the second layer analyze the periodicity of the function in a Fourier-like manner.

2 Methods

Below we describe our approach for end-to-end symbolic regression; please refer to Fig. 2 for an
illustration.

2.1 Model

Embedder Our model is provided N input points (x, y) ∈ RD+1, each of which is represented
as 3(D + 1) tokens of dimension demb. As D and N become large, this results in long input
sequences (e.g. 6600 tokens for D = 10 and N = 200), which challenge the quadratic complexity
of Transformers. To mitigate this, we introduce an embedder to map each input point to a single
embedding.

The embedder pads the empty input dimensions toDmax, then feeds the 3(Dmax +1)demb-dimensional
vector into a 2-layer fully-connected feedforward network (FFN) with ReLU activations, which
projects down to dimension demb

6 The resulting N embeddings of dimension demb are then fed to the
Transformer.

Transformer We use a sequence to sequence Transformer architecture [23] with 16 attention heads
and an embedding dimension of 512, containing a total of 86M parameters. Like [26], we observe
that the best architecture for this problem is asymmetric, with a deeper decoder: we use 4 layers in
the encoder and 16 in the decoder. A notable property of this task is the permutation invariance of the
N input points. To account for this invariance, we remove positional embeddings from the encoder.

As shown in Fig. 3 and detailed in App. D, the encoder captures the most distinctive features of the
functions considered, such as critical points and periodicity, and blends a mix of short-ranged heads
focusing on local details with long-ranged heads which capture the global shape of the function.

Training We optimize a cross-entropy loss with the Adam optimizer, warming up the learning
rate from 10−7 to 2.10−4 over the first 10,000 steps, then decaying it as the inverse square root of
the number of steps, following [23]. We hold out a validation set of 104 examples from the same
generator, and train our models until the accuracy on the validation set saturates (around 50 epochs of
3M examples).

Input sequence lengths vary significantly with the number of points N ; to avoid wasteful padding, we
batch together examples of similar lengths, ensuring that a full batch contains a minimum of 10,000
tokens. On 32 GPU with 32GB memory each, one epoch is processed in about half an hour.

2.2 Inference tricks

In this section, we describe three tricks to improve the performance of our model at inference.

6We explored various architectures for the embedder, but did not obtain any improvement; this does not
appear to be a critical part of the model.

5

Table 1: The importance of an end-to-end model with refinement.

Model Function f(x, y)

Target sin(10x) exp(0.1y)
Skeleton + BFGS − sin(1.7x)(0.059y + 0.19)

E2E no BFGS sin(9.9x) exp(0.1y)
E2E + BFGS random init − sin(0.095x) exp(0.27y)
E2E + BFGS model init sin(10x) exp(0.1y)

The skeleton approach recovers an incorrect skeleton. The E2E approach predicts the right skeleton.
Refinement worsens original prediction when randomly initialized, and yields the correct result when
initialized with predicted constants.

Refinement Previous language models for SR, such as [6], follow a skeleton approach: they first
predict equation skeletons, then fit the constants with a non-linear optimisation solver such as BFGS.
In this paper, we follow an end-to-end (E2E) approach: predicting simultaneously the function and
the values of the constants. However, we improve our results by adding a refinement step: fine-tuning
the constants a posteriori with BFGS, initialized with our model predictions7.

This results in a large improvement over the skeleton approach, as we show by training a Transformer
to predict skeletons in the same experimental setting. The improvement comes from two reasons: first,
prediction of the full formula provides better supervision, and helps the model predict the skeleton;
second, the BFGS routine strongly benefits from the informed initial guess, which helps the model
predict the constants. This is illustrated qualitatively in Table 1, and quantitatively in Table 2.

Scaling As described in Section 1.2, all input points presented to the model during training are
whitened: their distribution is centered around the origin and has unit variance. To allow accurate
prediction for input points with a different mean and variance, we introduce a scaling procedure during
inference. Let f the function to be inferred, x be the input points, and µ = mean(x), σ = std(x).
As illustrated in Fig. 2 we pre-process the input data by replacing x by x̃ = x−µ

σ . The model then
predicts f̂(x̃) = f̂(σx+ µ), and we can recover an approximation of f by unscaling the variables in
f̂ .

This gives our model the desirable property to be insensitive to the scale of the input points: DL-based
approaches to SR are known to fail when the inputs are outside the range of values seen during
training [29, 26]. Note that here, the scale of the inputs translates to the scale of the constants in the
function f ; although these coefficients are sampled in Daff during training, coefficients outside Daff
can be expressed by multiplication of constants in Daff.

