
MExMI: Pool-based Active Model Extraction
Crossover Membership Inference

Yaxin Xiao
The Hong Kong Polytechnic University

20034165r@connect.polyu.hk

Qingqing Ye
The Hong Kong Polytechnic University

qqing.ye@polyu.edu.hk

Haibo Hu∗
The Hong Kong Polytechnic University

haibo.hu@polyu.edu.hk

Huadi Zheng
The Hong Kong Polytechnic University
huadi.zheng@connect.polyu.hk

Chengfang Fang
Huawei International, Singapore
fang.chengfang@huawei.com

Jie Shi
Huawei International, Singapore

shi.jie1@huawei.com

Abstract

With increasing popularity of Machine Learning as a Service (MLaaS), ML models
trained from public and proprietary data are deployed in the cloud and deliver
prediction services to users. However, as the prediction API becomes a new
attack surface, growing concerns have arisen on the confidentiality of ML models.
Existing literatures show their vulnerability under model extraction (ME) attacks,
while their private training data is vulnerable to another type of attacks, namely,
membership inference (MI). In this paper, we show that ME and MI can reinforce
each other through a chained and iterative reaction, which can significantly boost
ME attack accuracy and improve MI by saving the query cost. As such, we build a
framework MExMI for pool-based active model extraction (PAME) to exploit MI
through three modules: “MI Pre-Filter”, “MI Post-Filter”, and “semi-supervised
boosting”. Experimental results show that MExMI can improve up to 11.14% from
the best known PAME attack and reach 94.07% fidelity with only 16k queries.
Furthermore, the accuracy, precision and recall of the MI attack in MExMI are on
par with state-of-the-art MI attack which needs 150k queries.

1 Introduction

Recent advances in machine learning (ML) has significantly shifted the paradigm in all walks of
life. Thanks to cloud computing, every business and individual can host black-box ML models in the
cloud (e.g., Microsoft Azure ML, Amazon AWS ML, and Google Cloud AI) to provide pay-per-query
predictive services, known as Machine Learning as a Service (MLaaS). Obviously, ML models are
proprietary assets to the providers who spend great efforts training them [22]. However, by exploiting
the correspondence between queries and prediction results from an MLaaS model, an adversary
could learn the internals of that victim model to a large, or even full extent. Such attack on model’s
confidentiality is known as model extraction (ME) [43]. It is a fundamental attack in adversarial
machine learning because it enables follow-up attacks such as adversarial samples [19], model evasion
[7], and model inversion attacks that infer private information of the training set [16, 48].

State-of-the-art ME attacks can be categorized into direct recovery [23] and active-learning-based
ME attacks [6, 34]. Active learning (AL) refers to those semi-supervised training methods that aim to
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find the most informative training dataset with a limited query budget [17]. Since both AL and ME
aim to train a model with as few queries as possible, AL has become increasingly popular in model
extraction attacks. Depending on the availability of real-life samples for querying, AL-based ME can
be further divided into pool-based active model extraction (PAME) and query-synthesizing-based
active model extraction (SAME). The former assumes the presence of samples, from which query
samples are iteratively selected using a pool-based or stream-based AL. Classic PAMEs include
ActiveThief [34] and Knockoff [33]. The latter does not assume the presence of such samples and
obtains them by generative methods [42, 6]. Classic SAMEs include black-box DNNs [35] and
PRADA [26].

However, a critical difference between pool-based AL and pool-based ME has been long neglected.
Since pool-based AL is essentially a training method, the data pool is where training samples are
drawn, which means this pool must have the same feature distribution as the training dataset. However,
in an ME attack the adversary has no access to the victim model’s training dataset or even samples in
the same problem domain [10]. Unfortunately, all previous PAME works ignore this difference and
assume the samples in the pool are homogeneous to those in the training dataset. To demonstrate
how non-homogeneous datasets can affect the ME performance, we build a Wide-ResNet-based
victim model using the first 25k training image samples of CIFAR10. Then we extract this model
using ActiveThief [34], a state-of-the-art PAME, from three adversary data pools: (1) pool A consists
of the second 25k training samples of CIFAR10, (2) pool B consists of the middle 25k training
samples, and (3) pool C consists of the first 25k training samples. In other words, the victim’s training
set does not overlap with A (non-homogeneous) but overlaps with half of B (quasi-homogeneous),
and completely with C (fully homogeneous). Table 1 shows the fidelity (i.e., similarity to the victim
model) of the extracted copy models from A, B and C. We observe that homogeneous samples
contributes more to the success of model extraction than non-homogeneous samples.

