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Abstract

Denoising diffusion models (DDMs) have shown promising results in 3D point
cloud synthesis. To advance 3D DDMs and make them useful for digital artists, we
require (i) high generation quality, (ii) flexibility for manipulation and applications
such as conditional synthesis and shape interpolation, and (iii) the ability to output
smooth surfaces or meshes. To this end, we introduce the hierarchical Latent Point
Diffusion Model (LION) for 3D shape generation. LION is set up as a variational
autoencoder (VAE) with a hierarchical latent space that combines a global shape
latent representation with a point-structured latent space. For generation, we train
two hierarchical DDMs in these latent spaces. The hierarchical VAE approach
boosts performance compared to DDMs that operate on point clouds directly,
while the point-structured latents are still ideally suited for DDM-based modeling.
Experimentally, LION achieves state-of-the-art generation performance on multiple
ShapeNet benchmarks. Furthermore, our VAE framework allows us to easily use
LION for different relevant tasks: LION excels at multimodal shape denoising and
voxel-conditioned synthesis, and it can be adapted for text- and image-driven 3D
generation. We also demonstrate shape autoencoding and latent shape interpolation,
and we augment LION with modern surface reconstruction techniques to generate
smooth 3D meshes. We hope that LION provides a powerful tool for artists
working with 3D shapes due to its high-quality generation, flexibility, and surface
reconstruction. Project page and code: https://nv-tlabs.github.io/LION.

1 Introduction
Generative modeling of 3D shapes has extensive applications in 3D content creation and has become
an active area of research [1–52]. However, to be useful as a tool for digital artists, generative models
of 3D shapes have to fulfill several criteria: (i) Generated shapes need to be realistic and of high-
quality without artifacts. (ii) The model should enable flexible and interactive use and refinement: For
example, a user may want to refine a generated shape and synthesize versions with varying details.
Or an artist may provide a coarse or noisy input shape, thereby guiding the model to produce multiple
realistic high-quality outputs. Similarly, a user may want to interpolate different shapes. (iii) The
model should output smooth meshes, which are the standard representation in most graphics software.

Existing 3D generative models build on various frameworks, including generative adversarial net-
works (GANs) [1–23], variational autoencoders (VAEs) [24–30], normalizing flows [31–34], autore-
gressive models [35–38], and more [39–44]. Most recently, denoising diffusion models (DDMs)
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Figure 1: LION is set
up as a hierarchical point
cloud VAE with denois-
ing diffusion models over
the shape latent and latent
point distributions. Point-
Voxel CNNs (PVCNN)
with adaptive Group Nor-
malization (Ada. GN) are
used as neural networks.
The latent points can be
interpreted as a smoothed
version of the input point
cloud. Shape As Points
(SAP) is optionally used
for mesh reconstruction.

have emerged as powerful generative models, achieving outstanding results not only on image syn-
thesis [53–64] but also for point cloud-based 3D shape generation [45–47]. In DDMs, the data is
gradually perturbed by a diffusion process, while a deep neural network is trained to denoise. This
network can then be used to synthesize novel data in an iterative fashion when initialized from random
noise [53, 65–67]. However, existing DDMs for 3D shape synthesis struggle with simultaneously
satisfying all criteria discussed above for practically useful 3D generative models.

Here, we aim to develop a DDM-based generative model of 3D shapes overcoming these limitations.
We introduce the Latent Point Diffusion Model (LION) for 3D shape generation (see Fig. 1). Similar to
previous 3D DDMs, LION operates on point clouds, but it is constructed as a VAE with DDMs in latent
space. LION comprises a hierarchical latent space with a vector-valued global shape latent and another
point-structured latent space. The latent representations are predicted with point cloud processing
encoders, and two latent DDMs are trained in these latent spaces. Synthesis in LION proceeds by draw-
ing novel latent samples from the hierarchical latent DDMs and decoding back to the original point
cloud space. Importantly, we also demonstrate how to augment LION with modern surface reconstruc-
tion methods [68] to synthesize smooth shapes as desired by artists. LION has multiple advantages:

Expressivity: By mapping point clouds into regularized latent spaces, the DDMs in latent space are
effectively tasked with learning a smoothed distribution. This is easier than training on potentially
complex point clouds directly [58], thereby improving expressivity. However, point clouds are, in
principle, an ideal representation for DDMs. Because of that, we use latent points, this is, we keep a
point cloud structure for our main latent representation. Augmenting the model with an additional
global shape latent variable in a hierarchical manner further boosts expressivity. We validate LION
on several popular ShapeNet benchmarks and achieve state-of-the-art synthesis performance.

Varying Output Types: Extending LION with Shape As Points (SAP) [68] geometry reconstruction
allows us to also output smooth meshes. Fine-tuning SAP on data generated by LION’s autoencoder
reduces synthesis noise and enables us to generate high-quality geometry. LION combines (latent)
point cloud-based modeling, ideal for DDMs, with surface reconstruction, desired by artists.

Flexibility: Since LION is set up as a VAE, it can be easily adapted for different tasks without re-
training the latent DDMs: We can efficiently fine-tune LION’s encoders on voxelized or noisy inputs,
which a user can provide for guidance. This enables multimodal voxel-guided synthesis and shape de-
noising. We also leverage LION’s latent spaces for shape interpolation and autoencoding. Optionally
training the DDMs conditioned on CLIP embeddings enables image- and text-driven 3D generation.

In summary, we make the following contributions: (i) We introduce LION, a novel generative model
for 3D shape synthesis, which operates on point clouds and is built on a hierarchical VAE framework
with two latent DDMs. (ii) We validate LION’s high synthesis quality by reaching state-of-the-art
performance on widely used ShapeNet benchmarks. (iii) We achieve high-quality and diverse 3D
shape synthesis with LION even when trained jointly over many classes without conditioning. (iv) We
propose to combine LION with SAP-based surface reconstruction. (v) We demonstrate the flexibility
of our framework by adapting it to relevant tasks such as multimodal voxel-guided synthesis.

2 Background
Traditionally, DDMs were introduced in a discrete-step fashion: Given samples x0 ∼ q(x0) from a
data distribution, DDMs use a Markovian fixed forward diffusion process defined as [65, 53]
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Figure 2: Gen-
erated meshes
with LION. Right:
Synthesizing dif-
ferent details by
diffuse-denoise
(see Sec. 3.1) in
latent space, while
preserving overall
shapes.

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (1)

where T denotes the number of steps and q(xt|xt−1) is a Gaussian transition kernel, which gradually
adds noise to the input with a variance schedule β1, ..., βT . The βt are chosen such that the chain
approximately converges to a standard Gaussian distribution after T steps, q(xT )≈N (xT ;0, I).
DDMs learn a parametrized reverse process (model parameters θ) that inverts the forward diffusion:

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1;µθ(xt, t), ρ
2
tI). (2)

This generative reverse process is also Markovian with Gaussian transition kernels, which use fixed
variances ρ2t . DDMs can be interpreted as latent variable models, where x1, ...,xT are latents, and the
forward process q(x1:T |x0) acts as a fixed approximate posterior, to which the generative pθ(x0:T )
is fit. DDMs are trained by minimizing the variational upper bound on the negative log-likelihood of
the data x0 under pθ(x0:T ). Up to irrelevant constant terms, this objective can be expressed as [53]

min
θ

Et∼U{1,T},x0∼p(x0),ϵ∼N (0,I)

[
w(t)||ϵ− ϵθ(αtx0 + σtϵ, t)||22

]
, w(t) =

β2
t

2ρ2t (1− βt)(1− α2
t )
, (3)

where αt =
√∏t

s=1(1− βs) and σt =
√
1− α2

t are the parameters of the tractable diffused
distribution after t steps q(xt|x0) = N (xt;αtx0, σ

2
t I). Furthermore, Eq. (3) employs the widely

used parametrization µθ(xt, t) := 1√
1−βt

(
xt − βt√

1−α2
t

ϵθ(xt, t)

)
. It is common practice to set

w(t) = 1, instead of the one in Eq. (3), which often promotes perceptual quality of the generated
output. In the objective of Eq. (3), the model ϵθ is, for all possible steps t along the diffusion process,
effectively trained to predict the noise vector ϵ that is necessary to denoise an observed diffused
sample xt. After training, the DDM can be sampled with ancestral sampling in an iterative fashion:

xt−1 = 1√
1−βt

(xt − βt√
1−α2

t

ϵθ(xt, t)) + ρtη, (4)

where η ∼ N (η;0, I). This sampling chain is initialized from a random sample xT ∼ N (xT ;0, I).
Furthermore, the noise injection in Eq. 4 is usually omitted in the last sampling step.