Bagging and decoding Since our model was trained on N ≤ 200 input points, it does not perform
satisfactorily at inference when presented with more than 200 input points. To take advantage of
large datasets while accommodating memory constraints, we perform bagging: whenever N is larger
than 200 at inference, we randomly split the dataset into B bags of 200 input points8.

For each bag, we apply a forward pass and generate C function candidates via random sampling or
beam search using the next token distribution. As shown in App. F (Fig. 16), the more commonly used
beam search [34] strategy leads to much less good results than sampling due to the lack of diversity
induced by constant prediction (typical beams will look like sin(x), sin(1.1x), sin(0.9x), . . .). This
provides us with a set of BC candidate solutions.

Inference time Our model inference speed has two sources: the forward passes described above
on one hand (which can be parallelized up to memory limits of the GPU), and the refinements of
candidate functions on the other (which are CPU-based and could also be parallelized, although we
did not consider this option here).

7To avoid BFGS having to approximate gradients via finite differences, we provide the analytical expression
of the gradient using sympytorch [32] and functorch [33].

8Smarter splits, e.g. diversity-preserving, could be envisioned, but were not considered here.

6

Table 2: Our approach outperforms the skeleton approach.

Model R2 Acc0.1 Acc0.01 Acc0.001
Skeleton + BFGS 0.43 0.40 0.27 0.17

E2E no BFGS 0.62 0.51 0.27 0.09
E2E + BFGS random init 0.44 0.44 0.30 0.19
E2E + BFGS model init 0.68 0.61 0.44 0.29

Metrics are computed over the 10, 000 examples of the evaluation set.

SinceBC can become large, we rank candidate functions (according to their error on all input points),
get rid of redundant skeleton functions and keep the best K candidates for the refinement step9. To
speed up the refinement, we use a subset of at most 1024 input points for the optimization. The
parameters B, C and K can be used as cursors in the speed-accuracy tradeoff: in the experiments
presented in Fig. 1, we selected B = 100, C = 10, K = 10.

3 Results

In this section, we present the results of our model. We begin by studying in-domain accuracy, then
present results on out-of-domain datasets.

3.1 In-domain performance

We report the in-domain performance of our models by evaluating them on a fixed validation set
of 100,000 examples, generated as per Section 1. Validation functions are uniformly spread out
over three difficulty factors: number of unary operators, binary operators, and input dimension. For
each function, we evaluate the performance of the model when presented N = [50, 100, 150, 200]
input points (x, y), and prediction accuracy is evaluated on Ntest = 200 points sampled from a fresh
instance of the multimodal distribution described in Section 1.2.

We assess the performance of our model using two popular metrics: R2-score [7] and accuracy to
tolerance τ [6, 29]:

R2 = 1−
∑Ntest
i (yi − ŷi)2∑Ntest
i (yi − ȳ)

2
, Accτ = 1

(
max

1≤i≤Ntest

∣∣∣∣ ŷi − yiyi

∣∣∣∣ ≤ τ) , (1)

where 1 is the indicator function.

R2 is classically used in statistics, but it is unbounded, hence a single bad prediction can cause the
average R2 over a set of examples to be extremely bad. To circumvent this, we set R2 = 0 upon
pathological examples as in [7](such examples occur in less that 1% of cases)10. The accuracy metric
provides a better idea of the precision of the predicted expression as it depends on a desired tolerance
threshold. However, due to the presence of the max operator, it is sensitive to outliers, and hence
to the number of points considered at test time (more points entails a higher risk of outlier). To
circumvent this, we discard the 5% worst predictions, following [6].

End-to-end outperforms skeleton In Table 2, we report the average in-domain results of our
models. Without refinement, our E2E model outperforms the skeleton model trained under the
same protocol in terms of low precision prediction (R2 and Acc0.1 metrics), but small errors in
the prediction of the constants lead to lower performance at high precision (Acc0.001 metric). The
refinement procedure alleviates this issue significantly, inducing a three-fold increase in Acc0.001
while also boosting other metrics. Initializing BFGS with the constants estimated in the E2E phase
plays a crucial role: with random initialization, the BFGS step actually degrades E2E performance.
However, refinement with random initialization still achieves better results than the skeleton model:
this suggests that the E2E model predicts skeletons better that the skeleton model.

9Though these candidates are the best functions without refinement, there are no guarantees that these would
be the best after refinement, especially as optimization is particularly prone to spurious local optimas.

10Note that predicting the constant function f = ȳ naturally yields an R2 score of 0.