Table 1: Homogeneous v.s. Non-Homogeneous Data
Pool for Model Extraction

The Adversary Data Pool A B C
Training Data Homogeneity None Partial Full

Fidelity / % 90.32 91.29 92.30

In this paper, we address this issue by identify-
ing homogeneous samples in the data pool
and making full use of them for a “guided"
model extraction. We exploit membership in-
ference (MI), an attack that infers the training
samples from a given dataset [41], to select
them and train a copy model. In turn, the ex-
tracted model can enhance the accuracy of membership inference. As such, we propose an iterative
extraction framework MExMI where ME and MI reinforce each other through iterations. As such,
within limited query budget, the final outcome consists of both a high-fidelity copy model and an
accurate set of training samples.

There are several challenges in the design of MExMI. First, existing MI attacks do not consider
query cost [41, 39], which is essential in ME attacks. We exploit the training data property of the
copy model to conduct MI attacks without consuming query budget. Second, state-of-the-art MI
attacks impose assumptions that are not available in MExMI or PAME in general. For example, a
shadow-model MI requires a labelled dataset drawn from the same distribution as the model’s training
dataset with the same size [41]. In this paper, we propose a quality metric to evaluate and optimize
a shadow model without the need of a large labelled dataset. With this technique, we adapt both
shadow-model MI and unsupervised MI [39, 47] to the MExMI framework. Third, existing PAME
attacks fail to utilize the training samples purified from the pool. We designed three modules to
facilitate PAME to make the most of it. In summary, we make the following contributions:

• We propose a taxonomy (SAME/PAME) on active-learning-based model extraction attacks,
and an iterative framework MExMI where PAME and MI reinforce each other.

• We adapt both shadow-model MI and unsupervised MI to MExMI. To boot-strap shadow-
model MI, we develop an indicative quality metric of shadow models and design a metric-
based shadow-model training algorithm.

• We conduct extensive experiments to compare the effectiveness of MExMI with state-of-
the-art PAMEs [34]. MExMI outperforms the latter by 11.14% to 94.07% in terms of ME
fidelity, and its MI attack achieves 84.13% precision, on par with the state-of-the-art MI
attack [39] (75.25%) that assumes unlimited query budget.

The rest of the paper is organized as follows. Section 2 introduces the background and definitions
of ME and MI attacks. Section 3 overviews the MExMI framework and its key components, and
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Section 4 introduces adaptive MI algorithms for MExMI. Section 5 presents the evaluation results of
MExMI through extensive experiments. Section 6 reviews related works, and Section 7 concludes
this work.

2 Background and Definition

2.1 Victim Models

Our target victim models are multi-class neural network (NN) classifiers, where the input domain is
X ⊆ Rd and the output is a probability vector of classes Y ⊆ RK . Here d denotes dimensionality of
the input data, and K denotes the number of output classes. A neural network model makes inference
on the output class probabilities y based on the input x: y = [Pr (Y = 0|x), . . . ,Pr (Y = K|x)]. To
train such a model, we assume a supervised learning process.2 Let D = (xi, yi)

n
i=1 ⊆ X× Y denote

the victim’s training dataset with n labelled samples, where xi is the i-th training sample, and yi is its
one-hot format label vector.

2.2 Threat Model

We assume a well-trained black-box victim model F is deployed in a machine-learning-as-a-service
(MLaaS) with a chargeable query interface. For ease of presentation we do not consider the case when
the victim employs anti-ME [26] or anti-MI defenses, such as perturbation on the output probability
vector [52, 53]. We also assume that the adversary either only has black-box access to the MLaaS
model, or knows its architecture (e.g. in AWS Marketplace [1] and Huawei AI Gallery [2]). In
addition, the adversary can collect a large number of unannotated public samples to construct an
adversary data pool P.

2.3 Problem Definition

We assume the adversary performs ME attacks against F within a query budget b, with the aim to
produce a copy model F ′. The main objective of ME is to let F ′ approximate the victim model F
with high degree of resemblance, a.k.a.,fidelity [23], which is the proportion of label agreement of
two models on an evaluation dataset Dt.

