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Abstract

Interpretable and explainable machine learning has seen a recent surge of interest.
We focus on safety as a key motivation behind the surge and make the relationship
between interpretability and safety more quantitative. Toward assessing safety,
we introduce the concept of maximum deviation via an optimization problem
to find the largest deviation of a supervised learning model from a reference
model regarded as safe. We then show how interpretability facilitates this safety
assessment. For models including decision trees, generalized linear and additive
models, the maximum deviation can be computed exactly and efficiently. For
tree ensembles, which are not regarded as interpretable, discrete optimization
techniques can still provide informative bounds. For a broader class of piecewise
Lipschitz functions, we leverage the multi-armed bandit literature to show that
interpretability produces tighter (regret) bounds on the maximum deviation. We
present case studies, including one on mortgage approval, to illustrate our methods
and the insights about models that may be obtained from deviation maximization.

1 Introduction

Interpretable and explainable machine learning (ML) has seen a recent surge of interest because it is
viewed as a key pillar in making models trustworthy, with implications on fairness, reliability, and
safety [1]]. In this paper, we focus on safety as a key reason behind the demand for explainability.
The motivation of safety has been discussed at a qualitative level by several authors [2H5]]. Its role is
perhaps clearest in the dichotomy between directly interpretable models vs. post hoc explanations
of black-box models. The former have been called “inherently safe” [3]] and promoted as the only
alternative in high-risk applications [5]]. The crux of this argument is that post hoc explanations leave
a gap between the explanation and the model producing predictions. Thus, unusual data points may
appear to be harmless based on the explanation, but truly cause havoc. We aim to go beyond these
qualitative arguments and address the following questions quantitatively: 1) What does safety mean
for such models, and 2) how exactly does interpretability aid safety?

Towards answering the first question, we make a conceptual contribution in the form of an optimization
problem, intended as a tool for assessing the safety of supervised learning (i.e. predictive) models.
Viewing these models as functions mapping an input space to an output space, a key way in which
these models can cause harm is through grossly unexpected outputs, corresponding to inputs that
are poorly represented in training data. Accordingly, we approach safety assessment for a model by
determining where it deviates the most from the output of a reference model and by how much (i.e., its
maximum deviation). The reference model, which represents expected behavior and is deemed to be
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safe, could be a model well-understood by domain experts or one that has been extensively “tried and
tested.” The maximization is done over a certification set, a large subset of the input space intended
to cover all conceivable inputs to the model. These concepts are discussed further in Section 2}

Towards answering the second question, in Section ] we discuss computation of the maximum
deviation for different model classes and show how this is facilitated by interpretability. For model
classes regarded as interpretable, including trees, generalized linear and additive models, the maxi-
mum deviation can be computed exactly and efficiently by exploiting the model structure. For tree
ensembles, which are not regarded as interpretable, discrete optimization techniques can exploit
their composition in terms of trees to provide anytime bounds on the maximum deviation. The
case of trees is also generalized in a different direction to a broader class of piecewise Lipschitz
functions, which we argue cover many popular interpretable functions. Here we show that the benefit
of interpretability is significantly tighter regret bounds on the maximum deviation compared with
general black-box functions, leveraging results from the multi-armed bandit literature. More broadly,
the development of tailored methods for additional model classes is beyond the scope of this first
work on the maximum deviation approach (the black-box optimization of Section[4.4]is applicable
to all models but obviously not tailored). We discuss in Appendix some possible approaches,
and the research gaps to be overcome, for neural networks and to make use of post hoc explanations,
which approximate a model locally [6H8]] or globally [9, [10].

In Section[5] we present case studies that illustrate the deviation maximization methods in Section[4]for
decision trees, linear and additive models, and tree ensembles. It is seen that deviation maximization
provides insights about models through studying the feature combinations that lead to extreme outputs.
These insights can in turn direct further investigation and invite domain expert input. We also quantify
how the maximum deviation depends on model complexity and the size of the certification set. For
tree ensembles, we find that the obtained upper bounds on the maximum deviation are informative,
showing that the maximum deviation does not increase with the number of trees in the ensemble.

Overall, our discussion provides a more quantitative basis for safety assessment of predictive models
and for preferring more interpretable models due to the greater ease of performing this assessment.

2 Assessing Safety Through Maximum Deviation

We are given a supervised learning model f, which is a function mapping an input feature space X’ to
an output space ). We wish to assess the safety of this model by finding its largest deviation from
a given reference model f, : X — ) representing expected behavior. To do this, we additionally
require 1) a measure of deviation D : Y x V — R, where R, is the set of non-negative reals, and
2) a certification set C C X over which the deviation is maximized. Then the problem to be solved is

max D(f(z), fo(x)). (D

The deviation is worst-case because the maximization is over all x € C; further implications of this
are discussed in Appendix [C| Note that (I) is different than typical robust training where the focus is
to learn a model that minimizes some worst case loss, as opposed to finding regions in X where two
already trained models differ significantly.