7

0 2 4 6 8
Number of unary ops u

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

A

20 40
Num of binary ops b

0.0

0.2

0.4

0.6

0.8

1.0
B

2 4 6 8 10
Input dimension D

0.0

0.2

0.4

0.6

0.8

1.0
C

50 100 150 200
Number of input pairs N

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

D

Skeleton E2E no ref E2E random ref E2E ref

100 101

Test input variance

0.0

0.2

0.4

0.6

0.8

1.0
E Interpolation

Extrapolation

0.000 0.025 0.050 0.075 0.100
Noise variance

0.0

0.2

0.4

0.6

0.8

1.0
F

Figure 4: Ablation over the function difficulty (top row) and input difficulty (bottom row). We
plot the accuracy at τ = 0.1 (Eq. 1), see App. E for the R2 score. We distinguish four models:
skeleton, E2E without refinement, E2E with refinement from random guess and E2E with
refinement. A: number of unary operators. B: number of binary operators. C: input dimension.
D: Low-resource performance, evaluated by varying the number of input points. E: Extrapolation
performance, evaluated by varying the variance of the inputs. F: Robustness to noise, evaluated by
varying the multiplicative noise added to the labels.

Ablation Fig. 4A,B,C presents an ablation over three indicators of formula difficulty (from left
to right): number of unary operators, number of binary operators and input dimension. In all cases,
increasing the factor of difficulty degrades performance, as one could expect. This may give the
impression that our model does not scale well with the input dimension, but we show that our model
scales in fact very well on out-of-domain datasets compared to concurrent methods (see Fig. 15 of
the Appendix). We include a qualitative ablation on the improvement caused by the use of mixture of
distributions in App. E.

Fig. 4D shows how performance depends on the number of input points fed to the model, N . In all
cases, performance increases, but much more signicantly for the E2E models than for the skeleton
model, demonstrating the importance of having a lot of data to accurately predict the constants in the
expression.

Extrapolation and robustness In Fig. 4E, we examine the ability of our models to interpo-
late/extrapolate by varying the scale of the test points: instead of normalizing the test points to
unit variance, we normalize them to a scale σ. As expected, performance degrades as we increase σ,
however the extrapolation performance remains decent even very far away from the inputs (σ = 32).

Finally, in Fig. 4F, we examine the effect of corrupting the targets y with a multiplicative noise
of variance σ: y → y(1 + ξ), ξ ∼ N (0, ε). The results reveal something interesting: without
refinement, the E2E model is not robust to noise, and actually performs worse than the skeleton model
at high noise. This shows how sensitive the Transformer is to the inputs when predicting constants.
Refinement improves robustness significantly, but the initialization of constants to estimated values
has less impact, since the prediction of constants is corrupted by the noise.

8

3.2 Out-of-domain generalization

We evaluate our method on the recently released benchmark SRBench[7]. Its repository contains a set
of 252 regression datasets from the Penn Machine Learning Benchmark (PMLB)[35] in addition to
14 open-source SR and ML baselines. The datasets consist in "ground-truth" problems where the true
underlying function is known, as well as "black-box" problems which are more general regression
datasets without an underlying ground truth. We filter out problems from SRBench to only keep
regression problems with D ≤ 10 with continuous features; this results in 190 regression datasets,
splitted into 57 black-box problems (combination of real-world and noisy, synthetic datasets), 119
SR datasets from the Feynman [1] and 14 SR datasets from the ODE-Strogatz [36] databases. Each
dataset is split into 75% training data and 25% test data, on which performance is evaluated.

The overall performance of our models is illustrated in the Pareto plot of Fig. 1, where we see that on
both types of problems, our model achieves performance close to state-of-the-art GP models such as
Operon with a fraction of the inference time11. Impressively, our model outperforms all classic ML
methods (e.g. XGBoost and Random Forests) on real-world problems with a lower inference time,
and while outputting an interpretable formula.

We provide more detailed results on Feynman problems in Fig. 5, where we additionally plot the
formula complexity, i.e. the number of nodes in the mathematical tree (see App. F for similar results
on black-box and Strogatz problems). Varying the noise applied to the targets noise, we see that our
model displays similar robustness to state-of-the-art GP models. We additionally include ablation on
the use of scaling during inference in App. E.

While the average accuracy or our model is only ranked fourth, it outputs formulas with lower
complexity than the top 2 models (Operon and SBP-GP), which is an important criteria for SR
problems: see App. 11 for complexity-accuracy Pareto plots. To the best of our knowledge, our
model is the first non-GP approach to achieve such competitive results for SR.

