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A. Implementation Details

For all the backbones used in our experiments, we follow their default training settings. For Con-
vMixer [10], we use AdamW [8] optimizer with triangular learning rate scheduler. We set the
maximum learning rate as 0.05 with weight decay as 0.005. We set batch size as 512 and the number
of total epochs is 100. We use different configurations for hidden dimension (256/512) and depth
(6/8) in our experiments section. For ViT [2], we use Adam [5] optimizer with cosine learning rate
scheduler. We set the maximum learning rate as 0.0001. We set batch size as 256 and the number
of total epochs as 200. We use different configurations for hidden dimension (256/512) and depth
(6/8) in our experiments section. For ResNet [4], we follow the implementation configurations in
Popup [9]. Specifically, we use SGD optimizer with maximum learning rate 0.1 and cosine scheduler.
The weight decay and momentum are set as 0.0005 and 0.9. We train 100 epochs with 256 batch size.
For the sparse selection to pick the subnetworks, we follow the optimal choice in Popup and set it as
0.5 for our experiments. And we use kaiming uniform and kaiming normal [3] to initialize the scores
and random weights, respectively.

B. Limitations and Potential Negative Societal Impacts

Firstly, our study focuses on exploring the random weight potential and representing a neural network
with small storage cost. However, it cannot further help for accelerating the training and inference.
This is a good point for us to further explore. Secondly, our proposed network compression strategy
leverages on the representative potential of random weights with different masks, which benefits to
reducing storage cost. However, following this strategy, it is hard to take advantages of powerful
pretrained model these days. How to tailor our insight to large-scale pretrained model is another good
point to explore. To the best of our knowledge, our study has no potential negative societal impacts.

C. More Experimental Evaluations

We further add experiments for CIFAR100 [6] and Tiny-ImageNet [7] datasets using ConvMixer
as backbone to test our new network compression paradigm. The results are shown in Fig. 1. We
use 8 and 6 as depth number for CIFAR100 and Tiny-ImageNet datasets, respectively and other
settings follow the same mentioned above. The results in figure show that our compression strategy
outperforms the baseline methods and validate the effectiveness of our propose network compression
paradigm. We also conduct experiments on large-scale ImageNet [1] dataset using ResNet50 [4] as
backbone. For simplicity, we customize two ImageNet subset for convenient evaluation. We sample
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100/200 classes from original ImageNet to construct our subsets. We compare our compression
strategy with magnitude pruning baseline and results are shown in Fig. 2. The results of our method
are promising and demonstrate its effectiveness on challenging ImageNet dataset.

D. The Results of Repeated Experiments

We further supplement the repeated experimental results. We supplement the main results from Fig.
3 and Fig. 4 in the Experiments section. We repeated each experiment three times and report mean
and std. In Tab. 1, Tab. 2, Tab. 3, Tab. 4, we provide the repeated results for Fig. 3. According to
these results, we make several conclusions: 1) Our experimental performance are generally consistent
across different datasets and different settings. The supplemented results follow the accuracy patterns
and support the conclusions provided in our draft; 2) ConvMixer is more stable than ViT backbone
across different settings; 3) Overall, along with the decreasing number of unique values in the
network (from the left column to the right column of tables), the performance variations increase
correspondingly. The limited unique weight values decreases the stability of the network. In Tab. 5,
Tab. 6, we provide the repeated results for Fig. 4. The first four columns show the compression
baselines (the first / second items represent random and magnitude pruning). Based on the results
shown above, we find our strategies generally outperform the model compression baselines and these
results support our conclusion in the draft.
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(a) ConvMixer on CIFAR100 dataset.
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(b) ConvMixer on Tiny-ImageNet dataset.

Figure 1: Compression performance validation on CIFAR100/Tiny-ImageNet datasets on ConvMixer
backbone. Y-axis denotes the test accuracy. X-axis means the network size compression ratio.
The straight lines on the top are performance of dense model with regular training. Lines with
different symbol shapes denote different settings. Our three points are based on RP 1e-1, RP 1e-
2, and RP 1e-3, respectively. This figure shows that our proposed paradigm achieves admirable
compression performance compared with baselines. We can still maintain the test accuracy in very
high compression ratios.
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(a) ResNet50 on ImageNet 100 subset.
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(b) ResNet50 on ImageNet 200 subset.