We view problem as only a means toward the goal of evaluating safety. In particular, a large
deviation value is not necessarily indicative of a safety risk, as two models may differ significantly
for valid reasons. For example, one model may capture a useful pattern that the other does not. We
thus think that it would be overly simplistic to regard the maximum deviation as just another metric
to be optimized in selecting models. What large deviation values do indicate, however, is a (possibly)
sufficient reason for further investigation. Hence, the maximizing solutions in (I) (i.e., the arg max)
are of as much operational interest as the maximum values (this will be illustrated in Section[5).

We now elaborate on elements in problem formulation (T).

Output space ). In the case of regression, ) is the set of reals R or an interval thereof. In the case
of binary classification, while ) could be {0, 1} or {—1, 41}, these limit the possible deviations to
binary values as well (“same” or “different”). Thus to provide more informative results, we take ) to
be the space of real-valued scores that are thresholded to produce a binary label. For example, y could
be a predicted probability in [0, 1] or a log-odds ratio in R. Similarly for multi-class classification
with M classes, Y C RM could be a M-dimensional space of real-valued scores. In Appendix we
discuss considerations in choosing the deviation function D as well as models that abstain.



Reference model fj. The premise of the reference model is that it should capture expected behavior
while being “safe”. The simplest case is for fj to be a constant function representing a baseline
value, for example zero or a mean prediction. We consider the more general case where fy may vary
with z. Below we give several examples of reference models to address the natural question of how
they might be obtained. The examples can be categorized as 1) existing domain-specific models, 2)
interpretable ML models validated by domain knowledge, and 3) extensively tested and deployed
models. The first two categories are prevalent in high-stakes domains where interpretability is critical.

1. Existing domain-specific models: These models originate from an application domain and
may not be based on ML at all. For example in consumer finance, several industry-standard
models compute credit scores from a consumer’s credit information (the FICO score is the
best-known in the US). Similarly in medicine, scoring systems (sparse linear models with
small integer coefficients) abound for assessing various risks (the CHADS; score for stroke
risk is well-known, see the "Scoring Systems: Applications and Prior Art" section of [[L1]
for a list of others). These models have been used for decades by thousands of practitioners
so they are well understood. They may very well be improved upon by a more ML-based
model, but for such a model to gain acceptance with domain experts, any large deviations
from existing models need to be examined and understood.

2. Interpretable models validated by domain knowledge: Here, an interpretable ML model
is learned from data and is validated by domain experts in some way, for example by
selecting important input features or by carefully inspecting the trained model. We provide
two real examples: In semiconductor manufacturing, process engineers typically want
decision trees [12] to model their respective manufacturing process (e.g. etching, polishing,
rapid thermal processing, etc.) since they are comfortable understanding and explaining
them to their superiors, which is critical especially when things go out-of-spec. Hence, a
tree built from data (or any model in general) would only be allowed to make automated
measurement predictions if the features it highlights (viz. pressures, gas flows, temperatures)
make sense for the specific process. Similarly, in predicting failures of industrial assets
such as wind turbines, some failure data is available to train models but experts in these
systems (e.g. engineers) may also be consulted. They have knowledge that can help validate
the model, for example which components are most likely to cause failures or which
environmental variables (e.g. temperature) are most influential.

3. Extensively tested and deployed models: A reference model may also be one that is not
necessarily informed by domain knowledge but has been extensively tested, deployed, and/or
approved by a regulator. For medical devices that use ML models, the US Food and Drug
Administration (FDA) has instituted a risk-based regulatory system. Any system updates
or changes, for instance changes in model architecture, retraining based on new data, or
changes in intended use (e.g. use for pediatric cases for devices approved only for adults),
need to either seek new approvals or demonstrate “substantial equivalence” by providing
supporting evidence that the revised model is similar to a previously approved device. In the
latter case, the reference model is the approved device and small maximum deviation serves
as evidence of equivalence. As another example, consider a ML-based recommendation
model for products of an online retailer or articles on a social network, where because of
the scale, a tree ensemble may be used for its fast inference time as well as its modeling
flexibility [[13]]. In this case, a model that has been deployed for some time could be the
reference model, since it has been extensively tested during this time even though human
validation of it may be limited. When a new version of the model is trained on newer data
or improved in some fashion, finding its maximum deviation from the reference model can
serve as one safety check before deploying it in place of the reference model.

