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Abstract

We give uniform concentration inequality for random tensors acting on rank-1
Kronecker structured signals, which parallels a Gordon-type inequality for this class
of tensor structured data. Two variants of the random embedding are considered,
where the embedding dimension depends on explicit quantities characterizing the
complexity of the signal. As applications of the tools developed herein, we illustrate
with examples from signal recovery and optimization.

1 Introduction

It is hardly an overstatement to proclaim that underpins most of the analysis for high-dimensional
statistics and structured signal recovery is the heavy hammer made possible by the machinery of
Gaussian process, and in particular Gordon-type inequality that gives tight characterization of the
suprema of the empirical process with geometric properties of the underlying index set. In this paper,
we put Kronecker-structured random tensors into scrutiny and ask for analog of Gordon’s inequality
for correspondingly tensor-structured signals. We embark with a brief reminder of the classics.

1.1 Gordon’s inequality for Gaussian random matrix

For signal u ∈ T ⊂ Rn a vector, it is known for S ∈ Rm×n random i.i.d standard Gaussian matrix,
E[min
u∈T
‖Su‖] ≥ am − w(T ) and E[max

u∈T
‖Su‖] ≤ am + w(T )

for am = E[‖gm‖] ≈
√
m where gm ∼ N (0, Im) and w(T ) = E[maxx∈T g

>x] the Gaussian width
for set T ⊂ Sn−1, a subset of the unit sphere. This statement hinges on the Gaussian min-max
comparison lemma (i.e., Fernique-Slepian theorem), which implies for g, h independent standard
Gaussian vectors,

Eg,h[min
u∈T

max
v∈Sm−1

g>v + h>u] ≤ ES [min
u∈T

max
v∈Sm−1

v>Su] . (1)

This trades the quadratic form for a more innocuous separable process, from which one can see
that the LHS evaluates to the first part of the previous display. The other side is essentially sim-
ilar. For this expectation bound to justify the attention it deserves, one needs to recognize that
minu∈T ‖Su‖ (analogously for max) is a Lipschitz function in the Gaussian random matrix S, from
which (dimension-free) concentration inequality, alongside the bound on the expectation derived
above, conspire to deliver a uniform concentration bound as stated below.
Theorem 1 (Gordon’s escape through the mesh [12]). For all u ∈ T ⊂ Rn, where T is a (not
necessarily convex) cone, with probability at least 1− 2 exp(−δ2/2) for S entrywise i.i.d standard
Gaussian,

(1− ε)‖u‖ ≤ 1

am
‖Su‖ ≤ (1 + ε)‖u‖

when m ≥ (w(T )+δ)2

ε2 .
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Later work of CGMT [17] showed that the reduction of (1) is essentially tight for convex sets,
which has surprising consequences for analyzing the risk of various statistical estimators in a high-
dimensional asymptotic regime. This elegant analysis, nevertheless, cannot be carried out beyond
the Gaussian case due to the lack of comparison lemma (1) (even for subgaussian), but gives that for
example, the extreme singular values of a Gaussian random matrix 1/

√
m ·S scales as 1±

√
n/m by

picking T = Sn−1. It also recovers the familiar Johnson-Lindenstrauss lemma for distance-preserving
random projection of finite point set when w =

√
log(|T |), where |T | is the cardinality of the set.

Seemingly a natural obsession for probabilists for its mathematical allure, results of this flavor have
found unexpectedly number of applications across many areas in numerical linear algebra, signal
processing, theoretical computer science, among others. Such uniform convergence result is frequently
encountered for deriving tight sample complexity bounds for recovery problems, where the problem
boils down to characterizing the probability that a random subspace (i.e., null space of Gaussian
measurement matrix) distributed uniformly misses the tangent cone of a regularizer. Nonconvex
gradient-based optimization heavily leans on these tools for characterizing restricted singular value for
deriving convergence with Empirical Risk Minimization. Sketching-based least-squares optimization
minx ‖SAx − Sb‖22 also crucially rely on such results, where w(U ∩ Sn−1) =

√
dim(U) for

U = colspan([A, b]) for the subspace embedding property.

1.2 Contributions

We aim to generalize Gordon’s uniform concentration result for tensor-structured signal x = u1 ⊗
· · · ⊗ ud while insisting on efficient computation of the embedding operation. More concretely, we
consider Kronecker-structured random rank-1 tensor, which when acting on rank-1 tensor-structured
signals, can be performed without explicitly forming the n× n× · · · × n tensor since it can be done
factor-by-factor effortlessly. Formally we set out our roadmap to address the following questions:

1. For (1) structured and fast tensored embedding (e.g., Tensor-SRHT as defined in Definition
1 below); and (2) Tensor-Subgaussian introduced in Definition 2, what is dictated from the
embedding dimension m for the following guarantee to hold w.h.p∣∣∣∣∣∣ 1

m

m∑
i=1

d∏
j=1

〈vji , u
j〉2 − ‖x‖2

∣∣∣∣∣∣ ≤ max(ε, ε2) · ‖x‖2, (2)

for all x = u1 ⊗ · · · ⊗ ud ∈ T 1 × · · · × T d (Cartesian product of d not necessarily convex
cones), as a function of the geometric properties of the individual sets T 1, · · · , T d. This
is a generalization of the Restricted Isometry Property (RIP) to (1) higher order tensored
signals; (2) general cones beyond sparsity. Both sketches above are row-wise tensored and
take the form Si = vec(v1

i ⊗· · ·⊗ vdi ) for each row i ∈ [m]. We are interested in the regime
m� nd and instantiate the embedding result for this sketch from Section 4 to bound the
restricted singular value as required by a tensor signal recovery problem in Section 6.1.

2. To improve the dependence ofm on the degree d (while maintaining computation efficiency),
we consider a recursive embedding in Section 5 which repeatedly calls a degree-2 Tensor-
SRHT Sj ∈ Rm×nm as a subroutine as follows: S(u1⊗u2⊗u3 · · · ) := S1(u1⊗S2(u2⊗
S3(u3⊗· · · ))). Similar uniform concentration is derived on the scaling ofm with geometric
properties of the individual sets for this alternative embedding, which is in turn called upon
to speed up solving for optimization problem in Section 6.2.

3. Our technique is based on generic chaining - we include comparison with results one would
get from more naive method in Section 3 and part with some discussions of lower bound on
the embedding dimension in Section F and numerical results in Section 7.

We pause to emphasize it is the correlation in the tensor structure that introduces difficulty for tight
concentration – result for general random tensor with i.i.d entries is less challenging to obtain, but at
the same time less efficient to apply.

Definition 1 (Tensor-SRHT). A random matrix constructed as S = 1√
m
P1HnD1 ◦ · · · ◦PdHnDd ∈

Rm×nd is called a Tensor-SRHT (Subsampled Randomized Hadamard Transform), if when acting on
a rank-1 degree-d tensor, takes the form S(u1 ⊗ · · · ⊗ ud) = 1√

m
P ′HndD

′vec(u1 ⊗ · · · ⊗ ud) :=
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1√
m
P1HnD1u

1�· · ·�PdHnDdu
d, whereD′ is a nd×nd diagonal matrix with entriesD1⊗· · ·⊗Dd

(i.e., tensor product of independent Rademachers) and P ′ is a m × nd subsampling matrix with
a single 1 in each (independent) row and Hnd = Hn ⊗ · · · ⊗ Hn where n is a power of 2 is the
Hadamard matrix of size nd × nd. Here � denotes Hadamard product and ◦ denotes the transposed
Khatri-Rao product. Moreover, such embedding can be carried out in time O(d(n log n+m)).

Definition 2 (Tensor-Subgaussian). We call S ∈ Rm×nd a Tensor-Subgaussian embedding if every
row Si = vec(v1

i ⊗ · · · ⊗ vdi ) is constructed where each factor is an independent σ-subgaussian
isotropic random vector, i.e., (1) E[〈vji , uj〉2] = ‖uj‖22; (2) E[|〈vji , uj〉|p]1/p ≤

√
σp‖uj‖2 for all

p ≥ 2, i ∈ [m], j ∈ [d] and any uj ∈ Rn.

2 Related Work

In the case of vector-valued signal (d = 1), embedding analysis for infinite sets using structured
matrices requires ingenuity and is significantly more involved in general. Notable extensions include
[5, 10]. The work of [15] offered a unifying theme - the important message behind is that one can have
a reduction from RIP based result to Gordon-type inequality by invoking it at different sparsity levels
with various distortions à la Talagrand’s multi-resolution generic chaining. An orthogonal thread for
generalizing to heavier-tail distribution involves small-ball technique which gives an one-sided bound
for nonnegative empirical process - such undertaking is present in e.g., [18].

Previous work on tensor concentration are mostly concerned with operator norm bounds for
symmetric subgaussian and/or log-concave (potentially non-isotropic) factors [11, 23], where
for symmetric forms ‖S‖op is maximized by a single vector u ∈ Sn−1 therefore for this we
only need to content ourselves with a single index set and look at moment deviations of type:
supu∈Sn−1

∣∣ 1
m

∑m
i=1〈Si, u〉d − E[〈S, u〉d]

∣∣, an arguably simpler task. Indeed, a multi-resolution
approach is not strictly beneficial here compared to more elementary arguments [11].

The case of non-symmetric factors warrant more care. Both [21, 4] studied pointwise tail bound of the
form P(|‖Sx‖2 − ‖S‖F | ≥ t) for S ∈ Rm×nd a linear mapping, x = u1 ⊗ · · · ⊗ ud ∈ Rnd , where
uk’s are independent factors each with independent, mean 0, unit variance, subgaussian coordinates
– this can in turn be used for deriving a high-probability lower bound on σmin(X) for the nd ×m
random matrix X where each column is formed by the aforementioned tensor x. Uniform deviation
for general sets on tensors can be viewed as a special instance of 2nd-order chaos with mixed tails
[16]. For example in the case of processes with subgaussian-subexponential increments (as is the
case when d = 2 for Tensor-Subgaussian embedding in Definition 2), i.e., ∀u > 0, s, t ∈ T ,

P(‖Xt −Xs‖ ≥
√
ud2(t, s) + ud1(t, s)) ≤ 2e−u ,

the result of [9] gave a uniform deviation for supt∈T ‖Xt‖ as a combination of γ2(T, d2) and
γ1(T, d1) but crucially these quantities are tied to the metric complexity of the product index set
T := T 1 × T 2 – something that is hard to compute by and large. Various works also study finite set
embedding for Kronecker-structured sketches, some of which we will leverage for our results and
will mention them in later contexts.