3 Model Extraction Crossover Membership Inference

In this section, we present our iterative model extraction framework MExMI where ME and MI
reinforce each other. An MI attack aims to distinguish those individuals D̂ from a population P
that exist in the victim model F ’s training dataset [41]. As illustrated in Fig. 1 and pseudocode in
Appendix A, the input of MExMI is an adversary data pool P and the access to a black-box victim
model F , and its outputs are the copy model F ′ and the inferred training dataset D̂. In the first
iteration, the adversary chooses k initial seed samples [x1, . . . , xk]0 from P without putting them
back, where k is the query budget per iteration. These samples are fed to the victim model F , which
outputs a probability vector F (x). Then an MI attack model FMIA is constructed using the queried
dataset [{x1, F (x1)} , . . .]0 or the copy model (see Section 4). FMIA is used in both MI Post-Filter
and MI Pre-Filter modules. The queried dataset is then passed through the MI Post-Filter, which
weighs them according to their probability of being a training sample of the victim model. Then the
weighted queried dataset is used to train the copy model F ′ , which is then fed to the MI Pre-Filter to
refine the adversary data pool for AL sample selection of k queries in the next iteration. The process
is repeated until the total query budget b is depleted. Thereafter, without consuming any query budget,
FMIA is used to launch MI attacks on F ′ and the data pool to obtain the final inferred training dataset
D̂. This dataset will be used in a semi-supervised learning on F ′ to release the final copy model F ′.

From Fig. 1, MExMI has three key modules on top of the basic PAME iterative framework [34],
namely, MI Pre-Filter, MI Post-Filter and semi-supervised boosting that will be elaborated in rest of
this section. As will become clear, they are orthogonal to each other, so they can be turned on or off

2Throughout this paper, we exclude special training algorithms, e.g., co-training, mutual mean-teaching, and
sharpness-aware minimization [46, 49, 15]. Neither the victim nor the adversary uses these algorithms.
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Figure 1: MExMI iterative framework.

independently. For ease of presentation, the construction of the MI attack model FMIA, a key issue
in the MExMI framework, will be back introduced in Section 4.

3.1 MI Pre-Filter

MI Pre-Filter works before AL sample selection. The core idea is to use an MI attack model FMIA

to choose from the adversary data pool P only those samples that are highly homogeneous to the
victim’s training data D. Training the copy model with them, both models can thus exhibit strong
resemblance. Ideally, FMIA should perform membership inference attack directly on the victim
model F , which is truly trained from D. However, since such training causes extra query budget on
F , FMIA attacks the copy model F ′ instead as the latter exhibit similar training data property.

3.2 MI Post-Filter

MI Post-Filter works after querying a sample x from the victim model. The rationale of this filter is
that since the victim model returns the probability vectors F (x), the adversary can infer if x belongs
to the training dataset D by an MI attack model FMIA. Obviously a negative membership result
means this sample may not lead to a high-fidelity copy model F ′, so its contribution to the training
process should be lowered by reducing its weight in the training loss calculation. We use a parameter
ω (ω > 1) to denote the weighted loss ratio of a positive membership sample to a negative one.

3.3 Semi-Supervised Boosting

The main idea of this module is that MExMI gain the results of its MI attack— an inferred training
dataset D̂ of the victim model. Although this dataset is not labelled and there is no more query
budget to label them in the end of MExMI, we can still train the copy model F ′ on this dataset
together with the queried set using semi-supervised learning algorithms. Note that this module is
unique in MExMI as other PAME methods cannot distinguish training samples from others in the
data pool. Nonetheless, this module is intended to improve model accuracy only, not fidelity, because
semi-supervised learning can divert the copy model’s ability to follow the same label distribution as
the victim model’s training data. Therefore, MExMI only applies semi-supervised boosting after
the final iteration and when higher accuracy is needed.

4 Adaptive Membership Inference

In MExMI an MI attack model FMIA is trained after the initial seeds query. For MI to play a role in
MExMI framework in early stage iterations, FMIA must be accurate enough even when there are
only few samples. In this section we renovate existing MI algorithms to be adaptive to their training
sample sizes and thus suitable for the MExMI framework. We focus on two state-of-the-art black-box
MI attack paradigms: (1) shadow-model MI [41, 39], and (2) unsupervised MI [39].