Certification set C. The premise of the certification set is that it contains all inputs that the model
might conceivably be exposed to. This may include inputs that are highly improbable but not
physically or logically impossible (for example, a severely hypothermic human body temperature of
27°C). Thus, while C might be based on the support set of a probability distribution or data sample, it
does not depend on the likelihood of points within the support. The set C may also be a strict superset
of the training data domain. For example, a model may have been trained on data for males, and we
would now like to determine its worst-case behavior on an unseen population of females.

For tabular or lower-dimensional data, C might be the entire input space X'. For non-tabular or
higher-dimensional data, the choice C = & may be too unrepresentative because the manifold of



realistic inputs is lower in dimension. In this case, if we have a dataset {x;}!" ;, one possibility is to
use a union of £, balls centered at x;,

C=JBxi], Blwi]={xeX:|x—z, <r} )
=1

The set C is thus comprised of points somewhat close to the n observed examples x;, but the radius r
does not have to be “small”.

In addition to determining the maximum deviation over the entire set C, maximum deviations over
subsets of C (e.g., different age groups) may also be of interest. For example, Appendix [D.3]shows
deviation values separately for leaves of a decision tree, which partition the input space.

3 Related Work

In previous work on safety and interpretability in ML, the authors of [3|[14] give qualitative accounts
suggesting that directly interpretable models are an inherently safe design because humans can
inspect them to find spurious elements; in this paper, we attempt to make those qualitative suggestions
more quantitative and automate some of the human inspection. Furthermore, several other authors
have highlighted safety as a goal for interpretability [2| |4} [15, 16} 5], but again without quantitative
development. Moreover, the lack of consensus on how to measure interpretability motivates the
relationship that we explore between interpretability and the ease of evaluating safety.

In the area of ML verification, robustness certification methods aim to provide guarantees that
the classification remains constant within a radius € of an input point, while output reachability is
concerned with characterizing the set of outputs corresponding to a region of inputs [17]. A major
difference in our work is that we consider rwo models, a model f to be assessed and a reference
fo, whereas the above notions of robustness and reachability involve a single model. Another
important difference is that our focus is global, over a comprehensive set C, rather than local to small
neighborhoods around input points; a local focus is especially true of neural network verification
[18H27]. We also study the role of interpretability in safety verification. Works in robust optimization
applied to ML minimize the worst-case probability of error, but this worst case is over parameters of
f rather than values of  [28]. Thomas et al. [29] present a framework where during model training, a
set of safety tests is specified by the model designer in order to accept or reject the possible solution.

We build on related literature on robustness and explainability that deals specifically with tree
ensembles. Mixed-integer programming (MIP) and discrete optimization have been proposed to find
the smallest input perturbation to ‘evade’ a classifier [30] and to obtain counterfactual explanations
[31]. MIP approaches are computationally intensive however. To address this Chen et al. [32]
introduce graph based approaches for verification on trees. Their central idea, which we use, is to
discretize verification computations onto a graph constructed from the way leaves intersect. The
verification problem is transformed to finding all maximum cliques. Devos et al. [33] expand on this
idea by providing anytime bounds by probing unexplored nodes.

Safety has become a critical issue in reinforcement learning (RL) with multiple works focusing
on making RL policies safe [34H37]. There are two broad themes [38]]: (i) a safe and verifiable
policy is learned at the outset by enforcing certain constraints, and (ii) post hoc methods are used to
identify bad regimes or failure points of an existing policy. Our current proposal is complementary to
these works as we focus on the supervised learning setup viewed from the lens of interpretability.
Nonetheless, ramifications of our work in the RL context are briefly discussed in Appendix [C]

4 Deviation Maximization for Specific Model Classes

In this section, we discuss approaches to computing the maximum deviation (I]) for f belonging to
various model classes. We show the benefit of interpretable model structure in different guises. Exact
and efficient computation is possible for decision trees, and generalized linear and additive models
in Sections @.T]and[4.2] In Section[4.3] the composition of tree ensembles in terms of trees allows
discrete optimization methods to provide anytime bounds. For a general class of piecewise Lipschitz
functions in Section4.4] the application of multi-arm bandit results yields tighter regret bounds on
the maximum deviation. While some of the results in this section may be less surprising, one of our



contributions is to identify precise properties that allow them to hold. We also show that intuitive
measures of model complexity, such as the number of leaves or pieces or smoothness of functions,
have an additional interpretation in terms of the complexity of maximizing deviation. More broadly,
the development of methods specific to additional model classes is beyond the scope of a single
work. We discuss in Appendix [B.5|possible approaches and the advances needed for neural networks
(beyond applying the black-box methods of Section[4.4) and to make use of post hoc explanations.