3 Discrete JL and a Single-scale Approach

At the heart of the following result is a generalized Khinchine inequality [2] which says if
E[|〈vk, a〉|p]1/p ≤ Cp‖a‖2 for any vector a ∈ Rn and all independent {vk}dk=1, then E[|〈v1 ⊗
· · · ⊗ vd, a〉|p]1/p ≤ Cdp‖a‖2 for any (not necessarily rank-1) tensor a ∈ Rnd . This is closely related
to an earlier result from [13] on the concentration of Gaussian chaos but generalized to broader class.
Such moment control is only a hop away from tail bounds using standard arguments. We establish the
finite-set embedding property for the row-wise-tensored embedding matrices below, building upon
previous work. This serves as the stepping stone for the embedding of general sets.
Lemma 1 (Discrete-JL property for Tensor-SRHT and Tensor-Subgaussian). For a set of cardinality
p that the rank-1 tensor x ∈ Rnd belongs, with probability at least 1− e−η for any η > 0 and ε > 0,
Tensor-SRHT as defined in Definition 1 satisfies |‖Sx‖22 − ‖x‖22| ≤ max(ε, ε2)‖x‖22 simultaneously
for all p points provided m = O(Cdε−2(logd(p) + (1 + η)d)). The same guarantee holds for
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Tensor-Subgaussian in Definition 2 with m = O(Cdσ2dε−2(logd(p) + (1 + η)d)) for some universal
constant C.

Remark. Close inspection of the proof for Theorem 3 in [2] in fact uncovers that the discrete JL
property above holds for more general class of SORS (Subsampled Orthogonal Random Sign)
constructions for which H∗H = n · In and maxi,j∈[n] |Hij | ≤ c. In the case d = 1, it also recovers
the classical Johnson–Lindenstrauss lemma.

Without taking the multi-scale route, in the case d = 1, to guarantee ε-distortion over a continuous
set, one needs to roughly speaking build a ∆-net for x ∈ Rn for ∆ . ε ·

√
m/n therefore the sample

complexity one gets with a single-scale approach will scale as

m &
log(|N∆|)

ε2
&
nw2(T )

mε4
⇒ m &

√
nw(T )

ε2
,

where we used Sudakov’s minorization for bounding the size of the covering with Gaussian width
of the set and the JL Lemma for SRHT/Subgaussian matrices for the first transition. This back-
of-the-envelope calculation showcases that uniform covering is far from optimal, since in general
it could be the case w(T ) �

√
n for T ⊂ Sn−1 a subset of the unit sphere – and this insight is

precisely the reason that motivated [15] to consider a multi-scale approximation that can establish
the m � w2(T )/ε2 guarantee for wider classes of random ensembles beyond the Gaussian case in
Theorem 1. To put things in perspective with later sections, we work out the sample complexity
required from a naive uniform discretization below.

Lemma 2 (∆-net Covering). Using Tensor-SRHT, with a uniformly constructed ∆-net covering of

the tensor, one requires m = O(ε−2 · n
d2

1+d (
∑d
i=1 γ

2
2(T i))

d
1+d ) for (2) to hold.

Even in the prosaic case of Gaussian process indexed by ellipsoid and/or `1 ball, it is a well-known
and disappointing fact that arguments based on union bound / Dudley integral don’t give the optimal
bound, whereas method based on generic chaining does [16], which we turn to next.

4 A Multi-scale Approach: Row-wise Tensored Embedding

One viable approach is to apply the result of [15] naively to vec(u1 ⊗ · · · ⊗ ud) without taking
into consideration the Kronecker structure, but this is somewhat of a futile endeavor if one takes
any interest in downstream applications of such bounds. In fact, this was also the impetus for
Mendelson’s work on product empirical processes [14] – it is generally hard to handle geometric
properties of process indexed by product classes. We will instead derive results with an eye towards
bounds involving decoupled geometric complexity measure for each factor that lends itself to explicit
computations – this necessarily calls for a more intricate chaining argument. Another possibility
is to use a contraction inequality à la Ledoux-Talagrand if the random factors {vji }dj=1 come from
bounded class but this will be crude in almost all cases.

Our agenda is to leverage the results on finite set embedding from the previous section, wrap
them inside of a chaining argument by exploiting coverings at multiple scales with different dis-
tortions/probability tradeoff so each level of approximation demands roughly the same embedding
dimension (as we will see, the final m depends on the maximum required across all resolutions).

4.1 Preliminaries

Throughout the paper, we use .,�,& to hide absolute constants. To measure the size of the set
T i ⊂ Rn, we use Gaussian width defined as for g ∼ N (0, In),

w(T i) = E
[

sup
u∈T i

g>u

]
.

In our context, we define the γ∗2 functional as

γ∗2 (T i) := inf
{T il }

sup
ui∈T i

∞∑
l=0

2l/2dist(ui, T il )
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where the infimum is taken over all sequences of nets {T il }l with cardinality |T il | ≤ 22l =: Nl ∀i ∈
[d] and |T i0| = 1 =: N0. For Gaussian process with canonical metric (i.e., Euclidean norm) on T i,
the expected supremum is completely characterized by γ∗2 (T ), i.e.,

γ∗2 (T i) � w(T i)

where the upper bound is due to Fernique and the (much deeper, specific-to-gaussian-process) lower
bound is due to Talagrand’s majorizing measure theorem. A more general definition working with
admissible sequences defines

γ2(T i) := inf
{Ail}

sup
ui∈T i

∞∑
l=0

2l/2diam(Ail(ui))

where the infimum is taken over all admissible sequences (i.e., increasing sequence of partitions of
T i with |Ail| ≤ Nl for all l ≥ 0) and Ail(ui) denotes the (unique) element of Ail that contains ui. It
is not hard to see that by picking one point arbitrarily from each element of the partition, one can
build a net which implies that we always have γ∗2 (T i) ≤ γ2(T i). In fact, the work of [20] shows that
these two quantities are always of the same order.

It is also an immediate consequence that for an optimal admissible sequence {Āil}l, picking {T̄ il }l
as a sequence of nets with cardinally |T̄ il | ≤ Nl constructed by choosing the center point in every
element of the partition set {Āil}l, we have for all ui ∈ T i, i ∈ [d],

∞∑
l=0

2l/2dist(ui, T̄ il ) ≤ inf
{Ail}

sup
t∈T i

∞∑
l=0

2l/2diam(Ail(t)) . (3)

For our results, we will find it helpful to adopt the slightly more general γα-functional for α > 0:
∞∑
l=0

2l/αdist(ui, T̄ il ) ≤ γα(T i) := inf
{Ail}

sup
ui∈T i

∞∑
l=0

2l/αdiam(Ail(ui))

and the infimum is taken over all admissible sequences in exactly the same way as (3). It is known
that for a random variable with tail decay bounded as e−|x|

α

, the supremum is upper bounded by
the γα functional [9]. Moreover, we always have the following Dudley-style metric entropy integral
estimate [16] where Bn2 denotes the unit-`2 ball in Rn:

γα(T i) . Cα

∫ 1

0

(
logN(T i, sBn2 )

)1/α
ds , (4)

but the reverse is generally not true. Here the upper limit of the integral goes up to 1 because
N(T i, sBn2 ) = 1 for s ≥ 1 by simply picking {0} as cover. Covering number on the RHS of (4) can
be bounded with estimates on Gaussian width. In particular, Sudakov minorization asserts

sup
s>0

s
√

logN(T i, sBn2 ) . w(T i) ,

which uses covering number at a single scale. Various alternative options exist for upper bounding
the covering number, including Volumetric estimates, Maurey’s empirical method etc.

Estimate (4) above has the drawback of not being explicit in constants Cα, if one is keen on explicit
dependence on α, the following lemma becomes timely.
Lemma 3 (Relationship between γα functionals). For α ≤ 1, if set T i ⊂ Sn−1 has covering number
N(T i, sBn2 ) ≤ (as )b for some b ≥ 2, a ≥ 2, then

γ2(T i) ≤ γα(T i) ≤ (1 +K · log2(b/α) · b/α · log2(a))
2−α
2α γ2(T i)

for some absolute constant K.

4.2 Multi-resolution embedding property

Instead of going through the multi-scale RIP (followed by column sign randomization) as done in
[15] we will give ourselves more wiggle room by working with a multi-scale embedding property
for finite sets. Definition 3 below will be featured prominently in subsequent sections and make
the successive construction of approximations less mysterious than it may otherwise seem. We will
invoke it for Tensor-SRHT and Tensor-Subgaussian in this section – both taking the form where each
row Si = vec(v1

i ⊗ · · · ⊗ vdi ).

5



Definition 3 (Multi-resolution Embedding Property). A mapping S : Rnd 7→ Rm fulfills the (ε, η, α)-
Multi-resolution Embedding Property if for an increasing sequence of successive coverings {T̄ il }l of
T i ⊂ Sn−1 such that |T̄ il | ≤ 22l and |T̄ i0| = 1∀i ∈ [d] defined in (3) for tensor x := u1 ⊗ · · · ⊗ ud,
the following holds simultaneously for all 1 ≤ l ≤ L � dlog2(nd)e with probability at least
1− exp(−η):

• For all k ∈ [d] and l ∈ [L],

|‖S(u1
l ⊗ · · · ⊗ ukl ⊗ · · · ⊗ udl−1)− S(u1

l ⊗ · · · ⊗ ukl−1 ⊗ · · · ⊗ udl−1)‖22
− ‖u1

l ⊗ · · · ⊗ (ukl − ukl−1)⊗ · · · ⊗ udl−1‖2F |
≤ max(2l/αε, 22l/αε2) · ‖u1

l ‖22 · · · ‖ukl − ukl−1‖22 · · · ‖udl−1‖22

• For all k ∈ [d] and l ∈ [L],

|‖S(u1
l ⊗ · · · ⊗ ukl ⊗ · · · ⊗ udl−1)‖22 − ‖u1

l ⊗ · · · ⊗ ukl ⊗ · · · ⊗ udl−1‖2F |
≤ max(2l/αε, 22l/αε2) · ‖u1

l ‖22 · · · ‖ukl ‖22 · · · ‖udl−1‖22

• For all k ∈ [d] and l ∈ [L],∣∣∣∣∣
∥∥∥∥∥S
(
u1
l ⊗ · · · ⊗

(
ukl − ukl−1

‖ukl − ukl−1‖2

)
⊗ · · · ⊗ udl−1

)
± S(u1

l ⊗ · · · ⊗ ukl−1 ⊗ · · · ⊗ udl−1)

∥∥∥∥∥
2

2

−

∥∥∥∥∥u1
l ⊗ · · · ⊗

(
ukl − ukl−1

‖ukl − ukl−1‖2
± ukl−1

)
⊗ · · · ⊗ udl−1

∥∥∥∥∥
2

F

∣∣∣∣∣
≤ max(2l/αε, 22l/αε2) ·

∥∥∥∥∥ ukl − ukl−1

‖ukl − ukl−1‖2
± ukl−1

∥∥∥∥∥
2

2

· ‖u1
l ‖22 · · · ‖uk−1

l ‖22‖uk+1
l−1 ‖

2
2 · · · ‖udl−1‖22

where tensor Frobenius norm ‖x‖F :=
∏d
k=1 ‖uk‖2 and ukl is the closest point to uk in {T̄ kl }.