4.1 Shadow-Model Membership Inference

The rationale of shadow-model MI is to obtain a shadow model similar to the victim model, so that
their output probability vectors for training and non-training samples are also distinguishable in a
similar manner. As such, the adversary can build a binary MI classifier from these samples instead of
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from those of the victim model. In order to approximate the victim model, a shadow model should
(1) draw its training dataset from the same distribution as in the victim model, (2) have roughly the
same size of training set as the victim model, and (3) have the same training algorithm. However, in
MExMI, neither (1) nor (2) holds because:

a) The queried samples may not be drawn from the same distribution as in the victim’s training
samples.

b) The number of queried samples is significantly smaller than that of the victim’s training set size,
especially in the beginning phase.

As such, the design principle of our adaptive shadow-model MI attack is to work under a limited
number of labelled training samples in a different distribution from the victim model. To start
with, we need to know how to estimate the quality of a shadow model so that we can tell when it is
good enough for MExMI. Intuitively, the fidelity of the shadow model against the victim model can
serve as the performance indicator, but it is inaccessible from the adversary’s side, especially when
MExMI just starts. As such, we need an easy-to-access performance metric.

4.1.1 Measuring Quality of Shadow-model MI

An MI attack works by distinguishing the output probability vector distribution Y of the victim model
F on training samples X from non-training samples. A shadow-model MI estimates the above on a
shadow model — it distinguishes the output probability vector distribution Y(s) of shadow models
Fs on training samples X(s) from non-training samples. As such, to improve the attack accuracy,
Y(s) should be as similar as possible to the victim’s Y. We measure the similarity by the bias of the
expectation values between Y(s) and Y, denoted by b. For each shadow model that targets at class
j ∈ [1, . . . ,K], bj is formally defined as:

bj =
1

n
(s)
j

∑
y(s)∈Y(s)

j

y(s) − 1

nj

∑
y∈Yj

y, (1)

where n denotes the size of training set, and the superscript (s) denotes the shadow model. The
following theorem shows that the gap between the training loss ∆l is positively correlated to the bias
of expectations between Y(s) and Y. Therefore, it can serve as a quality measurement for Fs. We can
minimize it to enhance the quality of Y(s) approximating Y.

Theorem 1 (Quality measurement for shadow-model MI). Given a shadow model Fs which has
the same model structure and hyper-parameters as the victim model F , the gap ∆l between the
training loss of Fs and F is positively correlated to the bias of expectations between Y(s) and Y, i.e.,
∆l ∝ b. See Appendix C for the proof.

4.1.2 Metric-based Shadow-model MI

To obtain ∆l, the gap between the training loss of both models, we need them both. However, the
victim’s training loss is not available to the adversary. Nonetheless, in practice a victim model is
valuable for extraction mainly because this model accurately predicts the training data, or equivalently,
its training loss is smaller than other models of the same training set size. As such, we can replace
∆l with the loss of the shadow model, denoted by ls, compensated by its training dataset size n(s).
Furthermore, for the sake of comparing various shadow models, only the relative rather than the
absolute value of the gap between shadow models and the victim model ∆F is needed. So we propose
the following metric Q as a negative relative value of ∆F . The larger the Q, the better the quality of
a shadow model. Formally,

1

∆F
∼ Q(ls, n

(s)) = f(ls)× (n(s))a, (2)

where f(·) is a non-negative non-linear decreasing function, and a ∈ [0, 1] scales down the impact of
n(s). Note that Q does not require that shadows’ training data come from the same distribution as the
victim’s.
From the above equation, there are two ways to increase the quality metric Q: (1) reducing ls using
good training algorithms on shadow models, and (2) increasing n(s) by augmenting the training set.
Few-shot learning (FSL), a training paradigm to improve models’ accuracy with a limited number
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of examples [45], can serve both purposes. For example, we can use FSL approaches, namely data
augmentation [29] and transfer learning [21], to train shadow models. This leads to two metric-based
shadow-model MIs, which are elaborated in Appendix D.