DDMs can also be expressed with a continuous-time framework [67, 69]. In this formulation, the dif-
fusion and reverse generative processes are described by differential equations. This approach allows
for deterministic sampling and encoding schemes based on ordinary differential equations (ODEs).
We make use of this framework in Sec. 3.1 and we review this approach in more detail in App. B.

3 Hierarchical Latent Point Diffusion Models
We first formally introduce LION, then discuss various applications and extensions in Sec. 3.1, and
finally recapitulate its unique advantages in Sec. 3.2. See Fig. 1 for a visualization of LION.

We are modeling point clouds x ∈ R3×N , consisting of N points with xyz-coordinates in R3. LION
is set up as a hierarchical VAE with DDMs in latent space. It uses a vector-valued global shape latent
z0 ∈ RDz and a point cloud-structured latent h0 ∈ R(3+Dh)×N . Specifically, h0 is a latent point
cloud consisting of N points with xyz-coordinates in R3. In addition, each latent point can carry
additional Dh latent features. Training of LION is then performed in two stages—first, we train it as
a regular VAE with standard Gaussian priors; then, we train the latent DDMs on the latent encodings.

First Stage Training. Initially, LION is trained by maximizing a modified variational lower bound on
the data log-likelihood (ELBO) with respect to the encoder and decoder parameters ϕ and ξ [70, 71]:

LELBO(ϕ, ξ) = Ep(x),qϕ(z0|x),qϕ(h0|x,z0)

[
log pξ(x|h0, z0)

− λzDKL (qϕ(z0|x)|p(z0))− λhDKL (qϕ(h0|x, z0)|p(h0))
]
.

(5)
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Figure 3: Generated
shapes (top: point
clouds, bottom: cor-
responding meshes)
from LION trained
jointly over 13 classes
of ShapeNet-vol without
conditioning (Sec. 5.2).

Here, the global shape latent z0 is sampled from the posterior distribution qϕ(z0|x), which is
parametrized by factorial Gaussians, whose means and variances are predicted via an encoder network.
The point cloud latent h0 is sampled from a similarly parametrized posterior qϕ(h0|x, z0), while also
conditioning on z0 (ϕ denotes the parameters of both encoders). Furthermore, pξ(x|h0, z0) denotes
the decoder, parametrized as a factorial Laplace distribution with predicted means and fixed unit scale
parameter (corresponding to an L1 reconstruction loss). λz and λh are hyperparameters balancing
reconstruction accuracy and Kullback-Leibler regularization (note that only for λz = λh = 1 we are
optimizing a rigorous ELBO). The priors p(z0) and p(h0) are N (0, I). Also see Fig. 1 again.

Second Stage Training. In principle, we could use the VAE’s priors to sample encodings and generate
new shapes. However, the simple Gaussian priors will not accurately match the encoding distribution
from the training data and therefore produce poor samples (prior hole problem [58, 72–79]). This
motivates training highly expressive latent DDMs. In particular, in the second stage we freeze the
VAE’s encoder and decoder networks and train two latent DDMs on the encodings z0 and h0 sampled
from qϕ(z0|x) and qϕ(h0|x, z0), minimizing score matching (SM) objectives similar to Eq. (2):

LSMz(θ) = Et∼U{1,T},p(x),qϕ(z0|x),ϵ∼N (0,I)||ϵ− ϵθ(zt, t)||22, (6)

LSMh(ψ) = Et∼U{1,T},p(x),qϕ(z0|x),qϕ(h0|x,z0),ϵ∼N (0,I)||ϵ− ϵψ(ht, z0, t)||22, (7)

where zt = αtz0 + σtϵ and ht = αth0 + σtϵ are the diffused latent encodings. Furthermore, θ
denotes the parameters of the global shape latent DDM ϵθ(zt, t), and ψ refers to the parameters of
the conditional DDM ϵψ(ht, z0, t) trained over the latent point cloud (note the conditioning on z0).

Generation. With the latent DDMs, we can formally define a hierarchical generative model
pξ,ψ,θ(x,h0, z0) = pξ(x|h0, z0)pψ(h0|z0)pθ(z0), where pθ(z0) denotes the distribution of the
global shape latent DDM, pψ(h0|z0) refers to the DDM modeling the point cloud-structured latents,
and pξ(x|h0, z0) is LION’s decoder. We can hierarchically sample the latent DDMs following Eq. (4)
and then translate the latent points back to the original point cloud space with the decoder.

Network Architectures and DDM Parametrization. Let us briefly summarize key implementation
choices. The encoder networks, as well as the decoder and the latent point DDM, operating on point
clouds x, are all implemented based on Point-Voxel CNNs (PVCNNs) [80], following Zhou et al.
[46]. PVCNNs efficiently combine the point-based processing of PointNets [81, 82] with the strong
spatial inductive bias of convolutions. The DDM modeling the global shape latent uses a ResNet [83]
structure with fully-connected layers (implemented as 1×1-convolutions). All conditionings on the
global shape latent are implemented via adaptive Group Normalization [84] in the PVCNN layers.
Furthermore, following Vahdat et al. [58] we use a mixed score parametrization in both latent DDMs.
This means that the score models are parametrized to predict a residual correction to an analytic
standard Gaussian score. This is beneficial since the latent encodings are regularized towards a
standard Gaussian distribution during the first training stage (see App. D for all details).

3.1 Applications and Extensions

Here, we discuss how LION can be used and extended for different relevant applications.

Multimodal Generation. We can synthesize different variations of a given shape, enabling multi-
modal generation in a controlled manner: Given a shape, i.e., its point cloud x, we encode it into
latent space. Then, we diffuse its encodings z0 and h0 for a small number of steps τ < T towards
intermediate zτ and hτ along the diffusion process such that only local details are destroyed. Running
the reverse generation process from this intermediate τ , starting at zτ and hτ , leads to variations
of the original shape with different details (see, for instance, Fig. 2). We refer to this procedure as
diffuse-denoise (details in App. C.1). Similar techniques have been used for image editing [85].

Encoder Fine-tuning for Voxel-Conditioned Synthesis and Denoising. In practice, an artist using
a 3D generative model may have a rough idea of the desired shape. For instance, they may be able to
quickly construct a coarse voxelized shape, to which the generative model then adds realistic details.
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Figure 4: Voxel-
guided synthesis
with LION. We run
diffuse-denoise in
latent space (see
Sec. 3.1) to generate
diverse plausible
clean shapes.

In LION, we can support such applications: using a similar ELBO as in Eq. (5), but with a frozen
decoder, we can fine-tune LION’s encoder networks to take voxelized shapes as input (we simply
place points at the voxelized shape’s surface) and map them to the corresponding latent encodings z0
and h0 that reconstruct the original non-voxelized point cloud. Now, a user can utilize the fine-tuned
encoders to encode voxelized shapes and generate plausible detailed shapes. Importantly, this can
be naturally combined with the diffuse-denoise procedure to clean up imperfect encodings and to
generate different possible detailed shapes (see Fig. 4).