For the desired accuracy ε > 0 in the final guarantee (2), in what follows we correspondingly define
a sequence of distortion levels ε0 = ε, ε1 = 21/αε, · · · , εL = 2L/αε for L � dlog2(nd)e levels and
let L̃ = max(0, bα log2(1/ε)c) such that for l ≤ L̃, εl ≤ 1 therefore max(εl, ε

2
l ) = εl. Additionally,

we define x = u1
L+1 ⊗ · · · ⊗ udL+1 being the finest level of approximation. Give ε, n, d, we will

pick L = Cdlog2(nd)e for a constant C and work under the assumption that L̃ ≤ L in the proofs
presented in Section B – the case when L̃ > L allows us to draw the same conclusion and is deferred
to Appendix D. Here the constant C is independent from all problem parameters.

Definition 3 takes center stage in the following lemma. The trade-off of ηl, εl and pl specified in the
proof of Lemma 4 below ensures that there’s no occurrence of l in the final stated m. The {εl} plays
the role of multi-level approximation close in spirit to what the γ-functional attempts to capture. The
super-exponential factor of dd also made an appearance in earlier work on embedding of finite set
using Tensor-SRHT [3].
Lemma 4 (Multi-resolution embedding property of row-wise tensored sketches). With m =
O(Cd(dd + (1 + η)d)/ε2), Tensor-SRHT defined in Definition 1 satisfies Definition 3 for α = 2/d.
The same property also holds for Tensor Subgaussian defined in Definition 2 for m = O(Cdσ2d(dd +
(1 + η)d)/ε2) and α = 2/d.

4.3 Embedding of general sets with row-wise tensored sketches

Now we embark on our journey for the proof of our main result on row-wise Kronecker-structured
sketches where Definition 3 and Lemma 4 will reveal their power.
Theorem 2 (Gordon-type Inequality for Tensor-SRHT and Tensor-Subgaussian). Tensor-SRHT
with m = O(Cdε−2(

∑d
i=1 γ2/d(T

i))2dd) satisfies uniform concentration (2). The same guarantee
carries over to Tensor-Subgaussian with m = O(Cdσ2dε−2(

∑d
i=1 γ2/d(T

i))2dd).
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This recovers the result of [15] for d = 1 (ignoring poly-logs). In light of the tail bound Theorem 2.1
in [4], it is also natural that the γ2/d functional shows up.
Remark. This concentration result can also be easily converted to be on |‖Sx‖2 − 1| using basic
inequality 1

3 min{|a2 − 1|,
√
|a2 − 1|} ≤ |a − 1| ≤ min{|a2 − 1|,

√
|a2 − 1|} for a ≥ 0. For a

short proof, see Appendix B.

It is worth noting that the above argument will generalize to other structured random ensembles, e.g.,
partial circulant matrix with random signs. To put things in context, we compare this bound with
what we got from Lemma 2. Using Lemma 3,

γ2/d(T
i) ≤ (1 +K · log2(b/α) · b/α · log2(a))

d−1
2 γ2(T i) ,

which means substituting into Theorem 2, assuming for the sake of argument all the T i are the same,
focusing on the dependence on ε and γ2, this approach gives

m = O((

d∑
i=1

γ2/d(T
i))2ε−2) = O

(
(b log2(a))d−1 · γ2(T i)2ε−2

)
. (5)

if ignoring poly-logs. In contrast to Lemma 2 where we used a single-scale discretization m =

O(ε−2 · n
d2

1+d (γ2
2(T i))

d
1+d ), Sudakov informs us√
b log(a) ≤ sup

ε∈(0,1]

ε
√
b log(a/ε) . γ2(T i) ≤

√
n .

Therefore in the case of low complexity set (γ2(T i)�
√
n), the multi-resolution approach pays off.

5 Recursive Kronecker Embedding

The row-wise-tensored mapping from the previous section, despite its simplicity, gives exponential
dependency on the degree d (and necessarily so, as a preview for Section F), suggesting it is ideal for
embedding low-degree tensor. In this section, we analyze the “sketch and reduce" approach proposed
by [2], which composes degree-2 sketches from the previous section in the following way: we define
the operation S acting on rank-1 e.g., degree-3 tensor as

S(x⊗ y ⊗ z) := S1(x⊗ S2(y ⊗ S3z)) . (6)

The distinctive feature of the design is that at each layer, the Kronecker-structured sketch Sk only
acts on degree-2, reduced-dimensional tensor – something it excels at. It is an easy exercise that the
matrix S ∈ Rm×nd , when acting on rank-1 degree-d tensor, can be deemed as S = Q0 for

Qd = 1 and Qk−1 = Sk(Qk ⊗ In) ∈ Rm×n
d−k+1

for k = d, · · · , 1 ,

where each Sk ∈ Rm×nm for k ∈ [d− 1] and Sd ∈ Rm×n.

5.1 Building blocks for multi-resolution covering

The analysis follows the same template once we know how the JL moment property is preserved
under matrix direct sum and multiplication, which was investigated in previous work. We have the
following discrete JL property for the embedding matrix S introduced above.
Lemma 5 (Finite Set Embedding Property). The recursive embedding (6) satisfies |‖Sx‖22 − 1| ≤
max(ε, ε2) for all unit-norm, rank-1 tensors x ∈ Rnd belonging to a finite set of cardinality p with
probability at least 1 − e−η for any η > 0 with m = O

(
d
ε2 (log2(p) + η2 ∨ η)

)
. Moreover, such

operation can be conducted in timeO(d(n log n+m)) when each Si is constructed from an degree-2
Tensor-SRHT sketch.

The ensuing lemma makes it clear that we should be grateful for the result stated above.
Lemma 6 (Multi-resolution embedding property of Recursive Tensor-SRHT). With m = O(d(d2 +
(1 + η)2)/ε2), Recursive Tensor-SRHT satisfies the (ε, η, α)-Multi-resolution Embedding Property in
Definition 3 with α = 1.

7



5.2 Embedding of general set using recursive sketch

We will employ a slightly different decomposition of the chain for this construction and dedicate the
section to prove the following theorem. At a high level, the observation is that the sketch, albeit taking
complicated hierarchical form, happens to be linear when acting on rank-1 tensor. Therefore the
strategy is to have all the terms in the chain we need to control in the rank-1 form that only involves
difference in one factor, after which the multi-resolution embedding property can be repeatedly
instantiated as before.
Theorem 3 (Gordon-type Inequality for Recursive Kronecker Embedding). The Recursive Tensor-
SRHT with m = O(dε−2(

∑d
i=1 γ1(T i))2 · (d2 + (1 + η)2)) satisfies |‖Sx‖22 − 1| ≤ max(ε, ε2) for

all x = u1 ⊗ · · · ⊗ ud ∈ T 1 × · · · × T d with probability at least 1− exp(−η) for d ≥ 2.

It is enlightening to compare with the previous embedding bound, assuming again the covering
number admits N(T i, sBn2 ) ≤ (as )b for all i ∈ [d]. With (4) we have

γ1(T i) ≤ C1

∫ 1

0

logN(T i, sBn2 ) ds ≤ C1

∫ 1

0

b log(a/s) ds ≤ C ′1 · b log(a)

which means using Theorem 3 that m = O(d5b2 log2(a)/ε2) for the desired embedding guarantee.
This is favorable as the dependence on d has been reduced from exponential to polynomial. For
example we can see that when each T i consists of a set of p points on the unit sphere, b = o(1) and
a = p we get log2(p)/ε2 as opposed to logd(p)/ε2 from the previous section (5) when focusing on
the scaling with p.

6 Applications

In this section, we give applications of our result in two settings, deploying one type of random
embedding for each, where we see how these bounds can take advantage of the underlying low
complexity structure to move away from the (potentially much larger) ambient dimension. We note
that these applications crucially exploit the fact that the object in Rnd being acted upon has Kronecker
structure – this departs from e.g., oblivious subspace embedding (OSE) result from [1] where the
column span of any nd × p matrix is preserved.

6.1 Signal Recovery

Inspired by compressed sensing, suppose we are given independent random (linear) 1-subgaussian
measurements on Kronecker-structured rank-1 signal x of type

yi = 〈Si, x〉 =

d∏
j=1

〈vji , u
j〉, i ∈ [m] (7)

for x = u1 ⊗ · · · ⊗ ud, ui ∈ T i ⊂ Sn−1, and would like to know when does performing

min
{zj}dj=1∈Sn−1

d∑
j=1

fj(z
j) subject to S(z1 ⊗ · · · ⊗ zd) = y, fj(z

j) ≤ Rj ∀j ∈ [d] (8)

uniquely reconstruct x, where fj above is convex and Rj := fj(u
j) encodes the prior knowledge we

have so that {uj} is feasible. In the case when such information is not available, the constraint can
simply read as ‖zj‖2 ≤ 1, for example. Notice that the decision variable lives in a lower dimensional
space (nd as opposed to nd if we naively vectorize the signal) and one candidate could be alternating
projected gradient descent over each factor. Computation aside on which algorithm to enlist for
solving (8) (it involves solving a non-convex problem due to the multi-linear structure), the analysis
below gives an information-theoretic lower bound on the sample complexity for successful recovery.
The following quantities facilitate the analysis.
Definition 4 (Descent Cone and Restricted Singular Value). We use D(fj , u

j) to denote the descent
cone of a convex function fj at point uj ∈ Rn, that is, D(fj , u

j) := ∪τ>0{t ∈ Rn : fj(u
j + τt) ≤

fj(u
j)}. The correspondingly normalized descent cone is denoted as D̄(fj , u

j) := D(fj , u
j)∩Sn−1.

Let σmin(S; C) be the minimum singular value of a matrix S restricted to set C, i.e., σmin(S; C) :=
minx∈C∩Sn−1 ‖Sx‖. Furthermore, the descent cone of a proper convex function is always convex.
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We take hints from [8, 18] for the lemma below.
Lemma 7 (Recovery Guarantee). If ‖Sw‖ ≥ (1− ε)‖w‖ for all w = (u1 + t1)∩Sn−1⊗· · ·⊗ (ud+

td) ∩ Sn−1 for which tj ∈ D(fj , u
j) where ε < 1, the optimizer {zj∗}dj=1 returned by (8) satisfies

z1
∗ ⊗ · · · ⊗ zd∗ = u1 ⊗ · · · ⊗ ud for the measurement model (7).