Figure 2: Compression performance validation on ImageNet 100/200 subsets on ResNet50 backbone.
Y-axis denotes the test accuracy. X-axis means the network size compression ratio. The straight lines
on the top are performance of dense model with regular training. Lines with different symbol shapes
denote different settings. Our three points are based on RP 1e-1, RP 1e-2, and RP 1e-3, respectively.
This figure shows that our proposed compression strategy achieves promising performance on
challenging ImageNet dataset compared with baselines.
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Table 1: Repeated experimental results for ConvMixer 6-block in subfigure (a) of Fig. 3.

Dim Mask One-layer MP RP_1e-1 RP_1e-2 RP_1e-3 RP_1e-4 RP_1e-5

256 89.31 (0.16) 88.80 (0.11) 88.97 (0.08) 88.70 (0.21) 88.89 (0.13) 88.52 (0.15) 85.76 (0.34) 81.01 (0.38)
512 91.90 (0.03) 91.87 (0.14) 92.02 (0.02) 92.07 (0.12) 92.13 (0.16) 92.05 (0.03) 90.55 (0.14) 87.40 (0.20)

Table 2: Repeated experimental results for ConvMixer 8-block in subfigure (b) of Fig. 3.

Dim Mask One-layer MP RP_1e-1 RP_1e-2 RP_1e-3 RP_1e-4 RP_1e-5

256 90.42 (0.09) 90.47 (0.04) 90.65 (0.11) 90.63 (0.14) 90.59 (0.06) 90.06 (0.22) 87.64 (0.19) 82.34 (0.26)
512 92.69 (0.11) 92.71 (0.06) 93.21 (0.05) 92.90 (0.07) 92.88 (0.15) 92.90 (0.07) 91.71 (0.20) 87.40 (0.22)

Table 3: Repeated experimental results for ViT 6-block in subfigure (c) of Fig. 3.

Dim Mask One-layer MP RP_1e-1 RP_1e-2 RP_1e-3 RP_1e-4 RP_1e-5

256 76.35 (0.15) 76.21 (0.14) 76.70 (0.10) 77.01 (0.17) 76.76 (0.21) 76.80 (0.20) 64.84 (0.21) 65.76 (0.23)
512 80.73 (0.21) 81.56 (0.25) 81.50 (0.11) 81.87 (0.06) 81.25 (0.13) 80.98 (0.16) 79.17 (0.25) 79.00 (0.14)

Table 4: Repeated experimental results for ViT 8-block in subfigure (d) of Fig. 3.

Dim Mask One-layer MP RP_1e-1 RP_1e-2 RP_1e-3 RP_1e-4 RP_1e-5

256 79.21 (0.09) 79.54 (0.16) 79.23 (0.22) 79.30 (0.08) 79.62 (0.15) 79.28 (0.14) 73.79 (0.26) 71.71 (0.28)
512 83.44 (0.17) 83.50 (0.26) 83.66 (0.12) 83.67 (0.13) 83.25 (0.20) 83.34 (0.19) 76.73 (0.31) 78.84 (0.29)

Table 5: Repeated experimental results for ResNet56/32 on CIFAR10 in subfigure (a) of Fig. 4.

Network pr0.9 pr0.92 pr0.94 pr0.96 Ours-MP Ours-RP_1e-1 Ours-RP_1e-2

ResNet56 86.35 (0.22) / 86.74 (0.28) 85.55 (0.14) / 86.01 (0.17) 85.01 (0.19) / 84.62 (0.27) 81.93 (0.16) / 82.04 (0.18) 88.13 (0.19) 88.36 (0.24) 87.97 (0.21)
ResNet32 84.21 (0.13) / 84.22 (0.05) 83.29 (0.11) / 83.60 (0.20) 82.08 (0.16) / 81.56 (0.28) 79.36 (0.13) / 79.12 (0.15) 86.33 (0.14) 86.58 (0.09) 86.39 (0.18)

Table 6: Repeated experimental results for ResNet56/32 on CIFAR100 in subfigure (b) of Fig. 4.

Network pr0.9 pr0.92 pr0.94 pr0.96 Ours-MP Ours-RP_1e-1 Ours-RP_1e-2

ResNet56 55.21 (0.36) / 54.01 (0.38) 51.96 (0.33) / 52.54 (0.16) 49.72 (0.18) / 49.70 (0.25) 44.00 (0.13) / 44.18 (0.26) 56.39 (0.29) 56.58 (0.21) 55.84 (0.27)
ResNet32 49.21 (0.29) / 49.35 (0.14) 47.36 (0.11) / 47.38 (0.07) 43.70 (0.41) / 44.60 (0.29) 39.78 (0.23) / 39.54 (0.37) 51.76 (0.25) 50.78 (0.30) 51.94 (0.19)
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