Furthermore, this approach is general. Instead of voxel-conditioned synthesis, we can also fine-tune
the encoder networks on noisy shapes to perform multimodal shape denoising, also potentially
combined with diffuse-denoise. LION supports these applications easily without re-training the latent
DDMs due to its VAE framework with additional encoders and decoders, in contrast to previous
works that train DDMs on point clouds directly [46, 47]. See App. C.2 for technical details.

Shape Interpolation. LION also enables shape interpolation: We can encode different point clouds
into LION’s hierarchical latent space and use the probability flow ODE (see App. B) to further encode
into the latent DDMs’ Gaussian priors, where we can safely perform spherical interpolation and
expect valid shapes along the interpolation path. We can use the intermediate encodings to generate
the interpolated shapes (see Fig. 7; details in App. C.3).

Figure 5: Recon-
structing a mesh
from LION’s gener-
ated points.

Surface Reconstruction. While point clouds are an ideal 3D representation for
DDMs, artists may prefer meshed outputs. Hence, we propose to combine LION
with modern geometry reconstruction methods (see Figs. 2, 4 and 5). We use
Shape As Points (SAP) [68], which is based on differentiable Poisson surface
reconstruction and can be trained to extract smooth meshes from noisy point
clouds. Moreover, we fine-tune SAP on training data generated by LION’s au-
toencoder to better adjust SAP to the noise distribution in point clouds generated
by LION. Specifically, we take clean shapes, encode them into latent space, run
a few steps of diffuse-denoise that only slightly modify some details, and decode
back. The diffuse-denoise in latent space results in noise in the generated point
clouds similar to what is observed during unconditional synthesis (details in App. C.4).

3.2 LION’s Advantages
We now recapitulate LION’s unique advantages. LION’s structure as a hierarchical VAE with latent
DDMs is inspired by latent DDMs on images [57, 58, 77]. This framework has key benefits:

(i) Expressivity: First training a VAE that regularizes the latent encodings to approximately fall under
standard Gaussian distributions, which are also the DDMs’ equilibrium distributions towards which
the diffusion processes converge, results in an easier modeling task for the DDMs: They have to
model only the remaining mismatch between the actual encoding distributions and their own Gaussian
priors [58]. This translates into improved expressivity, which is further enhanced by the additional
decoder network. However, point clouds are, in principle, an ideal representation for the DDM frame-
work, because they can be diffused and denoised easily and powerful point cloud processing architec-
tures exist. Therefore, LION uses point cloud latents that combine the advantages of both latent DDMs
and 3D point clouds. Our point cloud latents can be interpreted as smoothed versions of the original
point clouds that are easier to model (see Fig. 1). Moreover, the hierarchical VAE setup with an addi-
tional global shape latent increases LION’s expressivity even further and results in natural disentangle-
ment between overall shape and local details captured by the shape latents and latent points (Sec. 5.2).

(ii) Flexibility: Another advantage of LION’s VAE framework is that its encoders can be fine-tuned
for various relevant tasks, as discussed previously, and it also enables easy shape interpolation. Other
3D point cloud DDMs operating on point clouds directly [47, 46] do not offer simultaneously as
much flexibility and expressivity out-of-the-box (see quantitative comparisons in Secs. 5.1 and 5.4).

(iii) Mesh Reconstruction: As discussed, while point clouds are ideal for DDMs, artists likely prefer
meshed outputs. As explained above, we propose to use LION together with modern surface recon-
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PointFlow ShapeGF SetVAE DPM PVD LION (ours)

Figure 6: Un-
conditional shape
generation with
2,048 points for
airplane, car
and chair classes
(class-specific
models trained
on PointFlow’s
ShapeNet data
with global
normalization).

struction techniques [68], again combining the best of both worlds—a point cloud-based VAE back-
bone ideal for DDMs, and smooth geometry reconstruction methods operating on the synthesized point
clouds to generate practically useful smooth surfaces, which can be easily transformed into meshes.

4 Related Work

We are building on DDMs [53, 65–67], which have been used most prominently for image [53–63] and
speech synthesis [86–91]. We train DDMs in latent space, an idea that has been explored for image [57,
58, 77] and music [92] generation, too. However, these works did not train separate conditional DDMs.
Hierarchical DDM training has been used for generative image upsampling [54], text-to-image gen-
eration [63, 64], and semantic image modeling [60]. Most relevant among these works is Preechakul
et al. [60], which extracts a high-level semantic representation of an image with an auxiliary encoder
and then trains a DDM that adds details directly in image space. We are the first to explore related
concepts for 3D shape synthesis and we also train both DDMs in latent space. Furthermore, DDMs
and VAEs have also been combined in such a way that the DDM improves the output of the VAE [93].

Most related to LION are “Point-Voxel Diffusion” (PVD) [46] and “Diffusion Probabilistic Models
for 3D Point Cloud Generation” (DPM) [47]. PVD trains a DDM directly on point clouds, and our
decision to use PVCNNs is inspired by this work. DPM, like LION, uses a shape latent variable,
but models its distribution with Normalizing Flows [94, 95], and then trains a weaker point-wise
conditional DDM directly on the point cloud data (this allows DPM to learn useful representations in
its latent variable, but sacrifices generation quality). As we show below, neither PVD nor DPM easily
enables applications such as multimodal voxel-conditioned synthesis and denoising. Furthermore,
LION achieves significantly stronger generation performance. Finally, neither PVD nor DPM recon-
structs meshes from the generated point clouds. Point cloud and 3D shape generation have also been
explored with other generative models: PointFlow [31], DPF-Net [33] and SoftFlow [32] rely on Nor-
malizing Flows [94–97]. SetVAE [29] treats point cloud synthesis as set generation and uses VAEs.
ShapeGF [45] learns distributions over gradient fields that model shape surfaces. Both IM-GAN [7],
which models shapes as neural fields, and l-GAN [2] train GANs over latent variables that encode the
shapes, similar to other works [3], while r-GAN [2] generates point clouds directly. PDGN [52] pro-
poses progressive deconvolutional networks within a point cloud GAN. SP-GAN [19] uses a spherical
point cloud prior. Other progressive [22, 37] and graph-based architectures [4, 6] have been used, too.
Also generative cellular automata (GCAs) can be employed for voxel-based 3D shape generation [43].
In orthogonal work, point cloud DDMs have been used for generative shape completion [46, 98].

Recently, image-driven [8–16, 44] training of 3D generative models as well as text-driven 3D
generation [34, 49–51] have received much attention. These are complementary directions to ours;
in fact, augmenting LION with additional image-based training or including text-guidance are
promising future directions. Finally, we are relying on SAP [68] for mesh generation. Strong
alternative approaches for reconstructing smooth surfaces from point clouds exist [99–103].

Figure 7: Interpolat-
ing different shapes
by interpolating their
encodings in the stan-
dard Gaussian pri-
ors of LION’s la-
tent DDMs (details in
App. C.3).
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Table 1: Generation metrics (1-NNA↓) on airplane, chair,
car categories from ShapeNet dataset from PointFlow [31].
Training and test data normalized globally into [-1, 1].

Airplane Chair Car

CD EMD CD EMD CD EMD

r-GAN [2] 98.40 96.79 83.69 99.70 94.46 99.01
l-GAN (CD) [2] 87.30 93.95 68.58 83.84 66.49 88.78
l-GAN (EMD) [2] 89.49 76.91 71.90 64.65 71.16 66.19
PointFlow [31] 75.68 70.74 62.84 60.57 58.10 56.25
SoftFlow [32] 76.05 65.80 59.21 60.05 64.77 60.09
SetVAE [29] 76.54 67.65 58.84 60.57 59.94 59.94
DPF-Net [33] 75.18 65.55 62.00 58.53 62.35 54.48
DPM [47] 76.42 86.91 60.05 74.77 68.89 79.97
PVD [46] 73.82 64.81 56.26 53.32 54.55 53.83

LION (ours) 67.41 61.23 53.70 52.34 53.41 51.14

Table 2: Generation results (1-NNA↓) on
ShapeNet dataset from PointFlow [31]. All data
normalized individually into [-1, 1].