Invoking Theorem 2 with Tensor-Subgaussian, for ε ∈ (0, 1), ∀w ∈ W1 × · · · × Wd where
Wj := (uj +D(fj , u

j)) ∩ Sn−1,

|‖Sw‖ − 1|| ≤ min{|‖Sw‖22 − 1|, |‖Sw‖22 − 1|1/2} ≤ ε
if picking m = O(Cd(

∑d
i=1 γ2/d(Wi))2 · (dd + (1 + η)d)/ε2), which means σmin(S;W1 × · · · ×

Wd) ≥ 1− ε > 0 as needed by Lemma 7.

Using translation-invariance and subadditivity of the γ-functionals, one could show that this is
order-wise the same as m = O(Cd(

∑d
i=1 γ2/d(D̄(fi, u

i)))2 · (dd + (1 + η)d)) if fj’s are convex –
we refer to Appendix E for details. Now thanks to the decoupling, it reduces to d descent cone vector
Gaussian width type calculation.
Example 1. Supppose each of the d factors is k-sparse, i.e., T i = {ui ∈ Rn : ‖ui‖0 ≤ k, ‖ui‖2 =
1}, it is classical that the normalized descent cone for `1 norm at k-sparse vector is D̄(fi, u

i) =

{s : ‖s‖1 ≤ 2
√
k‖s‖2, ‖s‖2 = 1}. Since conv(kBn0 ∩Bn2 ) ⊂

√
kBn1 ∩Bn2 ⊂ C · conv(kBn0 ∩Bn2 )

for an absolute constant C, from known result one can deduce that the covering number and Gaussian
width scale as

w(D̄(‖ · ‖1, uj)) �
√
k log(en/k)

log(|N∆(D̄(‖ · ‖1, uj))|) � k log(en/∆k) ,

consequently
γ2

2/d(D(‖ · ‖1, uj)) . (kd log(n/k) log(kd))d−1 · k log(n/k) .

This gives assuming log(n/k) � k (not worrying about the dd factor, assuming d is small for
this application) with m = O

(
kd(1 + η)d

)
, the recovery is successful with probability at least

1 − exp(−η) when omitting poly-logs. It should be clarified that the minimizer of (8) may not be
unique (as in the case with fj = ‖ ·‖1 up to sign ambiguity – which is the only possible one for rank-1
tensor), but this sample complexity suffices for recovering any of the equivalent representations of the
rank-1 signal under consideration.

In general, the work of [8, 18] provide powerful recipe for bounding the Gaussian width of a descent
cone based on duality and polar cones: for fj a convex function, and uj ∈ Rn a fixed point,
g ∼ N (0, In),

w2(D(fj , u
j)) ≤ E inf

τ≥0
dist2(g, τ · ∂fj(uj)) ,

which cries out for more applications for such structured tensor recovery problems.

6.2 Optimization

Consider an optimization (tensor decomposition) problem, where for given signal x = u1⊗· · ·⊗ud ∈
T 1 × · · · × T d taking Kronecker structure, we wish to solve for

min
zi∈T i ∀i∈[d]

‖u1 ⊗ · · · ⊗ ud − z1 ⊗ · · · ⊗ zd‖2F . (9)

In general, one could also consider the denoising version where there is noise in the observation
x+ e, but for simplicity we focus on the noiseless case below. With the hope of saving storage and
speeding up, we apply sketching before solving a lower m-dimensional problem:

min
zi∈T i ∀i∈[d]

‖S(u1 ⊗ · · · ⊗ ud)− S(z1 ⊗ · · · ⊗ zd)‖22 =: g(z1, · · · , zd) . (10)

Let S be the recursive sketch from Section 5 and denote the optimizer of (10) as {zi∗}. It is not hard to
see that since g(z1

∗, · · · , zd∗) ≤ g(u1, · · · , ud) = 0, we must have S(z1
∗⊗· · ·⊗zd∗) = S(u1⊗· · ·⊗ud),

which means that S restricted to set T 1 × · · · × T d must have the smallest singular value bounded
away from 0 for us to uniquely identify the rank-1 factors. Note again this doesn’t resolve the inherent
ambiguity between the factors such as sign flips but the resulting sample complexity is sufficient to
recover any such signal consistent with the measurement (i.e., the returned rank-1 solution obeys
z1
∗ ⊗ · · · ⊗ zd∗ = u1 ⊗ · · · ⊗ ud hence in x space it is unique). We give an example in Section E.
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7 Experiments

In this section, we numerically investigate (1) embedding dimension scaling with d for the two types
of random embeddings in Section 4 and 5; (2) signal recovery from random Gaussian measurements
as elaborated in Section 6.1 where the signal is rank-1 belonging to a product of cones. This is in
some sense a generalization of the non-convex Wirtinger flow formulation for the phase retrieval
problem [7], where both the random measurement and the signal are non-symmetric, in addition to
the availability of potential prior knowledge on the factors.

For the first experiment, we let n = 10, d = 5 and pick each factor {uj} to be 20% sparse. The
figure below reports the average distortion of the embedding |‖Sx‖2 − 1| over 25 runs for both the
row-wise tensored and recursive sketch with Gaussian random factors. Variance of the distortion
across the trials is also shown as we vary m = 0.8 × n × dα for α ∈ {1, · · · , 5}. For the second
experiment, we perform projected gradient descent on the following objective:

min
‖z1‖1≤R1,··· ,‖zd‖1≤Rd

1

2m

m∑
i=1

yi − d∏
j=1

〈vji , z
j〉

2

=: L(z1, · · · , zd) . (11)

We use the spectral factorization of 1
m

∑m
i=1〈v1

i , u
1〉v1

i ⊗· · ·⊗〈vdi , ud〉vdi = 1
m

∑m
i=1 yiv

1
i ⊗· · ·⊗vdi

as initialization, as in expectation this is the signal x = u1 ⊗ · · · ⊗ ud since we assumed vji are
independent across the j’s. We use the tucker-als function from the Matlab Tensor Toolbox1 for
computing the best rank-(1, 1, 1) tensor approximation, after which gradient update is made on each
factor followed by `1 projection. We set each factor {uj} to be 20% sparse and let d = 3, n = 10,
m = 2 × 0.8 × n × dα for α ∈ {1, · · · , 3} and record the successful recovery out of 25 trials.
Stepsize is picked to be 0.1 and success is defined as L(z1, · · · , zd) ≤ 0.1 after 500 gradient steps.

Figure 1: Left: Embedding scaling with degree. Right: Tensor recovery from Gaussian measurement.

8 Discussion

In this paper, we generalized Gordon’s inequality to two families of tensor-structured random
embeddings, which admit efficient implementation when acting on rank-1 Kronecker-structured
signals. As future work, we deem rigorously establishing a lower bound on the embedding dimension
for general sets both an interesting and challenging direction to pursue. On the other hand, tools
developed here should be helpful for analyzing performance of the gradient-based recovery algorithms
that we numerically tested in Section 7.
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A Proofs for Section 3

This section deals with uniform covering, i.e., a single-scale approach.

Proof of Lemma 1. Tracing the footsteps for the proof of Theorem 3 in [2], one could check that we
can smuggle in the term max(ε, ε2) replacing ε ∈ (0, 1) for the following guarantee: with

m = O
(
Cd

1

ε2
log(

1

δ
) logd(

1

δ
)
)
,

the resulting Tensor SRHT matrix S ∈ Rm×nd constructed as in Definition 1 satisfies (1) E[‖Sx‖22] =
1 for all ‖x‖ = 1; (2) E[|‖Sx‖22 − 1|log(1/δ)] ≤ ( 1

e max(ε, ε2))log(1/δ). This implies via Markov’s
inequality,

P(|‖Sx‖22 − 1| ≥ max(ε, ε2)) ≤ δ
for any unit norm x and δ ∈ (0, 1). Therefore for a set of cardinality p, we take a union bound to
conclude with probability at least 1− e−η for any η > 0,

|‖Sx‖22 − 1| ≤ max(ε, ε2)

simultaneously for all p points on the unit sphere in the set provided

m = O
(
Cd

1

ε2
(logd(p) + ηd ∨ η)

)
for some universal constant C, which renders the advertised bound by recognizing ηd ∨ η ≤ (1 + η)d.
The same argument applies to Tensor-Subgaussian embedding by working with Theorem 2 in [2]
instead.

Proof of Lemma 2. Let ∆ < 1/2, to cast an ∆-net (in Frobenius norm) for the rank-1 tensor, suppose
for each of the d factors ui ∈ T i ⊂ Sn−1 we find vi ∈ T i ∩N i such that ‖vi − ui‖2 ≤ ∆/d, then

‖v1 ⊗ · · · ⊗ vd − u1 ⊗ · · · ⊗ ud‖F ≤
d∑
i=1

‖v1‖ · · · ‖vi−1‖‖vi − ui‖‖ui+1‖ · · · ‖ud‖

≤ d×∆/d = ∆ .

To extend (2) to hold for all x ∈ T , write ui = vi+ li for ‖li‖2 ≤ ∆/d, and recall ‖u1⊗· · ·⊗ud‖ =
‖v1 ⊗ · · · ⊗ vd‖ = 1,

|vec(u1 ⊗ · · · ⊗ ud)>(S>S − I)vec(u1 ⊗ · · · ⊗ ud)|
≤ |vec(v1 ⊗ · · · ⊗ vd)>(S>S − I)vec(v1 ⊗ · · · ⊗ vd)|
+ 2|(vec(u1 ⊗ · · · ⊗ ud)− vec(v1 ⊗ · · · ⊗ vd))>(S>S − I)vec(v1 ⊗ · · · ⊗ vd)|
≤ max
vi∈T i∩N i

|vec(v1 ⊗ · · · ⊗ vd)>(S>S − I)vec(v1 ⊗ · · · ⊗ vd)|+ 2∆‖S>S − I‖op

so taking sup over ui ∈ T i, we have
‖S>S − I‖op,T ≤ max

vi∈T i∩N i
|vec(v1 ⊗ · · · ⊗ vd)>(S>S − I)vec(v1 ⊗ · · · ⊗ vd)|+ 2∆‖S>S − I‖op .