0.0 0.2 0.4 0.6 0.8 1.0

Operon
SBP-GP

GP-GOMEA
Ours

EPLEX
MRGP

AFP_FE
Ours (skel)
AIFeynman

FEAT
Ours (no ref)

AFP
gplearn

FFX
DSR
ITEA
BSR

Mean accuracy (R2 > 0.99)

102 104

Formula complexity

Target Noise
0.0
0.001
0.01
0.1

102 103 104

Inference time (seconds)

Figure 5: Our model presents strong accuracy-speed-complexity tradeoffs, even in presence of
noise. Results are averaged over all 119 Feynman problems, for 10 random seeds and three target
noises each as shown in the legend. The accuracy is computed as the fraction of problems for which
the R2 score on test examples is above 0.99. Models are ranked according to the accuracy averaged
over all target noise.

Conclusion

In this work, we introduced a competitive deep learning model for SR by using a novel numeric-
symbolic approach. Through rigorous ablations, we showed that predicting the constants in an
expression not only improves performance compared to predicting a skeleton, but can also serve as
an informed initial condition for a solver to refine the value of the constants.

11Inference uses a single GPU for the forward pass of the Transformer.

9

Our model outperforms previous deep learning approaches by a margin on SR benchmarks, and scales
to larger dimensions. Yet, the dimensions considered here remain moderate (D < 10): adapting to
the truly high-dimensional setup is an interesting future direction, and will likely require qualitative
changes in the data generation protocol. While our model narrows the gap between GP and DL based
SR, closing the gap also remains a challenge for future work.

This work opens up a whole new range of applications for SR in fields which require real-time
inference. We hope that the methods presented here may also serve as a toolbox for many future
applications of Transformers for symbolic tasks.

10

References
[1] Silviu-Marian Udrescu and Max Tegmark. Ai feynman: a physics-inspired method for symbolic

regression, 2020.

[2] M. Cranmer, Alvaro Sanchez-Gonzalez, Peter W. Battaglia, Rui Xu, Kyle Cranmer, David N.
Spergel, and Shirley Ho. Discovering symbolic models from deep learning with inductive
biases. ArXiv, abs/2006.11287, 2020.

[3] Jiří Kubalík, Erik Derner, Jan Žegklitz, and Robert Babuška. Symbolic regression methods for
reinforcement learning. IEEE Access, 9:139697–139711, 2021.

[4] Erik Derner, Jirí Kubalík, Nicola Ancona, and Robert Babuška. Symbolic regression for
constructing analytic models in reinforcement learning. ArXiv, abs/1903.11483, 2019.

[5] Mojtaba Valipour, Bowen You, Maysum Panju, and Ali Ghodsi. Symbolicgpt: A generative
transformer model for symbolic regression. arXiv preprint arXiv:2106.14131, 2021.

[6] Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Paras-
candolo. Neural symbolic regression that scales, 2021.

[7] William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio Olivetti de Franca, Marco
Virgolin, Ying Jin, Michael Kommenda, and Jason H Moore. Contemporary symbolic regression
methods and their relative performance. arXiv preprint arXiv:2107.14351, 2021.

[8] Nikos Aréchiga, Francine Chen, Yan-Ying Chen, Yanxia Zhang, Rumen Iliev, Heishiro Toyoda,
and Kent Lyons. Accelerating understanding of scientific experiments with end to end symbolic
regression. ArXiv, abs/2112.04023, 2021.

[9] Silviu-Marian Udrescu and Max Tegmark. Symbolic pregression: Discovering physical laws
from raw distorted video. Physical review. E, 103 4-1:043307, 2021.

[10] Anja Butter, Tilman Plehn, Nathalie Soybelman, and Johann Brehmer. Back to the formula –
lhc edition. 2021.

[11] Michael Schmidt and Hod Lipson. Age-fitness pareto optimization. In Genetic programming
theory and practice VIII, pages 129–146. Springer, 2011.

[12] Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data.
science, 324(5923):81–85, 2009.

[13] William La Cava, Tilak Raj Singh, James Taggart, Srinivas Suri, and Jason H Moore. Learn-
ing concise representations for regression by evolving networks of trees. arXiv preprint
arXiv:1807.00981, 2018.

[14] Trent McConaghy. Ffx: Fast, scalable, deterministic symbolic regression technology. In Genetic
Programming Theory and Practice IX, pages 235–260. Springer, 2011.