Airplane Chair Car

CD EMD CD EMD CD EMD

TreeGAN [6] 97.53 99.88 88.37 96.37 89.77 94.89
ShapeGF [45] 81.23 80.86 58.01 61.25 61.79 57.24
SP-GAN [19] 94.69 93.95 72.58 83.69 87.36 85.94
PDGN [52] 94.94 91.73 71.83 79.00 89.35 87.22
GCA [43] 88.15 85.93 64.27 64.50 70.45 64.20

LION (ours) 76.30 67.04 56.50 53.85 59.52 49.29

Table 3: Results (1-NNA↓) on ShapeNet-vol.
Airplane Chair Car

CD EMD CD EMD CD EMD

IM-GAN [7] 79.70 77.85 57.09 58.20 88.92 84.58
DPM [47] 83.04 96.04 61.96 74.96 77.30 87.12
PVD [46] 66.46 56.06 61.89 57.90 64.49 55.74

LION (ours) 53.47 53.84 52.07 48.67 54.81 50.535 Experiments
We provide an overview of our most interesting experimental results in the main paper. All experiment
details and extensive additional experiments can be found in App. E and App. F, respectively.

5.1 Single-Class 3D Shape Generation

Figure 8: Samples from our
unconditional 13-class model:
In each column, we use the
same global shape latent z0.

Datasets. To compare LION against existing methods, we use
ShapeNet [104], the most widely used dataset to benchmark 3D
shape generative models. Following previous works [31, 46, 47],
we train on three categories: airplane, chair, car. Also like previ-
ous methods, we primarily rely on PointFlow’s [31] dataset splits
and preprocssing. It normalizes the data globally across the whole
dataset. However, some baselines require per-shape normaliza-
tion [19, 43, 45, 52]; hence, we also train on such data. Furthermore,
training SAP requires signed distance fields (SDFs) for volumetric
supervision, which the PointFlow data does not offer. Hence, for
simplicity we follow Peng et al. [68, 101] and also use their data
splits and preprocessing, which includes SDFs.We train LION, DPM,
PVD, and IM-GAN (which synthesizes shapes as SDFs) also on this dataset version (denoted
as ShapeNet-vol here). This data is also per-shape normalized. Dataset details in App. E.1.

Table 4: Generation results (1-
NNA↓) of LION trained jointly
on 13 classes of ShapeNet-vol.

Model CD EMD

TreeGAN [6] 96.80 96.60
PointFlow [31] 63.25 66.05
ShapeGF [45] 55.65 59.00
SetVAE [29] 79.25 95.25
PDGN [52] 71.05 86.00

DPF-Net [33] 67.10 64.75
DPM [47] 62.30 86.50
PVD [46] 58.65 57.85

LION (ours) 51.85 48.95

Evaluation. Model evaluation follows previous works [31, 46]. Var-
ious metrics to evaluate point cloud generative models exist, with dif-
ferent advantages and disadvantages, discussed in detail by Yang et al.
[31]. Following recent works [31, 46], we use 1-NNA (with both Cham-
fer distance (CD) and earth mover distance (EMD)) as our main metric.
It quantifies the distributional similarity between generated shapes and
validation set and measures both quality and diversity [31]. For fair
comparisons, all metrics are computed on point clouds, not meshed out-
puts (App. E.2 discusses different metrics; further results on coverage
(COV) and minimum matching distance (MMD) in App. F.2).

Results. Samples from LION are shown in Fig. 6 and quantitative
results in Tabs. 1-3 (see Sec. 4 for details about baselines—to reduce
the number of baselines to train, we are focusing on the most recent
and competitive ones). LION outperforms all baselines and achieves state-of-the-art performance
on all classes and dataset versions. Importantly, we outperform both PVD and DPM, which also
leverage DDMs, by large margins. Our samples are diverse and appear visually pleasing.

Figure 9: Generated point clouds from LION trained jointly over 55 classes of ShapeNet-vol (no conditioning).
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Figure 10: Samples from LION trained on ShapeNet’s Mug and Bottle classes, and on Turbosquid animals.

Mesh Reconstruction. As explained in Sec. 3.1, we combine LION with mesh reconstruction, to
directly synthesize practically useful meshes. We show generated meshes in Fig. 2, which look
smooth and of high quality. In Fig. 2, we also visually demonstrate how we can vary the local details
of synthesized shapes while preserving the overall shape with our diffuse-denoise technique (Sec. 3.1).
Details about the number of diffusion steps for all diffuse-denoise experiments are in App. E.

Shape Interpolation. As discussed in Sec. 3.1, LION also enables shape interpolation, potentially
useful for shape editing applications. We show this in Fig. 7, combined with mesh reconstruction.
The generated shapes are clean and semantically plausible along the entire interpolation path. In
App. F.12.1, we also show interpolations from PVD [46] and DPM [47] for comparison.

5.2 Many-class Unconditional 3D Shape Generation

13-Class LION Model. We train a LION model jointly without any class conditioning on 13 different
categories (airplane, chair, car, lamp, table, sofa, cabinet, bench, telephone, loudspeaker, display, wa-
tercraft, rifle) from ShapeNet (ShapeNet-vol version). Training a single model without conditioning
over such diverse shapes is challenging, as the data distribution is highly complex and multimodal.
We show LION’s generated samples in Fig. 3, including meshes: LION synthesizes high-quality and
diverse plausible shapes even when trained on such complex data. We report the model’s quantitative
generation performance in Tab. 4, and we also trained various strong baseline methods under the same
setting for comparison. We find that LION significantly outperforms all baselines by a large margin.
We further observe that the hierarchical VAE architecture of LION becomes crucial: The shape latent
variable z0 captures global shape, while the latent points h0 model details. This can be seen in Fig. 8:
we show samples when fixing the global shape latent z0 and only sample h0 (details in App. F.3).

55-Class LION Model. Encouraged by these results, we also trained a LION model again jointly
without any class conditioning on all 55 different categories from ShapeNet. Note that we did on
purpose not use class-conditioning in these experiments to create a difficult 3D generation task and
thereby explore LION’s scalability to highly complex and multimodal datasets. We show generated
point cloud samples in Fig. 9 (we did not train an SAP model on the 55 classes data): LION
synthesizes high-quality and diverse shapes. It can even generate samples from the cap class, which
contributes with only 39 training data samples, indicating that LION has an excellent mode coverage
that even includes the very rare classes. To the best of our knowledge no previous 3D shape generative
models have demonstrated satisfactory generation performance for such diverse and multimodal 3D
data without relying on conditioning information (details in App. F.4). In conclusion, we observe that
LION out-of-the-box easily scales to highly complex multi-category shape generation.

5.3 Training LION on Small Datasets

Next, we explore whether LION can also be trained successfully on very small datasets. To this
end, we train models on the Mug and Bottle ShapeNet classes. The number of training samples

DPM-0 PVD-0 LION-0 (ours)

Input Voxels DPM-50 PVD-50 LION-50 (ours)

Figure 11: Voxel-guided synthesis. We
show different methods with 0 and 50
steps of diffuse-denoise. Voxelizations
of generated points are also shown: Yel-
low boxes indicate generated points cor-
rectly fill input voxels, green boxes indi-
cate voxels should be filled but are left
empty, red boxes indicate extra voxels.
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Figure 13: Voxel-guided genera-
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is 149 and 340, respectively, which is much smaller than the common classes like chair, car and
airplane. Furthermore, we also train LION on 553 animal assets from the TurboSquid data repository.
Generated shapes from the three models are shown in Fig. 10. LION is able to generate correct mugs
and bottles as well as diverse and high-quality animal shapes. We conclude that LION also performs
well even when training in the challenging low-data setting (details in Apps. F.5 and F.6).