Therefore to have the distortion below order max(ε, ε2) for all x, it suffices to cover each factor to
accuracy ∆/d for ∆ . max{ε, ε2}/‖S>S − I‖op and union bound over this finite set to guarantee
max(ε, ε2) distortion on it. Now since on the unit sphere T i = Sn−1 for any ∆ = o(1),

‖S>S − I‖op ≤
1

1− 2∆
· max
x̃∈S∩N∆

|x̃>(S>S − I)x̃| ,

this suggests ‖S>S − I‖op . nd/m.

Using Sudakov’s minorization, the cardinality of the finite set p .
∏d
i=1 exp

(
d2

∆2w
2(T i)

)
.∏d

i=1 exp
(
d2nd

ε2m w2(T i)
)

. Owing to the existence of Lemma 1 on Discrete-JL for Tensor-SRHT, it

yields the dependence on w(T i) (and therefore γ2(T i)) should scale as

m = O

 1

ε2
· n

d2

1+d

(
d∑
i=1

γ2
2(T i)

) d
1+d


for such a uniform concentration to hold, ignoring dd dependence.
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B Proofs for Section 4

We begin with a few helper lemmas for setting up the chaining and multi-resolution covering argument.
Below is an easy observation on the sequence of successive coverings {T̄ il }l as defined in (3).

Lemma 8 (Choice of L). For all ui ∈ T i, dist(ui, T̄ iL) . 1
d for L & dlog2(nd)e.

Proof of Lemma 8. Since γ2(T i) � γ∗2(T i) and (3) shows that

sup
ui∈T i

∞∑
l=0

2l/2dist(ui, T̄ il ) ≤ γ2(T i) ,

it is necessarily the case that (using the inf in the definition of γ∗2 )

sup
ui∈T i

∞∑
l=0

2l/2dist(ui, T̄ il ) � γ∗2 (T i) ,

so {T̄ il }l is almost optimal, which means that for the classical greedily constructed εl-net for the unit
Euclidean ball with cardinality (1 + 2/εl)

n ≤ Nl for εl = n/2l−2, and for any ui ∈ T i,
∞∑
l=0

2l/2dist(ui, T̄ il ) .
∞∑
l=0

2l/2 · εl = n · const

therefore dist(ui, T̄ il ) .
n

(l+1)·2l/2 with a proof of contradiction, where in the above we pushed sup

inside. This in turn indicates that sending L & dlog2(nd)e the distortion for approximating any
ui ∈ T i ⊂ Sn−1 with the net {T̄ iL} is below order 1/d.

Proof of Lemma 3. By definition, the γα functional is monotonically non-increasing in α. The other
side of the inequality involves a careful look into the admissible sequence. Pick a cutoff level lc to be
specified later, for the optimal admissible sequence {Āil}l for the γ2 functional we construct another
admissible sequence {Bil}l that coincides with {Āil}l for l ≤ lc, and observe that

sup
ui∈T i

∑
l≤lc

2l/αdiam(Āil(ui)) ≤ sup
ui∈T i

2
(2−α)lc

2α

∑
l≤lc

2l/2diam(Āil(ui)) . (12)

For the scales l > lc, we aim to pick lc large enough so that
∑
l>lc

2l/αdiam(Bil(ui)) ≤ 1 for

|Bil | ≤ 22l being the tightest covering of elements of Āil for each l > lc. Since N(T i, sBn2 ) ≤ (as )b,
we have sl = a2−2l/b distortion, which means for l = lc + e where e > 0, and any ui ∈ T i,

2l/αdiam(Bil(ui)) ≤ a2l/α−2l/b = 2log2(a)+l/α−2l/b .

Therefore put lc = log2 (K · log2(b/α) · b/α · log2(a)) for a sufficiently large constant K (essen-
tially we need lc large enough such that 2lc − b/α · lc ≥ (log2(a) + 1)b),∑

l>lc

2l/αdiam(Bil(ui)) ≤
∑
e≥0

1

2e+1
≤ 1 .

Plugging lc back into (12), altogether this gives (since γα takes inf over all admissible sequences, of
which {Bil}l is one)

γα(T i) ≤ 1 + (K · log2(b/α) · b/α · log2(a))
2−α
2α · γ2(T i)

≤ (1 +K · log2(b/α) · b/α · log2(a))
2−α
2α · γ2(T i)

where we used γ2(T i) ≥ diam(T i)/2 = 1.

Remark. The polynomial covering number assumption for Lemma 3 is a natural one: For VC class
with VC dimension v, we have the covering number bound N(T i) ≤ Kv(4e)v( 1

s )2(v−1) for some
universal constant K. (cf. Theorem 2.6.4 of [19])
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The corollary below illustrates that with the specified choice of L, together with the embedding
property Definition 3, we have control on the distortion of S acting on all rank-1 tensors of interest.

Corollary 1 (Approximation at the L-th level). For any x ∈ T 1 × · · · × T d, with L � dlog2(nd)e
and the net {T̄ il }l constructed from an optimal admissible sequence as in (3) for each set T i ⊂ Sn−1,

‖S(x− x̃L)‖2 . (1 + 2L/αε) .

Proof. Since L � dlog2(nd)e, it ensures dist(ui, T̄ iL) . 1
d using Lemma 8 for all ui ∈ T i. Now for

x̃L = u1
L ⊗ · · · ⊗ udL ∈ T̄ 1

L × · · · × T̄ dL,

‖S(x− x̃L)‖2 ≤
d∑
k=1

‖S(u1 ⊗ · · · ⊗ uk−1 ⊗ (uk − ukL)⊗ uk+1
L ⊗ · · · ⊗ udL)‖2

.
d∑
k=1

(1 + 2L/αε)
1

d
. (1 + 2L/αε)

where in the above we used part 1 of the multi-resolution embedding property Definition 3 which
implies

‖S(u1 ⊗ · · · ⊗ uk−1 ⊗ (uk − ukL)⊗ uk+1
L ⊗ · · · ⊗ udL)‖22 . (max(2L/αε, 22L/αε2) + 1) · 1

d2

. (1 + 2L/αε)2 · 1

d2

for any k ∈ [d].

The following two concern the row-wise tensored embeddings and are the main results of this section.

Proof of Lemma 4. The requirement entails that the cardinality of the set pl ≤ 5d · (22l)d−1 · (22l)2

for each level of distortion 1 ≤ l ≤ L with εl = 2ld/2ε and ηl = l(η + 1) ≥ 1 (i.e., we only look at
points belonging to neighboring scales). Union bounding over L � dlog2(nd)e levels, using Lemma
1, we get with

m = O
(
Cd

1

ε2l
(logd(pl) + ηdl ∨ ηl)

)
which is O(Cd(dd + (1 + η)d)/ε2) hiding poly-logs that all events as required in Definition 3 holds
with probability at least

1−
L∑
l=1

exp(−ηl) ≥ 1−
∞∑
l=1

exp(−l(η + 1)) ≥ 1− exp(−η) ,

as claimed. For the Tensor-Subgaussian sketch, this becomes O(Cdσ2d(dd + (1 + η)d)/ε2) using
again Lemma 1.

Proof of Theorem 2. Throughout the section, we work with the net {T̄ kl }l∈[L] constructed from (3)
for each k ∈ [d]. Using triangle inequality, forming a telescoping sum and let x̃l = u1

l ⊗ · · · ⊗ udl for
each l ∈ [L̃] where max(εl, ε

2
l ) = εl, and on the event L̃ < L,

|‖Sx‖22 − ‖x‖22|

≤

∣∣∣∣∣∣
L̃∑
l=1

m∑
i=1

(
d∏
k=1

〈vki , ukl 〉2 −
d∏
k=1

〈vki , ukl−1〉2
)
−

(
d∏
k=1

‖ukl ‖22 −
d∏
k=1

‖ukl−1‖22

)∣∣∣∣∣∣
+
∣∣‖Sx‖22 − ‖Sx̃L̃‖22∣∣+

∣∣‖x‖22 − ‖x̃L̃‖22∣∣+
∣∣‖Sx̃0‖22 − ‖x̃0‖22

∣∣
≤

L̃∑
l=1

d∑
k=1

∣∣∣ m∑
i=1

(
〈vki , ukl 〉2 − 〈vki , ukl−1〉2

)
×
k−1∏
s=1

〈vsi , usl 〉2 ×
d∏

s=k+1

〈vsi , usl−1〉2
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−
(
‖ukl ‖22 − ‖ukl−1‖22

)
×
k−1∏
s=1

‖usl ‖22 ×
d∏

s=k+1

‖usl−1‖22
∣∣∣

+
∣∣‖Sx‖22 − ‖Sx̃L̃‖22∣∣+

∣∣‖x‖22 − ‖x̃L̃‖22∣∣+
∣∣‖Sx̃0‖22 − ‖x̃0‖22

∣∣
≤

L̃∑
l=1

d∑
k=1

∣∣∣ m∑
i=1

(
〈vki , ukl − ukl−1〉2 + 2〈vki , ukl − ukl−1〉〈vki , ukl−1〉

)
×
k−1∏
s=1

〈vsi , usl 〉2 ×
d∏

s=k+1

〈vsi , usl−1〉2

−
(
‖ukl − ukl−1‖22 + 2〈ukl−1, u

k
l − ukl−1〉

)
×
k−1∏
s=1

‖usl ‖22 ×
d∏

s=k+1

‖usl−1‖22
∣∣∣

+
∣∣‖Sx‖22 − ‖Sx̃L̃‖22∣∣+

∣∣‖x‖22 − ‖x̃L̃‖22∣∣+
∣∣‖Sx̃0‖22 − ‖x̃0‖22

∣∣
≤

d∑
k=1

L̃∑
l=1

∣∣∣ m∑
i=1

〈vki , ukl − ukl−1〉2
k−1∏
s=1

〈vsi , usl 〉2
d∏

s=k+1

〈vsi , usl−1〉2 − ‖ukl − ukl−1‖22
k−1∏
s=1

‖usl ‖22
d∏

s=k+1

‖usl−1‖22
∣∣∣

+ 2

d∑
k=1

L̃∑
l=1

∣∣∣ m∑
i=1

〈vki , ukl − ukl−1〉〈vki , ukl−1〉
k−1∏
s=1

〈vsi , usl 〉2
d∏

s=k+1

〈vsi , usl−1〉2

− 〈ukl−1, u
k
l − ukl−1〉

k−1∏
s=1

‖usl ‖22
d∏

s=k+1

‖usl−1‖22
∣∣∣

+
∣∣‖Sx‖22 − ‖Sx̃L̃‖22∣∣+

∣∣‖x‖22 − ‖x̃L̃‖22∣∣+
∣∣‖Sx̃0‖22 − ‖x̃0‖22

∣∣
and we attend to each of the 5 terms above in turn.