[15] Marco Virgolin, Tanja Alderliesten, Cees Witteveen, and Peter AN Bosman. Improving
model-based genetic programming for symbolic regression of small expressions. Evolutionary
computation, 29(2):211–237, 2021.

[16] Fabricio Olivetti de França and Guilherme Seidyo Imai Aldeia. Interaction–transformation
evolutionary algorithm for symbolic regression. Evolutionary computation, 29(3):367–390,
2021.

[17] Ignacio Arnaldo, Krzysztof Krawiec, and Una-May O’Reilly. Multiple regression genetic
programming. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation, pages 879–886, 2014.

[18] Marco Virgolin, Tanja Alderliesten, and Peter A. N. Bosman. Linear scaling with and within
semantic backpropagation-based genetic programming for symbolic regression. In Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO ’19, page 1084–1092, New
York, NY, USA, 2019. Association for Computing Machinery.

11

[19] Michael Kommenda, Bogdan Burlacu, Gabriel Kronberger, and Michael Affenzeller. Parameter
identification for symbolic regression using nonlinear least squares. Genetic Programming and
Evolvable Machines, 21(3):471–501, 2020.

[20] Brenden K Petersen, Mikel Landajuela Larma, T Nathan Mundhenk, Claudio P Santiago, Soo K
Kim, and Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions
from data via risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019.

[21] Georg Martius and Christoph H Lampert. Extrapolation and learning equations. arXiv preprint
arXiv:1610.02995, 2016.

[22] Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation
and control. In International Conference on Machine Learning, pages 4442–4450. PMLR,
2018.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[24] Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv
preprint arXiv:1912.01412, 2019.

[25] François Charton, Amaury Hayat, and Guillaume Lample. Learning advanced mathematical
computations from examples. arXiv preprint arXiv:2006.06462, 2020.

[26] François Charton. Linear algebra with transformers. arXiv preprint arXiv:2112.01898, 2021.

[27] Christopher Hahn, Frederik Schmitt, Jens U Kreber, Markus N Rabe, and Bernd Finkbeiner.
Teaching temporal logics to neural networks. arXiv preprint arXiv:2003.04218, 2020.

[28] Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

[29] Stéphane d’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, and François Charton.
Deep symbolic regression for recurrent sequences. arXiv preprint arXiv:2201.04600, 2022.

[30] Nikos Arechiga, Francine Chen, Yan-Ying Chen, Yanxia Zhang, Rumen Iliev, Heishiro Toyoda,
and Kent Lyons. Accelerating understanding of scientific experiments with end to end symbolic
regression, 2021.

[31] Roger Guimerà, Ignasi Reichardt, Antoni Aguilar-Mogas, Francesco A Massucci, Manuel
Miranda, Jordi Pallarès, and Marta Sales-Pardo. A bayesian machine scientist to aid in the
solution of challenging scientific problems. Science advances, 6(5):eaav6971, 2020.

[32] Patrick Kidger. Sympytorch. https://github.com/patrick-kidger/sympytorch, 2021.

[33] Richard Zou Horace He. functorch: Jax-like composable function transforms for pytorch.
https://github.com/pytorch/functorch, 2021.

[34] Sam Wiseman and Alexander M. Rush. Sequence-to-sequence learning as beam-search opti-
mization, 2016.

[35] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

[36] Steven H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry and Engineering. Westview Press, 2000.

[37] Ying Jin, Weilin Fu, Jian Kang, Jiadong Guo, and Jian Guo. Bayesian symbolic regression,
2020.

[38] T. Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P. Santiago, Daniel M. Fais-
sol, and Brenden K. Petersen. Symbolic regression via neural-guided genetic programming
population seeding, 2021.

12

https://github.com/patrick-kidger/sympytorch
https://github.com/pytorch/functorch

[39] Sean Welleck, Peter West, Jize Cao, and Yejin Choi. Symbolic brittleness in sequence models:
on systematic generalization in symbolic mathematics. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 8629–8637, 2022.

[40] Martin Vastl, Jonáš Kulhánek, Jirí Kubalík, Erik Derner, and Robert Babuška. Sym-
former: End-to-end symbolic regression using transformer-based architecture. arXiv preprint
arXiv:2205.15764, 2022.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running ex-

periments multiple times)? [No] We noticed the random seed that dictates model
initialization had no influence on performance after a few training epochs, therefore
we trained our models on a single random seed to avoid unnecessary computations,
especially as learning is costly.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Data generation
	Generating functions
	Generating inputs
	Tokenization

	Methods
	Model
	Inference tricks

	Results
	In-domain performance
	Out-of-domain generalization