5.4 Voxel-guided Shape Synthesis and Denoising with Fine-tuned Encoders

Next, we test our strategy for multimodal voxel-guided shape synthesis (see Sec. 3.1) using the
airplane class LION model (experiment details in App. E, more experiments in App. F.7). We first
voxelize our training set and fine-tune our encoder networks to produce the correct encodings to
decode back the original shapes. When processing voxelized shapes with our point-cloud networks,
we sample points on the surface of the voxels. As discussed, we can use different numbers of diffuse-
denoise steps in latent space to generate various plausible shapes and correct for poor encodings.
Instead of voxelizations, we can also consider different noisy inputs (we use normal, uniform, and
outlier noise, see App. F.7) and achieve multimodal denoising with the same approach. The same
tasks can be attempted with the important DDM-based baselines PVD and DPM, by directly—not in
a latent space—diffusing and denoising voxelized (converted to point clouds) or noisy point clouds.

Fig. 12 shows the reconstruction performance of LION, DPM and PVD for different numbers of
diffuse-denoise steps (we voxelized or noised the validation set to measure this). We see that for almost
all inputs—voxelized or different noises—LION performs best. PVD and DPM perform acceptably
for normal and uniform noise, which is similar to the noise injected during training of their DDMs, but
perform very poorly for outlier noise or voxel inputs, which is the most relevant case to us, because
voxels can be easily placed by users. It is LION’s unique framework with additional fine-tuned
encoders in its VAE and only latent DDMs that makes this possible. Performing more diffuse-denoise
steps means that more independent, novel shapes are generated. These will be cleaner and of higher
quality, but also correspond less to the noisy or voxel inputs used for guidance. In Fig. 13, we show this
trade-off for the voxel-guidance experiment (other experiments in App. F.7), where (top) we measured
the outputs’ synthesis quality by calculating 1-NNA with respect to the validation set, and (bottom) the
average intersection over union (IOU) between the input voxels and the voxelized outputs. We gener-

an airplane made
of strawberries

an airplane made
of fabric leather

a chair made of
wood

a car made of
rusty metal

a car made of
brick

a denim fabric
animal

Figure 14: We apply Text2Mesh [49] on meshes generated by LION. In Text2Mesh, textures are generated and
meshes refined such that rendered images of the 3D objects are aligned with user-provided text prompts [105].
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narrow chair office chair bmw convertible jeep

Figure 16: Text-driven shape genera-
tion of chairs and cars with LION. Bot-
tom row is the text prompt used as input.

ally see a trade-off: More diffuse-denoise steps result in lower 1-NNA (better quality), but also lower
IOU. LION strikes the best balance by a large gap: Its additional encoder network directly generates
plausible latent encodings from the perturbed inputs that are both high quality and also correspond well
to the input. This trade-off is visualized in Fig. 11 for LION, DPM, and PVD, where we show gener-
ated point clouds and voxelizations (note that performing no diffuse-denoise at all for PVD and DPM
corresponds to simply keeping the input, as these models’ DDMs operate directly on point clouds).
We see that running 50 diffuse-denoise steps to generate diverse outputs for DPM and especially PVD
results in a significant violation of the input voxelization. In contrast, LION generates realistic outputs
that also obey the driving voxels. Overall, LION wins out both in this task and also in unconditional
generation with large gaps over these previous DDM-based point cloud generative models. We con-
clude that LION does not only offer state-of-the-art 3D shape generation quality, but is also very ver-
satile. Note that guided synthesis can also be combined with mesh reconstruction, as shown in Fig. 4.

5.5 Sampling Time

Figure 15: 25-step
DDIM [106] samples
(0.89 seconds per shape).

While our main experiments use 1,000-step DDPM-based synthesis, which
takes ≈ 27.12 seconds, we can significantly accelerate generation without
significant loss in quality. Using DDIM-based sampling [106], we can
generate high quality shapes in under one second (Fig. 15), which would
enable real-time interactive applications. More analyses in App. F.9.

5.6 Overview of Additional Experiments in Appendix
(i) In App. F.1, we perform various ablation studies. The experiments quan-
titatively validate LION’s architecture choices and the advantage of our
hierarchical VAE setup with conditional latent DDMs. (ii) In App. F.8, we measure LION’s autoen-
coding performance. (iii) To demonstrate the value of directly outputting meshes, in App. F.10 we use
Text2Mesh [49] to generate textures based on text prompts for synthesized LION samples (Fig. 14).
This would not be possible, if we only generated point clouds. (iv) To qualitatively show that LION
can be adapted easily to other relevant tasks, in App. F.11 we condition LION on CLIP embeddings
of the shapes’ rendered images, following CLIP-Forge [34] (Fig. 16). This enables text-driven 3D
shape generation and single view 3D reconstruction (Fig. 17). (v) We also show many more samples
(Apps. F.2-F.6) and shape interpolations (App. F.12) from our models, more examples of voxel-guided
and noise-guided synthesis (App. F.7), and we further analyze our 13-class LION model (App. F.3.2).

6 Conclusions
We introduced LION, a novel generative model of 3D shapes. LION uses a VAE framework with hi-
erarchical DDMs in latent space and can be combined with SAP for mesh generation. LION achieves
state-of-the-art shape generation performance and enables applications such as voxel-conditioned syn-
thesis, multimodal shape denoising, and shape interpolation. LION is currently trained on 3D point
clouds only and can not directly generate textured shapes. A promising extension would be to include
image-based training by incorporating neural or differentiable rendering [17, 107–111] and to also syn-
thesize textures [16, 112–114]. Furthermore, LION currently focuses on single object generation only.
It would be interesting to extend it to full 3D scene synthesis. Moreover, synthesis could be further
accelerated by building on works on accelerated sampling from DDMs [61, 62, 67, 106, 115–121].

Broader Impact. We believe that LION can potentially improve 3D content creation and assist
the workflow of digital artists. We designed LION with such applications in mind and hope that it
can grow into a practical tool enhancing artists’ creativity. Although we do not see any immediate
negative use-cases for LION, it is important that practitioners apply an abundance of caution to
mitigate impacts given generative modeling more generally can also be used for malicious purposes,
discussed for instance in Vaccari and Chadwick [122], Nguyen et al. [123], Mirsky and Lee [124].

Figure 17: Single view 3D reconstructions of a car
from an RGB image. LION can generate multiple
plausible outputs using our diffuse-denoise technique.

10



References
[1] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. Learning a probabilistic

latent space of object shapes via 3d generative-adversarial modeling. In Advances in Neural Information
Processing Systems, 2016.

[2] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations
and generative models for 3D point clouds. In ICML, 2018.

[3] Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poczos, and Ruslan Salakhutdinov. Point cloud
gan. arXiv preprint arXiv:1810.05795, 2018.

[4] Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Learning localized generative models for 3d point
clouds via graph convolution. In International Conference on Learning Representations (ICLR) 2019,
2019.

[5] Wenlong Huang, Brian Lai, Weijian Xu, and Zhuowen Tu. 3d volumetric modeling with introspective
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33(01), pages
8481–8488, 2019.

[6] Dong Wook Shu, Sung Woo Park, and Junseok Kwon. 3d point cloud generative adversarial network
based on tree structured graph convolutions. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 3859–3868, 2019.

[7] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[8] Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as compositional generative neural
feature fields. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

[9] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf: Generative radiance fields for
3d-aware image synthesis. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

[10] Yiyi Liao, Katja Schwarz, Lars Mescheder, and Andreas Geiger. Towards unsupervised learning of
generative models for 3d controllable image synthesis. In Proceedings IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2020.