Term 1: Fixing a k ∈ [d] and l ∈ [L̃], invoking Definition 3, the first term can be written as for
S ∈ Rm×nd (recall ukl is the closet point to uk ∈ T k ⊂ Sn−1 in the l-th level covering of T k

therefore ‖ukl ‖2 = 1)

|‖S · vec(u1
l ⊗ · · · ⊗ (ukl − ukl−1)⊗ · · · ⊗ udl−1)‖22 − ‖vec(u1

l ⊗ · · · ⊗ (ukl − ukl−1)⊗ · · · ⊗ udl−1)‖22|
≤ max(2ld/2ε, 2ldε2) · ‖u1

l ‖22 · · · ‖ukl − ukl−1‖22 · · · ‖udl−1‖22
≤ max(2ld/2ε, 2ldε2) · (‖ukl − uk‖2 + ‖uk − ukl−1‖2)2

≤ 2ld/2ε · 4 · dist2(uk, T̄ kl−1) ≤ 2ld/2ε · 8 · dist(uk, T̄ kl−1)

Summing over l and d gives Term 1 is upper bouned by

8
√

2ε

d∑
k=1

L̃−1∑
l=0

2ld/2dist(uk, T̄ kl ) ≤ 8
√

2ε ·
d∑
k=1

γ2/d(T
k) .

Term 2: The second term is

2|vec(u1
l ⊗ · · · ⊗ ukl−1 ⊗ · · · ⊗ udl−1) · (S>S − I) · vec(u1

l ⊗ · · · ⊗ (ukl − ukl−1)⊗ · · · ⊗ udl−1)|
≤ max(2ld/2ε, 2ldε2) · 2 · ‖ukl − ukl−1‖2 ≤ 2ld/2ε · 4 · dist(uk, T̄ kl−1) ,

where we used that part 3 of Definition 3 implies that since S is linear on rank-1 tensors, therefore∣∣∣vec(u1
l ⊗ · · · ⊗

ukl − ukl−1

‖ukl − ukl−1‖2
⊗ · · · ⊗ udl−1) · (S>S − I) · vec(u1

l ⊗ · · · ⊗ ukl−1 ⊗ · · · ⊗ udl−1)
∣∣∣

≤ 1

4

{∣∣∣vec(u1
l ⊗ · · · ⊗

(
ukl − ukl−1

‖ukl − ukl−1‖2
+ ukl−1

)
⊗ · · · ⊗ udl−1) · (S>S − I)

· vec(u1
l ⊗ · · · ⊗

(
ukl − ukl−1

‖ukl − ukl−1‖2
+ ukl−1

)
⊗ · · · ⊗ udl−1)

∣∣∣
+
∣∣∣vec(u1

l ⊗ · · · ⊗

(
ukl − ukl−1

‖ukl − ukl−1‖2
− ukl−1

)
⊗ · · · ⊗ udl−1) · (S>S − I)

16



· vec(u1
l ⊗ · · · ⊗

(
ukl − ukl−1

‖ukl − ukl−1‖2
− ukl−1

)
⊗ · · · ⊗ udl−1)

∣∣∣}

≤ max(2ld/2ε, 2ldε2) · 1

4
·

2 + 2

(
ukl − ukl−1

‖ukl − ukl−1‖2

)>
ukl−1 + 2− 2

(
ukl − ukl−1

‖ukl − ukl−1‖2

)>
ukl−1


= max(2ld/2ε, 2ldε2) .

Summing over l and d, the second term is upper bounded by

4
√

2ε

d∑
k=1

L̃−1∑
l=0

2ld/2dist(uk, T̄ kl ) ≤ 4
√

2ε ·
d∑
k=1

γ2/d(T
k) .

Term 3: For the third term, we begin by noting that∣∣‖Sx‖22 − ‖Sx̃L̃‖22∣∣ ≤ |‖Sx‖2 − ‖Sx̃L̃‖2| · [‖Sx‖2 + ‖Sx̃L̃‖2]

≤ |‖Sx‖2 − ‖Sx̃L̃‖2|
2

+ 2 · |‖Sx‖2 − ‖Sx̃L̃‖2| · ‖Sx̃L̃‖2 ,
therefore we are left to wrestle with

|‖Sx‖2 − ‖Sx̃L̃‖2|
≤ ‖S(x− x̃L)‖+ ‖S(x̃L − x̃L̃)‖

≤ ‖S(x− x̃L)‖2 +

L∑
l=L̃+1

‖S(x̃l − x̃l−1)‖2

. (1 + 2Ld/2ε) +

L∑
l=L̃+1

d∑
k=1

‖S · vec(u1
l ⊗ · · · ⊗ uk−1

l ⊗ (ukl − ukl−1)⊗ uk+1
l−1 ⊗ · · · ⊗ u

d
l−1)‖2

. (1 + 2Ld/2ε) +

L∑
l=L̃+1

d∑
k=1

(1 + 2ld/2ε) · ‖ukl − ukl−1‖2

.
d∑
k=1

2 · 2Ld/2 ε
d

+

L∑
l=L̃+1

2 · 2ld/2ε · 2 · dist(uk, T̄ kl−1)


.

d∑
k=1

2 · 2Ld/2 ε
d

+ 4 · 2d/2 ·
L∑

l=L̃+1

2(l−1)d/2ε · dist(uk, T̄ kl−1)


. 4 · 2d/2ε ·

d∑
k=1

γ2/d(T
k)

where we used Definition 3 and that εl ≥ 1 for l ≥ L̃ and Corollary 1. It remains to bound ‖Sx̃L̃‖2,
for this,

‖Sx̃L̃‖2 ≤ 2L̃d/2ε+ 1 ≤ 2

where we again used 1 + max(εL̃, ε
2
L̃

) ≤ (1 + εL̃)2 and εL̃ ≤ 1. Altogether this yields

∣∣‖Sx‖22 − ‖Sx̃L̃‖22∣∣ . 16 · 2dε2 ·

(
d∑
k=1

γ2/d(T
k)

)2

+ 16 · 2d/2ε ·
d∑
k=1

γ2/d(T
k) .

Term 4: Analogous to the previous part, we have∣∣‖x‖22 − ‖x̃L̃‖22∣∣ ≤ |‖x‖2 − ‖x̃L̃‖2| · [‖x‖2 + ‖x̃L̃‖2]

≤ |‖x‖2 − ‖x̃L̃‖2|
2

+ 2 · |‖x‖2 − ‖x̃L̃‖2| · ‖x̃L̃‖2 ,
where

|‖x‖2 − ‖x̃L̃‖2| ≤
L∑
l=L̃

‖x̃l+1 − x̃l‖2 ≤
L∑
l=L̃

d∑
k=1

‖u1
l+1‖ · · · ‖uk−1

l+1 ‖‖u
k
l+1 − ukl ‖‖uk+1

l ‖ · · · ‖udl ‖
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≤
L∑
l=L̃

d∑
k=1

2 · dist(uk, T̄ kl ) ≤
L∑
l=L̃

d∑
k=1

2 · 2ld/2ε · dist(uk, T̄ kl )

≤ 2ε

d∑
k=1

γ2/d(T
k)

using εl ≥ 1 for l ≥ L̃. Therefore since ‖x̃L̃‖2 = 1,

∣∣‖x‖22 − ‖x̃L̃‖22∣∣ ≤ 4ε2

(
d∑
k=1

γ2/d(T
k)

)2

+ 4ε

d∑
k=1

γ2/d(T
k) .

Term 5: The last missing piece directly follows from part 2 of Definition 3:∣∣‖Sx̃0‖22 − ‖x̃0‖22
∣∣ ≤ max(ε, ε2) .

Now to finish the train of thought, we collect the results and use the definition of the γα-functional

2d/2
d∑
k=1

γ2/d(T
k) ≥ 2d/2

d∑
k=1

γ2(T k) ≥ 2d/2
d∑
k=1

diam(T k)/2 = 2d/2d > 1

since T k ⊂ Sn−1, to reach

|‖Sx‖22 − ‖x‖22| . 2dε2 ·

(
d∑
k=1

γ2/d(T
k)

)2

+ 2d/2ε ·
d∑
k=1

γ2/d(T
k) + max(ε, ε2)

. max

2d/2ε ·
d∑
k=1

γ2/d(T
k), 2dε2 ·

(
d∑
k=1

γ2/d(T
k)

)2
+ max(ε, ε2)

. max

2d/2ε ·
d∑
k=1

γ2/d(T
k), 2dε2 ·

(
d∑
k=1

γ2/d(T
k)

)2


hence a re-scaling ε 7→ ε
2d/2

∑d
k=1 γ2/d(Tk)

will deliver the desired embedding property. Putting
together with Lemma 4 we have the sample complexity

m = O

(
Cd(

d∑
i=1

γ2/d(T
i))2 · (dd + (1 + η)d)/ε2

)
for Tensor-SRHT. The claim for Tensor-Subgaussian also follows modulo notation adjustments.

Remark. It is likely that one would be able to handle more general concentration of Lipschitz
nonlinearities using modification of the argument, but the expectation will quite possibly become
hard to compute. By reckoning that Es∼N (0,I)[(s

>x)2(s>y)2] = ‖x‖22 · ‖y‖22 + 2(x>y)2, for d = 2
and orthogonal factors, one could also save randomness by potentially using a symmetric degree-2
sketch and appeal to [14]’s result on product processes for near-isometric embedding of arbitrary sets,
with dependence on geometric properties of individual sets T 1 and T 2 (they studied quantities of
type supf∈F,h∈H | 1

m

∑m
i=1 f(Xi)h(Xi)− E[fh]|).

The lemma below is relatively standard – we include it here for completeness.
Lemma 9. The following numerical inequality holds: 1

3 min{|a2 − 1|,
√
|a2 − 1|} ≤ |a − 1| ≤

min{|a2 − 1|,
√
|a2 − 1|} for a ≥ 0.

Proof. For the right inequality, |a− 1| = |a2− 1|/|a+ 1| ≤ |a2− 1| always since a ≥ 0. In the case√
|a2 − 1| ≤ |a2−1|, in which case |a2−1| ≥ 1⇒ a2 ≥ 2, therefore |a−1| ≤

√
|(a+ 1)(a− 1)|

since it’s obviously true for a ≥
√

2 (recall by assumption a ≥ 0).

For the left inequality, in the case a2 ≤ 2, |a− 1| = |a2−1|
|a+1| ≥

|a2−1|
3 since 1 ≤ a+ 1 ≤ 3; otherwise

if a2 ≥ 2 ⇒ a ≥
√

2, we have
√
|(a− 1)(a+ 1)| ≤ 3|a − 1| as it holds that

√
a+ 1 ≤ 3

√
a− 1.