4.2 Unsupervised Membership Inference

Recent works [39, 47] have shown the effectiveness of unsupervised learning on MI attack models. In
such models, the feature values are usually the top-m score, loss or entropy of the output probabilities,
and the output value serves as the confidence of membership inference — if the value is higher than
an adversary-specified threshold c, the sample is inferred as in the training dataset and vice versa. To
set this threshold, the adversary first gets a set of non-member samples and then query them to get
corresponding top-m scores. The top t percentile of these scores can serve as a threshold [39]. To
save the query cost, the copy model instead of the victim model should be queried.

5 Experiment

In this section, we first conduct experiments to validate the shadow model quality metric Q. Then
we evaluate the attack performance of four variants of MExMI — Pre-Filter only, Post-Filter only,
MExMI without semi-supervised boosting, and MExMI — against state-of-the-art ME and MI attacks.
The codes are available at https://github.com/mexmi/mexmi-project.

5.1 Experiment Setup

Datasets. We perform PAME attacks on two image datasets, namely CIFAR10 [28] and Street
View House Number (SVHN) [32], and a text dataset AG’S NEWS which contains corpus of AG’s
news articles [11] (see Appendix E.1 for details).

Victim Model. For the image classification task, we use Wide-ResNet-28-10 [49] trained on
CIFAR10 as the victim model with an accuracy of 96.10%. We also use a cloud MLaaS, ModelArts
[3], to train an online victim model on SVHN that leads to 94.30% accuracy. In the text classification
task, we use DPCNN [25] as the victim model which achieves an accuracy of 89.88%.

Adversarial data pool. In the default CIFAR10 experiments, the pool consists of 50k training
samples and 100k from the ImageNet32 [9]. In the default AG’S NEWS experiments, the pool has
50k training samples and 100k from Dbpedia [4]. Note that as with existing pool-based ME [34],
MExMI does not require the pool to contain training samples. The main reason for such a mixed
dataset composition is for us to evaluate the performance of MI [41] and show how much it can
be enhanced by ME. In Section 5.4, we evaluate the performance of MExMI when the pool has no
training sample at all.

5.2 Metric-based Shadow-Model MI

Implementation Details. Recall that the hyper-parameters (such as epoch, initial learning rate, and
optimizer) of shadow models Fs can be adjusted to maximize the metric Q. Parameter a in Q is set
as 0.05 and f(·) is set as −log10(·).3 The training dataset of Fs, denoted by D(s), is constructed
by random sampling from P , and its size varies from the set {2000, 5000}. A non-training dataset,
denoted by D

(s)
n , is also randomly sampled from P \D(s). We implement two metric-based shadow-

model MI methods in Section 4: original shadow-model MI [41] and FSL shadow-model MI that
utilizes transfer learning [21] and data augmentation respectively. (See Appendix E.5 for experimental
details.) For each MI method, we vary their hyper-parameters and thus Q in various settings. An
ideal shadow-model MI is built as a reference by using the same training dataset as the victim model.

Results. We plot the MI attack models’ accuracy with respect to shadow metric Q in Fig. 2. We
observe that Q is positively correlated with the attack accuracy of shadow-model MI and therefore
can guide the training process of the shadow models, whether using the original or FSL training
algorithms. The recall rate of all MI attacks is almost 100%, so it is omitted from the figure. In
addition, once the metric Q is large enough (≥ 6), metric-based shadow-model MI attack models can
achieve almost the same accuracy as the ideal shadow-model MI [39] even for 2k samples.

3In our experiments ls ∈ (0, 1) where −log10(·) is non-negative and ever decreasing.
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Figure 2: Experiment results of metric-based shadow-model MI under different settings.

5.3 Overall Performance of MExMI

5.3.1 Implementation Details

We compare six PAME attacks, including four MExMI variants, namely, baseline ME without MI,
Pre-Filter only, Post-Filter only, MExMI without semi-supervised boosting, regular MExMI (which
adopts Mix-Match semi-supervised methods [5] for image classifiers, and consistency regulariza-
tion [38] semi-supervised methods for text classifiers), and the ideal ME attack. The baseline ME is
ActiveThief [34], which is the state-of-the-art PAME attack.4 The ideal ME uses the real training
samples as its pool. Moreover, to comprehensively evaluate MExMI, we added two additional
state-of-the-art query-synthesizing-based ME baselines, including PRADA [26] and DFME [44]
which share the same query budget with PAME attacks. Each MExMI variant has a MI result. In our
experiments we compare our MI attacks that don’t cost additional query budget with the existing MI
attacks [39] that assume infinite query budget.