[11] Eric Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. pi-gan: Periodic implicit
generative adversarial networks for 3d-aware image synthesis. In Proc. CVPR, 2021.

[12] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio
Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, and Gordon Wetzstein. Efficient
geometry-aware 3D generative adversarial networks. In arXiv, 2021.

[13] Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shechtman, Jeong Joon Park, and Ira Kemelmacher-Shlizerman.
Stylesdf: High-resolution 3d-consistent image and geometry generation. arXiv preprint arXiv:2112.11427,
2021.

[14] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt. Stylenerf: A style-based 3d aware generator
for high-resolution image synthesis. In International Conference on Learning Representations, 2022.

[15] Peng Zhou, Lingxi Xie, Bingbing Ni, and Qi Tian. CIPS-3D: A 3D-Aware Generator of GANs Based on
Conditionally-Independent Pixel Synthesis. arXiv preprint arXiv:2110.09788, 2021.

[16] Dario Pavllo, Jonas Kohler, Thomas Hofmann, and Aurelien Lucchi. Learning generative models of
textured 3d meshes from real-world images. In IEEE/CVF International Conference on Computer Vision
(ICCV), 2021.

[17] Yuxuan Zhang, Wenzheng Chen, Huan Ling, Jun Gao, Yinan Zhang, Antonio Torralba, and Sanja Fidler.
Image {gan}s meet differentiable rendering for inverse graphics and interpretable 3d neural rendering. In
International Conference on Learning Representations, 2021.

[18] Moritz Ibing, Isaak Lim, and Leif P. Kobbelt. 3d shape generation with grid-based implicit functions. In
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[19] Ruihui Li, Xianzhi Li, Ke-Hei Hui, and Chi-Wing Fu. SP-GAN:sphere-guided 3d shape generation and
manipulation. ACM Transactions on Graphics (Proc. SIGGRAPH), 40(4), 2021.

[20] A. Luo, T. Li, W. Zhang, and T. Lee. Surfgen: Adversarial 3d shape synthesis with explicit surface
discriminators. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

11



[21] Zhiqin Chen, Vladimir G. Kim, Matthew Fisher, Noam Aigerman, Hao Zhang, and Siddhartha Chaudhuri.
Decor-gan: 3d shape detailization by conditional refinement. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2021.

[22] Cheng Wen, Baosheng Yu, and Dacheng Tao. Learning progressive point embeddings for 3d point cloud
generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10266–10275, 2021.

[23] Zekun Hao, Arun Mallya, Serge Belongie, and Ming-Yu Liu. GANcraft: Unsupervised 3D Neural
Rendering of Minecraft Worlds. In ICCV, 2021.

[24] Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh Makadia. Deformable shape completion with
graph convolutional autoencoders. CVPR, 2018.

[25] Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. Variational autoencoders for deforming 3d
mesh models. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
5841–5850, 2018.

[26] Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra, and Leonidas J Guibas. Struc-
turenet: Hierarchical graph networks for 3d shape generation. arXiv preprint arXiv:1908.00575, 2019.

[27] Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-Kun Lai, and Hao(Richard) Zhang. SDM-NET:
Deep generative network for structured deformable mesh. ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH Asia 2019), 38(6):243:1–243:15, 2019.

[28] Lin Gao, Tong Wu, Yu-Jie Yuan, Ming-Xian Lin, Yu-Kun Lai, and Hao Zhang. Tm-net: Deep generative
networks for textured meshes. ACM Transactions on Graphics (TOG), 40(6):263:1–263:15, 2021.

[29] Jinwoo Kim, Jaehoon Yoo, Juho Lee, and Seunghoon Hong. Setvae: Learning hierarchical composition
for generative modeling of set-structured data. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 15059–15068, June 2021.

[30] Paritosh Mittal, Yen-Chi Cheng, Maneesh Singh, and Shubham Tulsiani. AutoSDF: Shape priors for 3d
completion, reconstruction and generation. In CVPR, 2022.

[31] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan. PointFlow:
3D point cloud generation with continuous normalizing flows. In ICCV, 2019.

[32] Hyeongju Kim, Hyeonseung Lee, Woo Hyun Kang, Joun Yeop Lee, and Nam Soo Kim. SoftFlow:
Probabilistic framework for normalizing flow on manifolds. In NeurIPS, 2020.

[33] Roman Klokov, Edmond Boyer, and Jakob Verbeek. Discrete point flow networks for efficient point cloud
generation. In ECCV, 2020.

[34] Aditya Sanghi, Hang Chu, Joseph G Lambourne, Ye Wang, Chin-Yi Cheng, and Marco Fumero. Clip-
forge: Towards zero-shot text-to-shape generation. arXiv preprint arXiv:2110.02624, 2021.

[35] Yongbin Sun, Yue Wang, Ziwei Liu, Joshua E Siegel, and Sanjay E Sarma. Pointgrow: Autoregressively
learned point cloud generation with self-attention. In Winter Conference on Applications of Computer
Vision, 2020.

[36] Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, and Peter W. Battaglia. Polygen: An autoregressive
generative model of 3d meshes. ICML, 2020.

[37] Wei-Jan Ko, Hui-Yu Huang, Yu-Liang Kuo, Chen-Yi Chiu, Li-Heng Wang, and Wei-Chen Chiu. Rpg:
Learning recursive point cloud generation. arXiv preprint arXiv:2105.14322, 2021.

[38] Moritz Ibing, Gregor Kobsik, and Leif Kobbelt. Octree transformer: Autoregressive 3d shape generation
on hierarchically structured sequences. arXiv preprint arXiv:2111.12480, 2021.

[39] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Zhu Song-Chun, and Ying Nian Wu. Learning
descriptor networks for 3d shape synthesis and analysis. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

[40] Jianwen Xie, Yifei Xu, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Zhu Song-Chun, and Ying Nian Wu.
Generative pointnet: Deep energy-based learning on unordered point sets for 3d generation, reconstruction
and classification. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

12



[41] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. Deep marching tetrahedra:
a hybrid representation for high-resolution 3d shape synthesis. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

[42] Kangxue Yin, Jun Gao, Maria Shugrina, Sameh Khamis, and Sanja Fidler. 3dstylenet: Creating 3d shapes
with geometric and texture style variations. In Proceedings of International Conference on Computer
Vision (ICCV), 2021.

[43] Dongsu Zhang, Changwoon Choi, Jeonghwan Kim, and Young Min Kim. Learning to generate 3d shapes
with generative cellular automata. In International Conference on Learning Representations, 2021.

[44] Chen Chao, Zhizhong Han, Yu-Shen Liu, and Matthias Zwicker. Unsupervised learning of fine structure
generation for 3d point clouds by 2d projection matching. arXiv preprint arXiv:2108.03746, 2021.

[45] Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun Hao, Serge Belongie, Noah Snavely, and
Bharath Hariharan. Learning gradient fields for shape generation. In Proceedings of the European
Conference on Computer Vision (ECCV), 2020.

[46] Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation and completion through point-voxel diffusion.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

[47] Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[48] Yu Deng, Jiaolong Yang, and Xin Tong. Deformed implicit field: Modeling 3d shapes with learned dense
correspondence. In IEEE Computer Vision and Pattern Recognition, 2021.

[49] Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and Rana Hanocka. Text2mesh: Text-driven
neural stylization for meshes. arXiv preprint arXiv:2112.03221, 2021.

[50] Ajay Jain, Ben Mildenhall, Jonathan T. Barron, Pieter Abbeel, and Ben Poole. Zero-shot text-guided
object generation with dream fields. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

[51] Nasir Khalid, Tianhao Xie, Eugene Belilovsky, and Tiberiu Popa. Text to mesh without 3d supervision
using limit subdivision. arXiv preprint arXiv:2203.13333, 2022.