This last transition can be seen from the fact that a 7→
√

a+1
a−1 is monotonically decreasing on

a ∈ [
√

2,∞), which completes the proof.
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C Proofs for Section 5

We specialize the discussion to recursive embeddings in this section, again leveraging a multi-
resolution covering, with the first two lemmas being the building blocks for the ensuing main result.

Proof of Lemma 5. Invoking the JL moment condition for degree-2 Kronecker embedding St ∈
Rm×nm, for Tensor-SRHT matrix constructed from Sti = v

(1)
i ⊗ v

(2)
i at each level t ∈ [d], with

m = O
( 1

ε2
log(

1

δ
) log2(

1

εδ
)
)

the resulting compositional matrix S ∈ Rm×nd exhibits (1) E[‖Sx‖22] = 1 for all ‖x‖ = 1; (2)
E[(‖Sx‖22 − 1)log(1/δ)] ≤ ( 1

e max(ε/
√
d, ε2/d))log(1/δ) using Theorem 1 of [2]. This implies via

Markov’s inequality, δ ∈ (0, 1),

P(|‖Sx‖22 − 1| ≥ max(ε/
√
d, ε2/d)) ≤ δ

for any unit norm x. So for a set of cardinality p, taking a union bound we reach with probability at
least 1− e−η for any η > 0, |‖Sx‖22 − 1| ≤ max(ε, ε2) simultaneously for all p points on the unit
sphere in the set provided (tilde hides poly-logs in 1/ε and d)

m = Õ
( d
ε2

(log2(p) + η2 ∨ η)
)
.

This reduces the dependency on d from exponential to linear.

Proof of Lemma 6. The requirement entails that pl ≤ 5d ·(22l)d−1 ·(22l)2 for each level of distortion
1 ≤ l ≤ L with εl = 2lε and ηl = l(η + 1) ≥ 1 (i.e., we only look at points engaging in neighboring
scales). Union bounding over L � dlog2(nd)e levels, using Lemma 5, we get with

m = Õ
( d
ε2l

(log2(pl) + η2
l ∨ ηl)

)
which is Õ(d(d2 + (1 + η)2)/ε2) that all events required in Definition 3 hold with probability at least
1−

∑L
l=1 exp(−ηl) ≥ 1−

∑∞
l=1 exp(−l(η + 1)) ≥ 1− exp(−η), as promised.

The calculation below taxes one’s patience with algebra but is otherwise relatively mechanical.

Proof of Theorem 3. Let� denote elementwise product and x̄tl := St(utl⊗· · ·Sdudl ) ∈ Rm for each
l ∈ [L] and t ∈ [d]. Denote St1 and St2 the two m× n and m×m independent sketches at each level
t ∈ [d− 1] and Sd ∈ Rm×n. Note that x̄tl is a recursive sketch of degree d− t+ 1 tensor with all
factors i belonging to l-th level approximation in {T̄ il }. Furthermore, let L̃ = max(0, blog2(1/ε)c)
such that for l ≤ L̃, εl ≤ 1. Forming a telescoping sum and keeping in mind we are working under
L̃ < L (the other case is discussed in Section D),

|‖Sx‖22 − ‖x‖22|

≤
L̃∑
l=1

m∑
i=1

〈S1
1,i, u

1
l 〉2〈S1

2,i, x̄
2
l 〉2 − 〈S1

1,i, u
1
l−1〉2〈S1

2,i, x̄
2
l−1〉2 −

d∑
k=1

(
‖ukl ‖22 − ‖ukl−1‖22

) k−1∏
s=1

‖usl ‖22
d∏

s=k+1

‖usl−1‖22

+
∣∣‖Sx‖22 − ‖Sx̃L̃‖22∣∣+

∣∣‖x‖22 − ‖x̃L̃‖22∣∣+
∣∣‖Sx̃0‖22 − ‖x̃0‖22

∣∣
≤

L̃∑
l=1

(
m∑
i=1

(〈S1
1,i, u

1
l 〉2 − 〈S1

1,i, u
1
l−1〉2) · 〈S1

2,i, x̄
2
l−1〉2 −

(
‖u1

l ‖22 − ‖u1
l−1‖22

)
×

d∏
s=2

‖usl−1‖22

)
(∗)

+

L̃∑
l=1

(
m∑
i=1

(〈S1
2,i, x̄

2
l 〉2 − 〈S1

2,i, x̄
2
l−1〉2)〈S1

1,i, u
1
l 〉2 −

d∑
k=2

(
‖ukl ‖22 − ‖ukl−1‖22

)
×
k−1∏
s=1

‖usl ‖22 ×
d∏

s=k+1

‖usl−1‖22

)
+
∣∣‖Sx‖22 − ‖Sx̃L̃‖22∣∣+

∣∣‖x‖22 − ‖x̃L̃‖22∣∣+
∣∣‖Sx̃0‖22 − ‖x̃0‖22

∣∣
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Term 1 + 2: Expand the second line above using x̄2
l = 〈S2

1 , u
2
l 〉 � 〈S2

2 , x̄
3
l 〉 as

≤
L̃∑
l=1

( m∑
i=1

(〈
S1

2,i, 〈S2
1 , u

2
l 〉 � 〈S2

2 , x̄
3
l 〉
〉2 − 〈S1

2,i, 〈S2
1 , u

2
l−1〉 � 〈S2

2 , x̄
3
l−1〉〉2

)
〈S1

1,i, u
1
l 〉2 (13)

−
d∑
k=2

(
‖ukl ‖22 − ‖ukl−1‖22

)
×
k−1∏
s=1

‖usl ‖22 ×
d∏

s=k+1

‖usl−1‖22
)

(14)

≤
L̃∑
l=1

m∑
i=1

(〈
S1

2,i, 〈S2
2 , x̄

3
l−1〉 � 〈S2

1 , u
2
l 〉
〉2 − 〈S1

2,i, 〈S2
2 , x̄

3
l−1〉 � 〈S2

1 , u
2
l−1〉

〉2) 〈S1
1,i, u

1
l 〉2 (15)

−
(
‖u2

l ‖22 − ‖u2
l−1‖22

)
× ‖u1

l ‖22 ×
d∏
s=3

‖usl−1‖22 (16)

+

L̃∑
l=1

m∑
i=1

(〈
〈S2

1 , u
2
l 〉 � 〈S2

2 , x̄
3
l 〉, S1

2,i

〉2 − 〈〈S2
1 , u

2
l 〉 � 〈S2

2 , x̄
3
l−1〉, S1

2,i

〉2) 〈S1
1,i, u

1
l 〉2 (17)

−
d∑
k=3

(
‖ukl ‖22 − ‖ukl−1‖22

)
×
k−1∏
s=1

‖usl ‖22 ×
d∏

s=k+1

‖usl−1‖22 (18)

where we used the fact that for vectors a, b, c of same length, 〈a, b� c〉 = 〈a� c, b〉. Notice that for
a fixed l, (15) above is nothing but a recursive sketch on tensor

‖S(u1
l ⊗ u2

l ⊗ u3
l−1 ⊗ · · · ⊗ udl−1)‖22 − ‖S(u1

l ⊗ u2
l−1 ⊗ u3

l−1 ⊗ · · · ⊗ udl−1)‖22
therefore both (∗) and (15)-(16) above involve bounding distortion of the form below for which we
can invoke Definition 3 and follow similar steps as the previous section to reach

|‖S(u1
l ⊗ · · · ⊗ ukl ⊗ · · · ⊗ udl−1)‖22 − ‖S(u1

l ⊗ · · · ⊗ ukl−1 ⊗ · · · ⊗ udl−1)‖22
− ‖vec(u1

l ⊗ · · · ⊗ ukl ⊗ · · · ⊗ udl−1)‖22 + ‖vec(u1
l ⊗ · · · ⊗ ukl−1 ⊗ · · · ⊗ udl−1)‖22|

≤
∣∣‖S(u1

l ⊗ · · · ⊗ ukl − ukl−1 ⊗ · · · ⊗ udl−1)‖22 − ‖u1
l ⊗ · · · ⊗ ukl − ukl−1 ⊗ · · · ⊗ udl−1‖22

∣∣
+ 2

∣∣(u1
l ⊗ · · · ⊗ ukl − ukl−1 ⊗ · · · ⊗ udl−1)>(S>S − I)(u1

l ⊗ · · · ⊗ ukl−1 ⊗ · · · ⊗ udl−1)
∣∣

≤ 2lε · 8 · dist(uk, T̄ kl−1) + 2lε · 4 · dist(uk, T̄ kl−1) .

Proceeding by unfolding (17)-(18) above in a similar fashion, and summing over l ∈ [L̃] gives

12
√

2ε

d∑
k=1

L̃−1∑
l=0

2ldist(uk, T̄ kl ) ≤ 12
√

2ε ·
d∑
k=1

γ1(T k) .

The derivation for the rest terms mirrors that from the previous section so we will be terse.

Term 3: For the third term, we note that ‖S(x− x̃L)‖2 . (1 + 2L/αε) for any rank-1 tensor x under
consideration. Now recall x̃L̃ = x̄1

L̃
in our notation,∣∣‖Sx‖22 − ‖Sx̃L̃‖22∣∣ ≤ |‖Sx‖2 − ‖Sx̃L̃‖2|2 + 2 · |‖Sx‖2 − ‖Sx̃L̃‖2| · ‖Sx̃L̃‖2

. 64ε2 ·

(
d∑
k=1

γ1(T k)

)2

+ 32ε ·
d∑
k=1

γ1(T k) .

Term 4: Analogous to the previous part, we have∣∣‖x‖22 − ‖x̃L̃‖22∣∣ ≤ |‖x‖2 − ‖x̃L̃‖2|2 + 2 · |‖x‖2 − ‖x̃L̃‖2| · ‖x̃L̃‖2

. 4ε2

(
d∑
k=1

γ1(T k)

)2

+ 4ε

d∑
k=1

γ1(T k) .

Term 5: Directly invoking part 2 of Definition 3 gives∣∣‖Sx̃0‖22 − ‖x̃0‖22
∣∣ ≤ max(ε, ε2) .
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The finishing touch is done by noting
∑d
k=1 γ1(T k) ≥ d ≥ 1, assembling the pieces,

|‖Sx‖22 − ‖x‖22| . ε2 ·

(
d∑
k=1

γ1(T k)

)2

+ ε ·
d∑
k=1

γ1(T k) + max(ε, ε2)

. max

ε ·
d∑
k=1

γ1(T k), ε2 ·

(
d∑
k=1

γ1(T k)

)2
+ max(ε, ε2)

hence a change of variable ε 7→ ε∑d
k=1 γ1(Tk)

will make the stars align. Invoking Lemma 6 we end up
with the sample complexity

m = Õ

(
d(

d∑
k=1

γ1(T k))2 · (d2 + (1 + η)2)/ε2

)
for tensors with degree d ≥ 2.