The AL algorithms used are entropy uncertainty [31], greedy k-center [40] and adversarial deep-
fool [14] (see Appendix B for a brief explanation). The last algorithm is not evaluated on AG’S
NEWS since there is no trivial way to adapt it to text classification. The copy models in MExMI share
the same architecture as the victim models. The MI attack model FMIA is trained on initial seed
samples. The preset weights ratio ω in MI Post-Filter is 5 : 1. For CIFAR10 experiments, MExMI
queries 2k samples in each round with a total of 8 rounds. For AG’S NEWS experiments, there are
6 rounds, each with 5k samples. All experimental results are the average measures of 5 trials. See
Appendix E for more implementation details and Appendix F for supplementary experimental results.

5.3.2 Overall Results of MExMI

We use fidelity and model’s accuracy obtained from the test datasets Dt (CIFAR10 and AG’S NEWS
test sets) to evaluate copy models against the victim model (see Section 2.2), and use accuracy,
precision and recall of the inferred training datasets against ground truth to evaluate the MI accuracy.

Fig. 3 plots the fidelity of various PAME attacks with respect to iterations on CIFAR10 and AG’S
NEWS (see more figures in Appendix F.1), respectively 5, and Table 2 shows the final results. Fig. 4
plots the accuracy, precision and recall of the MI attack of each MExMI variant. The results indicate
that MExMI greatly boosts the potential of AL algorithms in PAME, and breaks the curse on query
budget of existing MI. Overall, MExMI performs the best and achieves a fidelity gain of 7.76%,
7.8%, and 11.14% on CIFAR10 over the baseline ME attack in all three AL methods. A similar gain
of 4.46% and 3.46% is observed on AG’S NEWS over the baseline PAME attacks in both two AL
methods. Without additional queries, the MI attacks of MExMI yield up to 83.20% accuracy, 84.13%
precision and 75.93% recall on CIFAR10, and 68.77% accuracy, 71.73% precision and 82.53% recall
on AG’S NEWS respectively, both on the par with existing MI attacks [39] that assume infinite query
budgets.
Impact of MI Post-Filter and MI Pre-Filter. In Fig. 3, on CIFAR10 attacks with MI Post-Filter
always outperform those without it, by up to a 1.64% increase on fidelity in the final results. The
gain is more eminent in the beginning iterations, and then gradually decreases. On AG’S NEWS, MI

4INVERSENET [18] is another state-of-the-art work that adopts model inversion to assist ME. We do not
include it in the experiments for two reasons. First, its performance is similar to ActiveThief under our 16k-query
budget setting. Second, it augments query selection from the data pool with query synthesis from the model,
which can be considered orthogonal to our method.

5The label ’MExMI w/o Boosting’ in figures is an abbreviation for MExMI without semi-supervised boosting.
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Figure 3: PAME results on CIFAR10 (16k budget) and AG’S NEWS (30k budget). Shadows represent
error bars.
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Figure 4: MI attack results of MExMI. “ML-leaks" refers to the shadow-model MI attack in [39].

Post-Filter also performs effectively, with a maximum boost of 1.57% on fidelity over those without
it. As for MI Pre-Filter, except for the greedy k-center one in CIFAR10 experiments, attacks with
Pre-Filter always outperform those without it. In addition, the gain does not decrease with more
iterations, because the adversary data pool is much larger than the total query budget. Interestingly,
we find that when MI Pre-filter and MI Post-filter work together, they can achieve a greater gain on
fidelity than the sum of individual gains when they work separately. This suggests that the two filters
truly reinforce each other in our MExMI framework.