[52] Le Hui, Rui Xu, Jin Xie, Jianjun Qian, and Jian Yang. Progressive point cloud deconvolution generation
network. In ECCV, 2020.

[53] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, 2020.

[54] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
Cascaded diffusion models for high fidelity image generation. arXiv preprint arXiv:2106.15282, 2021.

[55] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In
International Conference on Machine Learning, 2021.

[56] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis. In
Advances in Neural Information Processing Systems, 2021.

[57] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. arXiv preprint arXiv:2112.10752, 2021.

[58] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space. In
Advances in Neural Information Processing Systems, 2021.

[59] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya
Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with text-guided
diffusion models. arXiv preprint arXiv:2112.10741, 2021.

[60] Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Diffusion
autoencoders: Toward a meaningful and decodable representation. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

[61] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with critically-damped
langevin diffusion. In International Conference on Learning Representations (ICLR), 2022.

13



[62] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
denoising diffusion GANs. In International Conference on Learning Representations (ICLR), 2022.

[63] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[64] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
yar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans,
Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with
deep language understanding. arXiv preprint arXiv:2205.11487, 2022.

[65] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning, 2015.

[66] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. In
Proceedings of the 33rd Annual Conference on Neural Information Processing Systems, 2019.

[67] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In International Conference
on Learning Representations, 2021.

[68] Songyou Peng, Chiyu "Max" Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys, and Andreas Geiger.
Shape as points: A differentiable poisson solver. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

[69] Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In
Advances in Neural Information Processing Systems, 2021.

[70] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In The International Conference
on Learning Representations, 2014.

[71] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and ap-
proximate inference in deep generative models. In International Conference on Machine Learning,
2014.

[72] Jakub Tomczak and Max Welling. Vae with a vampprior. In International Conference on Artificial
Intelligence and Statistics, pages 1214–1223, 2018.

[73] Hiroshi Takahashi, Tomoharu Iwata, Yuki Yamanaka, Masanori Yamada, and Satoshi Yagi. Variational
autoencoder with implicit optimal priors. Proceedings of the AAAI Conference on Artificial Intelligence,
33(01):5066–5073, Jul. 2019.

[74] Matthias Bauer and Andriy Mnih. Resampled priors for variational autoencoders. In Kamalika Chaudhuri
and Masashi Sugiyama, editors, Proceedings of the Twenty-Second International Conference on Artificial
Intelligence and Statistics, volume 89 of Proceedings of Machine Learning Research, pages 66–75.
PMLR, 16–18 Apr 2019.

[75] Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical variational autoencoder. In Advances in Neural
Information Processing Systems, 2020.

[76] Jyoti Aneja, Alexander Schwing, Jan Kautz, and Arash Vahdat. NCP-VAE: Variational autoencoders with
noise contrastive priors. In Advances in Neural Information Processing Systems, 2021.

[77] Abhishek Sinha, Jiaming Song, Chenlin Meng, and Stefano Ermon. D2c: Diffusion-denoising models for
few-shot conditional generation. In Advances in Neural Information Processing Systems, 2021.

[78] Mihaela Rosca, Balaji Lakshminarayanan, and Shakir Mohamed. Distribution matching in variational
inference. arXiv preprint arXiv:1802.06847, 2018.

[79] Matthew D Hoffman and Matthew J Johnson. Elbo surgery: yet another way to carve up the variational
evidence lower bound. In Workshop in Advances in Approximate Bayesian Inference, NeurIPS, 2016.

[80] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-voxel cnn for efficient 3d deep learning. In
Advances in Neural Information Processing Systems, 2019.

[81] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

14



[82] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in Neural Information Processing Systems, 2017.

[83] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[84] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference on
Computer Vision (ECCV), 2018.

[85] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
SDEdit: Guided image synthesis and editing with stochastic differential equations. In International
Conference on Learning Representations, 2022.

[86] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wavegrad:
Estimating gradients for waveform generation. In International Conference on Learning Representations
(ICLR), 2021.

[87] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. DiffWave: A Versatile Diffusion
Model for Audio Synthesis. In International Conference on Learning Representations, 2021.

[88] Myeonghun Jeong, Hyeongju Kim, Sung Jun Cheon, Byoung Jin Choi, and Nam Soo Kim. Diff-tts: A
denoising diffusion model for text-to-speech. arXiv preprint arXiv:2104.01409, 2021.

[89] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, Najim Dehak, and William
Chan. Wavegrad 2: Iterative refinement for text-to-speech synthesis. arXiv preprint arXiv:2106.09660,
2021.

[90] Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-tts: A
diffusion probabilistic model for text-to-speech. In International Conference on Machine Learning, 2021.

[91] Songxiang Liu, Dan Su, and Dong Yu. Diffgan-tts: High-fidelity and efficient text-to-speech with
denoising diffusion gans. arXiv preprint arXiv:2201.11972, 2022.

[92] Gautam Mittal, Jesse Engel, Curtis Hawthorne, and Ian Simon. Symbolic music generation with diffusion
models. In Proceedings of the 22nd International Society for Music Information Retrieval Conference,
2021.

[93] Kushagra Pandey, Avideep Mukherjee, Piyush Rai, and Abhishek Kumar. Diffusevae: Efficient, con-
trollable and high-fidelity generation from low-dimensional latents. arXiv preprint arXiv:2201.00308,
2022.

[94] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International Conference on Machine Learning, 2015.

[95] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In
International Conference on Learning Representations ICLR, 2017.

[96] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. Advances in Neural Information Processing Systems, 2018.

[97] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. FFJORD:
Free-form continuous dynamics for scalable reversible generative models. In International Conference
on Learning Representations, 2019.

[98] Zhaoyang Lyu, Zhifeng Kong, Xudong XU, Liang Pan, and Dahua Lin. A conditional point diffusion-
refinement paradigm for 3d point cloud completion. In International Conference on Learning Representa-
tions (ICLR), 2022.

[99] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan Russell, and Mathieu Aubry. AtlasNet: A
Papier-Mâché Approach to Learning 3D Surface Generation. In Proceedings IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2018.

[100] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Oc-
cupancy networks: Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 4460–4470, 2019.

[101] Songyou Peng, Michael Niemeyer, Lars Mescheder, and Andreas Geiger Marc Pollefeys. Convolutional
occupancy networks. In European Conference on Computer Vision (ECCV), 2020.

15



[102] Francis Williams, Matthew Trager, Joan Bruna, and Denis Zorin. Neural splines: Fitting 3d surfaces
with infinitely-wide neural networks. In 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021.

[103] Francis Williams, Zan Gojcic, Sameh Khamis, Denis Zorin, Joan Bruna, Sanja Fidler, and Or Litany.
Neural fields as learnable kernels for 3d reconstruction. arXiv preprint arXiv:2111.13674, 2021.

[104] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. ShapeNet: An
Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012 [cs.GR], Stanford University
— Princeton University — Toyota Technological Institute at Chicago, 2015.

[105] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In International Conference on Machine
Learning, ICML, 2021.

[106] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In International
Conference on Learning Representations, 2021.

[107] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler.
Learning to predict 3d objects with an interpolation-based differentiable renderer. In Advances in Neural
Information Processing Systems, 2019.

[108] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. Modular
primitives for high-performance differentiable rendering. ACM Transactions on Graphics, 2020.

[109] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[110] Wenzheng Chen, Joey Litalien, Jun Gao, Zian Wang, Clement Fuji Tsang, Sameh Khamis, Or Litany, and
Sanja Fidler. DIB-R++: Learning to predict lighting and material with a hybrid differentiable renderer. In
Advances in Neural Information Processing Systems (NeurIPS), 2021.