D Embedding Distortion when L̃ > L

We will only use the Multi-resolution Embedding Property Definition 3 in the argument below,
making it valid extension for both Theorem 2 and Theorem 3. We decompose:

|‖Sx‖22 − ‖x‖22| ≤
L∑
l=1

|‖Sx̃l‖22 − ‖x̃l‖22| − |‖Sx̃l−1‖22 − ‖x̃l−1‖22|

+
∣∣‖Sx‖22 − ‖x‖22∣∣− ∣∣‖Sx̃L‖22 − ‖x̃L‖22∣∣+

∣∣‖Sx̃0‖22 − ‖x̃0‖22
∣∣ .

The proofs in the previous parts have already taught us that the first term is . ε ·
∑d
k=1 γα(T k) by

simply recalling that Definition 3 holds up until level L and since L < L̃, all the distortion take the
first term εl instead of ε2l for l ∈ [L]. The last term is also easily bounded by max(ε, ε2) as before.
This leaves us with the middle two terms. For this, note that both x and x̃L are rank-1 tensors, the
inner product x>x̃L denotes

∏d
k=1〈uk, ukL〉 here,∣∣‖Sx‖22 − ‖x‖22∣∣− ∣∣‖Sx̃L‖22 − ‖x̃L‖22∣∣ ≤ |(‖Sx‖22 − ‖x‖22)− (‖Sx̃L‖22 − ‖x̃L‖22)|

≤ |‖Sx− Sx̃L‖22 − ‖x− x̃L‖22|+ 2|(Sx− Sx̃L)>Sx̃L − (x>x̃L − x̃>L x̃L)| . (∗)

We only sketch the calculation and omit the details below as it is largely similar to earlier ones.
Using polarization identity for the second term and telescoping over the degree, it amounts to
looking at the distortion of S acting on · · · ⊗ uk − ukL ⊗ · · · , · · · ⊗

uk−ukL
‖uk−ukL‖2

+ ukL ⊗ · · · and

· · · ⊗ uk−ukL
‖uk−ukL‖2

− ukL ⊗ · · · , for which we can simply delegate Corollary 1 at level L with the

first term in the max for the job (since L < L̃). After some simplification, one would reach that
(∗) . ε ·

∑d
k=1 2L/αdist(uk, T̄ kL) . ε ·

∑d
k=1 γα(T k). Merging with other parts,

|‖Sx‖22 − ‖x‖22| . ε ·
d∑
k=1

γα(T k) + max(ε, ε2) ,

from which it should become evident that the same distortion conclusion holds in this case as well.

E Additional Details for Section 6

E.1 Signal Recovery

Proof of Lemma 7. Let the optimizer of (8) be zj∗ = tj∗ + uj for all j ∈ [d], where tj∗ denotes the
error from the true unknown uj . The constraint entails that tj∗ verifies the following condition:

tj∗ ∈ D(fj , u
j)∀j ∈ [d] and S(u1 + t1∗ ⊗ · · · ⊗ ud + td∗) = y , ‖uj + tj∗‖2 = 1 .
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Introduce the shorthand Wj := (uj + D(fj , u
j)) ∩ Sn−1. Using the definition of the restricted

singular value and the stated assumption,

σmin(S;W1 × · · · ×Wd) ≥ 1− ε > 0 .

Identifying z1
∗ ⊗ · · · ⊗ zd∗ as belonging to the setW1 × · · · × Wd, the restricted strong convexity

condition allows us to conclude the uniqueness claim.

Lemma 10. We have γ2/d((u
i +D(fi, u

i))∩ Sn−1) . γ2/d(D(fi, u
i)∩ Sn−1) for all i, d ≥ 1, and

fi convex. In the above, . hide d factor.

Proof. For any v ∈ (ui + D(fi, u
i)) ∩ Sn−1, where the sum is the Minkowski sum, we can write

v = ui+v′

‖ui+v′‖ for some v′ ∈ D(fi, u
i). The set on the RHS of the theorem statement consists of

{g/‖g‖ : g ∈ D(fi, u
i)}. Let v′ = α · ui + β · p for β 6= 0 and some p ⊥ ui where ‖p‖ = ‖ui‖ = 1,

in which case
ui + v′

‖ui + v′‖
=

1

‖ui + v′‖
ui +

1

‖ui + v′‖
v′

=
1 + α

‖(1 + α)ui + β · p‖
ui +

β

‖(1 + α)ui + β · p‖
p

=
1 + α√

(1 + α)2 + β2
ui +

β√
(1 + α)2 + β2

p

therefore we can see that v is a linear combination of ui and p. We distinguish between cases:
If α = 0, then p ∈ {g/‖g‖}g∈D(fi,ui) so v ∈ conv(ui ∪ {g/‖g‖}g∈D(fi,ui)). If α 6= 0, then
ui ∈ {g/‖g‖}g∈D(fi,ui) as well as p ∈ {g/‖g‖}g∈D(fi,ui), (since fi is convex, the descent cone
D(fi, u

i) is a convex cone). Therefore the resulting vector v should also be a member of the RHS
{g/‖g‖}g∈D(fi,ui). It is evident that if β = 0, α 6= 0, i.e., v′ parallel ui, the same inclusion holds.
Therefore up to constants, the set on the LHS can be expressed as belonging to a union of itself with
its shifted version.

Now using Lemma 2.1 of [22] – the result is stated with γα where α ≥ 1, but one could check it holds
for any α > 0 up to factor depending on d. Let T1 = D(fi, u

i)∩Sn−1, T2 = ui+(D(fi, u
i)∩Sn−1),

γα(T1 ∪ T2) . diam(T1 ∪ T2) + γα(T1) + γα(T2) . γα(T1)

since ‖ui‖ = 1 is bounded by assumption, γ-functionals are translation-invariant, and diam is upper
bounded by γα.

Example 2. Another example comes from signals taking quantized values (e.g, binary vectors). In
this case, we may choose the regularizer fj = ‖ · ‖∞ when uj ∈ {±1}n/

√
n. Since D̄(‖ · ‖∞, uj) =

{s : si · uji ≤ 0 ∀i ∈ [n], ‖s‖2 = 1} for a binary vector uj , and the cone can be confirmed to be
self-dual, the calculation in [8] suggests

w2(D̄(‖ · ‖∞, uj)) ≤ n/2 .
Moreover the covering number is that of 1/2n of the unit sphere, using N(Sn−1, sBn2 ) ≤ (3/s)n,

γ2/d(D̄(‖ · ‖∞, uj)) .
∫ 1

0

(logN(D̄(‖ · ‖∞, uj), sBn2 ))d/2 ds

. C2/d

∫ 1

0

(n log(1/s))d/2 ds ≤ C ′2/d · n
d/2 .

Therefore with sample complexity (not concerned about the dd factor) m = O
(
nd(1 + η)d

)
, one

would be able to recover with high probability.

If one is interested in optimizing (8) using gradient information, the prescribed concentration in
Theorem 2 will come in handy as well, as one needs to analyze quantities of type:

sup
{zj : fj(zj)≤Rj},h∈Sn−1

∣∣∣∣∣∣ 1

m

m∑
i=1

∏
k 6=j∈[d]

〈vji , z
j〉〈vki , h〉 − E

 ∏
k 6=j∈[d]

〈vji , z
j〉〈vki , h〉

∣∣∣∣∣∣ .
The sampling matrix S, of course, can come from more structured / fast-multiply-equipped random
ensembles apart from subgaussian factors.
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E.2 Optimization

Example 3. For a concrete example, suppose we have a-priori knowledge that the factors are smooth
(‖Dui‖0 ≤ k, ‖ui‖2 = 1), in which case picking T i = {si : ‖Dsi‖1 ≤ 4

√
k, ‖si‖2 ≤ 1} for

D =



−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
0 0 −1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · −1 1
0 0 0 · · · 0 −1

 ∈ Rn×n

the 1D total variation regularization becomes a natural choice. To carry out the program, it remains
to bound the covering number of this set. For this, the work of [6] showed that

w2(T i) � γ2(T i) � (nk)1/4
√

log(n) .

A short calculation together with Theorem 3 allow us to reach that m = Õ(d5nk) ensures the
solution to (10) will identify the correct factors.

Other examples could be signals taking block sparse structure where a ‖ · ‖`1/`2 may be appropriate.

F Tightness of the Embedding Dimension

We contemplate on lower bounds for the embedding dimension and provide evidence for the row-
wise-tensored sketch considered in Section 4 in this section.

In the case of finite set, [2] used the key ingredient of tight moment bound which states for mean-0 i.i.d
random variables where ‖Xi‖p � pα, it holds that ‖

∑n
i=1Xi‖p � max{2α√pn, (n/p)1/ppα} for

all 2 ≤ p ≤ 2n. With minor massaging, one can extract from their result that for Tensor-Rademacher,
the embedding dimension has to scale as m & (log p)d for simultaneously preserving the norms of pd
points. Close examination of their proof of Theorem 4 in fact reveals that the only critical assumptions
responsible for such scaling are (1) each factor is independent; and (2) has ‖〈vki , h〉‖p �

√
p for

any ‖h‖2 = 1, therefore similar conclusion holds for e.g., independent Gaussian factors. In the
case of Tensor-SRHT, [3] showed that one needs at least m & (log p)d as well. Compared with our
Theorem 2, this is tight, since we will have each factor belonging to a set of cardinality p, therefore
γ2(T i)2 = log(p), a = p, b = o(1), manifesting the inevitability of exponential dependence on d for
this sketch.

On the occasion of unit sphere T i = Sn−1, consider the case when each {vki }i∈[m],k∈[d] is indepen-
dent random vector uniform on the sphere of radius

√
n. This closely resembles an n-dimensional

standard Gaussian in high dimension (σ = 1). Now let every uk = vk1/
√
n ∈ Sn−1 for k ∈ [d].

Since random vectors on the unit sphere are almost orthogonal to each other (i.e., 〈vki , uk〉 = o(1)
for i 6= 1),

1

m

m∑
i=1

d∏
k=1

〈vki , uk〉2 ≈
1

m

(
n2

n

)d
.

Therefore for this particular example, for the quantity to be o(1), we need m & nd. Putting side-by-
side with our Theorem 2, the sample complexity m = O(nd) is sharp as γ2(Sn−1)2 = n, b = n, a =
o(1) in this case.
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