Table 2: Results of Default PAME Experiments

Fidelity
(Accuracy)/%

CIFAR10 AG’S NEWS
Entropy Greedy Adversarial Entropy Greedy

Uncertainty K-center Deep-fool Uncertainty K-center
PRADA [26]/DFME [44] 61.32 (60.12) / 11.20 (10.32) - / 30.23 (25.00)
Baseline(ActiveThief) 84.65 (83.78) 86.26 (85.69) 82.93 (82.27) 81.36 (78.66) 85.03 (81.92)

Pre-Filter only 85.38 (85.38) 85.84 (85.22) 86.17 (85.48) 84.76 (81.57) 86.61 (83.36)
Post-Filter only 85.48 (84.71) 87.68 (86.86) 84.57 (84.00) 82.06 (79.29) 85.84 (82.38)

MExMI w/o Boosting 89.10 (88.69) 90.16 (89.21) 90.14 (89.58) 85.18 (81.98) 87.26 (84.18)
MExMI 92.41 (91.80) 94.06 (93.43) 94.07 (93.47) 85.82 (82.54) 88.49 (85.36)

Ideal case 93.31 (93.03) 93.71 (93.38) 93.66 (93.25) 90.68 (87.51) 91.03 (87.68)

Impact of Semi-Supervised Boosting. In Fig. 3 and Table 2, MExMI outperforms MExMI without
semi-supervised boosting by at least 3.11% on CIFAR10 and 0.56% on AG’S NEWS in terms of
accuracy, which indicates that MExMI does benefit from effective MI attacks. A fidelity gain is
observed in MExMI since the copy models’ accuracy is closer to that of the victim model.

MI Performance in MExMI. The precision and recall of the adaptive shadow-model MI attacks
of three MExMI variants are shown in Fig. 4. MExMI always performs the best and can achieve
up to 83.20% accuracy and 84.13% precision on CIFAR10, and 68.77% and 71.73% precision on
AG’S NEWS. This precision is even better than the state-of-the-art MI — ML-leaks [39] (75.25%
on CIFAR10, 65.37% on AG’S NEWS) which assumes unlimited query budget. Furthermore, our
adaptive MI attacks have no additional cost when inferring training samples.

Discussion About Potential Defenses. There are two potential defenses against MExMI. First,
MExMI is subject to MI-related defensive strategies that can reduce the accuracy of MI, such as using
differential privacy [13], which in turn lower the fidelity of MExMI. Second, as with other model
extraction attacks, MExMI can also be defended by model provenance techniques, such as watermark
embedding [24], to detected copyright infringement from an extracted model.
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5.4 Impact of Adversary Data Pool on PAME

In this experiment, we study how the quality of adversary data pool affects the outcome of PAME
attacks. Since there are cases where the data pool does not contain any training data, the results
of MI attack are not evaluated. To be fair, we fix the size of the pool to 150k samples and change
the proportion of training data in it to vary its quality. Since the total training samples are 50k, this
proportion is capped at 1/3.

The results on CIFAR10 are shown in Table 3. We can see that the quality of the data pool greatly
affects each PAME attack. MExMI consistently outperforms the baseline irrespective of the quality,
even in the complete absence of victim’s training data, i.e., when the adversary has no access to the
true training samples. In such extreme case, we also observe that Pre-Filter only is outperformed
by the baseline. This is due to the fact that the Pre-Filter cannot find any training data in the pool
and thus excludes most of them for training. Since the filtered data pool is too small, active learning
might not be effective.

Table 3: Impact of the Adversary Data Pool on PAME Attacks with 16k Query Budget

The Proportion of Pv in P Baseline Pre-Filter
only

Post-Filter
only

MExMI w/o
Boosting MExMI

Fidelity
(Accuracy)/%

0% 76.30(75.62) 74.23(73.93) 76.29(75.71) 77.40(76.80) 79.11(78.51)
25% 81.07(80.48) 83.91(83.50) 83.55(83.05) 89.99(88.78) 92.91(91.96)

33.33% 82.93(82.27) 86.17(85.48) 84.57(84.00) 90.14(89.58) 94.07(93.47)

5.5 Impact of Output Access

We investigate the impact of output access granted to our PAME attacks. We limit the output access
to top-1 score and show the results on CIFAR10 in Table 4. It indicates that even with limited output
access, the three modules of MExMI still perform consistently well. Among various PAME attacks,
MExMI always performs the best and can outperform the baseline by 11.47% on fidelity.