[111] Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srinivasan, Edgar Tretschk, Yifan Wang, Christoph
Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, Stephen Lombardi, Tomas Simon, Christian Theobalt,
Matthias Niessner, Jonathan T. Barron, Gordon Wetzstein, Michael Zollhoefer, and Vladislav Golyanik.
Advances in neural rendering. arXiv preprint arXiv:2111.05849, 2021.

[112] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, and Andreas Geiger. Texture fields:
Learning texture representations in function space. In Proceedings IEEE International Conf. on Computer
Vision (ICCV), 2019.

[113] Zhiqin Chen, Kangxue Yin, and Sanja Fidler. Auv-net: Learning aligned uv maps for texture transfer and
synthesis. In The Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[114] Yawar Siddiqui, Justus Thies, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Texturify:
Generating textures on 3d shape surfaces. arXiv preprint arXiv:2204.02411, 2022.

[115] Daniel Watson, Jonathan Ho, Mohammad Norouzi, and William Chan. Learning to efficiently sample
from diffusion probabilistic models. arXiv preprint arXiv:2106.03802, 2021.

[116] Zhifeng Kong and Wei Ping. On fast sampling of diffusion probabilistic models. arXiv preprint
arXiv:2106.00132, 2021.

[117] Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas. Gotta
Go Fast When Generating Data with Score-Based Models. arXiv preprint arXiv:2105.14080, 2021.

[118] Daniel Watson, William Chan, Jonathan Ho, and Mohammad Norouzi. Learning Fast Samplers for
Diffusion Models by Differentiating Through Sample Quality. In International Conference on Learning
Representations, 2022.

[119] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. In International Conference on Learning Representations (ICLR), 2022.

[120] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations (ICLR), 2022.

16



[121] Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-DPM: an Analytic Estimate of the Op-
timal Reverse Variance in Diffusion Probabilistic Models. In International Conference on Learning
Representations, 2022.

[122] Cristian Vaccari and Andrew Chadwick. Deepfakes and disinformation: Exploring the impact of
synthetic political video on deception, uncertainty, and trust in news. Social Media+ Society, 6(1):
2056305120903408, 2020.

[123] Thanh Thi Nguyen, Quoc Viet Hung Nguyen, Cuong M. Nguyen, Dung Nguyen, Duc Thanh Nguyen,
and Saeid Nahavandi. Deep learning for deepfakes creation and detection: A survey. arXiv preprint
arXiv:1909.11573, 2021.

[124] Yisroel Mirsky and Wenke Lee. The creation and detection of deepfakes: A survey. ACM Comput. Surv.,
54(1), 2021.

[125] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. Mitsuba 2: a retargetable forward
and inverse renderer. ACM Transactions on Graphics, 38:1–17, 11 2019. doi: 10.1145/3355089.3356498.

[126] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In 4th International IEEE Workshop on 3D Representation and Recognition (3dRR-13),
Sydney, Australia, 2013.

[127] Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. A large dataset of object scans.
arXiv:1602.02481, 2016.

[128] Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Tianfan Xue, Joshua B
Tenenbaum, and William T Freeman. Pix3d: Dataset and methods for single-image 3d shape modeling.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[129] Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Applications,
12(3):313–326, 1982.

[130] Ulrich G Haussmann and Etienne Pardoux. Time reversal of diffusions. The Annals of Probability, pages
1188–1205, 1986.

[131] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Computation,
23(7):1661–1674, 2011.

[132] Radford M Neal and Geoffrey E Hinton. A view of the em algorithm that justifies incremental, sparse,
and other variants. In Learning in graphical models, pages 355–368. Springer, 1998.

[133] Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. Foundations and
Trends in Machine Learning, 12(4):307–392, 2019.

[134] J. R. Dormand and P. J. Prince. A family of embedded runge–kutta formulae. Journal of Computational
and Applied Mathematics, 6(1):19–26, 1980.

[135] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction. In Proceedings
of the fourth Eurographics symposium on Geometry processing, volume 7, 2006.

[136] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d surface construction
algorithm. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’87, page 163–169, New York, NY, USA, 1987. Association for Computing
Machinery.

[137] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 7132–7141, 2018.

[138] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations, 2018.

[139] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

[140] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon.
Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG), 2019.

[141] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 16259–16268, 2021.

17



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Please see Sec. 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Please see

Sec. 6.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We did not
derive novel theoretical results. We rather propose a novel generative model of 3D
shapes.

(b) Did you include complete proofs of all theoretical results? [N/A]
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No] We will release
code and instructions to reproduce all experiments upon acceptance of the manuscript.
The internal guidelines of our institution prevent us from releasing code at this stage.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We provide all model training and evaluation details in the App. D,
including all hyperparameters.

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [No] Following standard conventions in the related 3D
generative modeling literature, we do not report error bars. Furthermore, we avoid
running similar setups repeatedly to save computational resources (our main models
are quite large and require substantial GPU resources for training, see App. E.9).

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Please see App. E.9.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] For baseline compar-

isons we run publicly available code from previous, publicly available papers, which
we cite. We also use various datasets. Here, we present a summary.
To compare to baselines, we use the following codes:

• r-GAN, l-GAN [2]: https://github.com/optas/latent_3d_points (MIT
License)

• PointFlow [31]: https://github.com/stevenygd/PointFlow (MIT License)
• SoftFlow [32]: https://github.com/ANLGBOY/SoftFlow
• Set-VAE [29]: https://github.com/jw9730/setvae (MIT License)
• DPF-NET [33]: https://github.com/Regenerator/dpf-nets
• DPM [47]: https://github.com/luost26/diffusion-point-cloud (MIT

License)
• PVD [46]: https://github.com/alexzhou907/PVD (MIT License)
• ShapeGF [45]: https://github.com/RuojinCai/ShapeGF (MIT License)
• SP-GAN [19]: https://github.com/liruihui/sp-gan (MIT License)
• PDGN [52]: https://github.com/fpthink/PDGN (MIT License)
• IM-GAN [7]: https://github.com/czq142857/implicit-decoder (MIT li-

cense) and https://github.com/czq142857/IM-NET-pytorch (MIT license)
• GCA [43]: https://github.com/96lives/gca (MIT license)

We use further codebases in other places:
• We use the MitSuba renderer for visualizations [125]: https:
//github.com/mitsuba-renderer/mitsuba2 (License: https:
//github.com/mitsuba-renderer/mitsuba2/blob/master/LICENSE),
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and the code to generate the scene discription files for MitSuba [31]:
https://github.com/zekunhao1995/PointFlowRenderer.

• We rely on SAP [68] for mesh generation with the code at https://github.com/
autonomousvision/shape_as_points (MIT License).

• For calculating the evaluation metrics, we use the implementation for CD at https:
//github.com/ThibaultGROUEIX/ChamferDistancePytorch (MIT License)
and for EMD at https://github.com/daerduoCarey/PyTorchEMD.

• We use Text2Mesh [49] for per-sample text-driven texture synthesis: https://
github.com/threedle/text2mesh (MIT License)

We also rely on the following datasets:
• ShapeNet [104]. Its terms of use can be found at https://shapenet.org/
terms.

• The Cars dataset [126] from http://ai.stanford.edu/~jkrause/cars/car_
dataset.html with ImageNet License: https://image-net.org/download.
php.

• The TurboSquid data repository, https://www.turbosquid.com. We obtained
a custom license from TurboSquid.

• Redwood 3DScan Dataset [127]: https://github.com/isl-org/
redwood-3dscan (Public Domain)

• Pix3D [128]: https://github.com/xingyuansun/pix3d. (Creative Com-
mons Attribution 4.0 International License).

(b) Did you mention the license of the assets? [Yes] In App. E.8, we mention the licenses
of the codes and other assets we are using.

(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] We are primarily using the publicly available
ShapeNet [104] dataset, which has been widely used in the generative modeling
literature as standard benchmark. It only consists of simple 3D models of shapes such
as airplanes, chairs, cars, etc.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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