Table 4: Impact of Output Access on PAME Attacks

Fidelity (Accuracy)/% Baseline Pre-Filter
only

Post-Filter
only

MExMI w/o
Boosting MExMI

Output Access Probabilities 82.93(82.27) 86.17(85.48) 84.57(84.00) 90.14(89.58) 94.07(93.47)
Top-1 Scores 79.53(79.00) 81.89(81.33) 81.94(81.18) 85.60(84.89) 91.00(90.40)

5.6 Case Study: Blackbox Attacks on MLaaS ModelArts
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Figure 5: PAME attacks’ results in Mode-
lArts on SVHN (7k budget).

We use a real case study to show the fea-
sibility and real-life impact of MExMI. We
target at ModelArts, the MLaaS provided by
Huawei Cloud [3] where developers can train
and deploy their ML models in the cloud, and
then access them via Web API (e.g., CURL).
We train and deploy a classification model on Mode-
lArts without the knowledge of its architecture using
SVHN and then perform various PAME attacks on it
with VGG16. See Appendix E.6 for more implemen-
tation details.

Table 5: MI attacks’ results in ModelArts
MI Attacks Precision/% Recall/%
Pre-Filter only 86.94 91.69
Post-Filter only 87.17 90.50
MExMI 87.78 91.77
ML-leaks on F 87.83 92.38

The experimental results of the adversarial deep-fool
PAME are shown in Fig. 5. All four MExMI variants
outperform the baseline. MExMI achieves the highest
90.32% fidelity and MExMI without semi-supervised
boosting comes the second with 89.45% fidelity. The
final MI results of MExMI framework are shown in
Table 5. We observe similar precision and recall of
the three variants, all on the par with ML leaks [39],
the state-of-the-art unsupervised MI attack that exhausts all pool data, which costs ten times higher.
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6 Related Works

Model Extraction. Model extraction (ME) on MLaaS models has drawn a lot of attention since
Tramèr, et al. (2016) [43], mainly because it can be used for downstream attacks. In terms of query
data availability, ME can be categorized into query-synthesizing ME and query-acquiring ME. The
former is used when the adversary does not possess enough real data for query, which includes
iterative active frameworks [35, 26] and minimax-game frameworks [44, 27]. Despite saving the data
collection cost, it suffers from huge query budget demands. The latter is used when the adversary
spares extra cost to actively collect real data for query [10, 23, 34, 10]. We summarize the above ME
attacks in Table 6, and highlight the data pool requirement of each work and their dependency on
data selection and data synthesis.
Memership Inference. The vulnerability of MLaaS models’ training data privacy has raised great
conerns [51, 22] and various attacks against it are proposed. Of these, Membership inference (MI)
which attempts to infer the training membership of some query data, shows a worrying breach of data
privacy. Existing works exploit different sources of information such as outputs [41, 39] and model
parameters [30] in either black-box or white-box setting to infer the training data. In black-box attack
scenario, moet MI works follow shadow-model MI [41, 39] which cast the attack to a supervised
learning problem. Another type of black-box MI is to utilize the unsupervised learning [39, 37] with
different measure metrics, such as output entropy, predicted confidence [39] and loss [37]. On the
other hand, a white-box MI is proposed [30] which infers the training data and non-training data
distribution characteristics via the victim model’s parameters. More recent works focus on extending
MI attacks to less favorable scenarios, for example when the model output is label only [8, 30], and
extremely low query budget.

Table 6: Existing Learning-based Model Extraction Works
Attacks Data Pool Requirements Data Synthesis Data Selection

Tramèr (2016) [43] None X
Knockoff (2019) [33] Probelm Domain, or Public Pool X
Papernot (2017) [35] Probelm Domain Initial set X
PRADA (2019) [26] Probelm Domain Initial set X
DFME (2021) [44] None X
ActiveThief (2020) [34] Public Pool X
Jagielski (2020) [23] Probelm Domain Pool X
INVERSENET (2020) [18] Public Pool X X
MExMI (this work) Public Pool X

7 Conclusion

In this paper, we proposed a PAME crossover MI framework called MExMI where the model and
training data privacy can trigger a chain reaction to boost the performance of both attacks. The
framework is generic in that it can adopt various PAME and MI attacks. In our experiments, MExMI
improves the fidelity of copy models to 94.07%, up from the basic PAME by 11.14%. Meanwhile,
the MI accuracy and precision can reach 83.20% and 84.13% without additional query budget, on
par with state-of-the-art MI attack which requires about 10 times more queries.
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