To develop mathematical results and efficient algorithms, we will sometimes assume that the reference
model fj is from the same class as f. In Appendix [C| we discuss the case where fj may not be
globally interpretable, but may be so in local regions. We will also sometimes assume that the
certification set C and other sets are Cartesian products. This means that C = H?Zl C;, where for

a continuous feature j, C; = (X j,y]'] is an interval, and for a categorical feature j, C; is a set of
categories. We mention relaxations of the Cartesian product assumption in Appendix [B.2}

4.1 Trees

We begin with the case where f and fj are both decision trees. A decision tree with L leaves partitions
the input space & into L corresponding parts, which we also refer to as ‘leaves’. We consider only
non-oblique trees. In this case, each leaf is described by a conjunction of conditions on individual
features and is therefore a Cartesian product as defined above. With £; C X’ denoting the Ith leaf and
y1 € Y the output value assigned to it, tree f is described by the function

fle)=y ifzeLl, 1=1,...,L, 3)

and similarly for tree fy with leaves Lo, and outputs yo,,, m = 1,..., Lg. As discussed in [39} 40]],
rule lists where each rule is a condition on a single feature are one-sided trees in the above sense.

The partitioning of X by decision trees and their piecewise-constant nature simplify the computation
of the maximum deviation (I)). Specifically, the maximization can be restricted to pairs of leaves
(I,m) for which the intersection £; N Lo, N C is non-empty. The intersection of two leaves £; N Loy,
is another Cartesian product, and we assume that it is tractable to determine whether C intersects a
given Cartesian product (see examples in Appendix [B.T).

For visual representation and later use in Section[4.3] it is useful to define a bipartite graph, with L
nodes representing the leaves £; of f on one side and L nodes representing the leaves Lo, of fy on
the other. Define the edge set £ = {(I,m) : £; N Lom NC # O}; clearly |E] < LoL. Then

max D(f(z), fo(x)) = (lr’ggggD(yuyOm)- )

We summarize the complexity of deviation maximization for decision trees as follows. This is a slight
refinement of |32, Thm. 1] in the case K = 2, see Appendix@]for details.

Proposition 1. Let f and fy be decision trees as in (3) with L and L leaves respectively, and £ be
the bipartite edge set of leaf intersections defined above. Then the maximum deviation (1) can be
computed with |E| evaluations as shown in ({@).

4.2 Linear and additive models

In this subsection, we assume that f is a generalized additive model (GAM) given by
d
f@)y =g "> filz) ], ©)
j=1

where each f; is an arbitrary function of feature x;. In the case where f;(z;) = wjz; for all
continuous features x;, where wj is a real coefficient, () is a generalized linear model (GLM). We
discuss the treatment of categorical features in Appendix [B.2] The invertible link function g : R — R
is furthermore assumed to be monotonically increasing. This assumption is satisfied by common
GAM link functions: identity, logit (g(y) = log(y/(1 — y))), and logarithmic.

Equation () implies that ) C R and the deviation D(y, yo) is a function of two scalars y and yo. For
this scalar case, we make the following intuitively reasonable assumption throughout the subsection.



Assumption 1. Fory,yo € Y C R, 1) D(y, yo) = 0 whenever y = yo; 2) D(y, yo) is monotonically
non-decreasing in y for y > yo and non-increasing in y for y < yo.

Our approach is to exploit the additive form of (§) by reducing problem (I)) to the optimization

d
My (f,S) = max/min ij(xj), (6)

zeS j=1

for different choices of S C X and where + corresponds to max and — to min. We discuss below
how this can be done for two types of reference model fj: decision tree (which includes the constant
case Lo = 1) and additive. For the first case, we prove the following result in Appendix

Proposition 2. Let f be a GAM as in () and S be a subset of X where fo(x) = yo is constant. Then
if Assumption|[I] holds,

max D(f(x), fo(x)) = , dmax D (971 (Mo (f,8)), y0) -

Tree-structured f. Since fj is piecewise constant over its leaves Lg,,,, m = 1,..., Lo, we take S
to be the intersection of C with each L, in turn and apply Proposition 2] The overall maximum is
then obtained as the maximum over the leaves,

max D(f(z), fo(z)) = x| max D (g7 (My(f, Lom N C)), Yom) - (7

This reduces (I)) to solving 2L instances of (6).

Additive fy. For this case, we make the additional assumption that the link function g in (3)) is the
identity function, as well as Assumption 2] below. The implication of these assumptions is discussed

in Appendix [B.2]
Assumption 2. D(y,yo) = D(y — yo) is a function only of the difference y — yo.

Then fo(z) = Z?:l foj(z;) and the difference f(x) — fo(x) is also additive. Using Assumptions
[T]and a similar argument as in the proof of Proposition 2] the maximum deviation is again obtained
by maximizing and minimizing an additive function, resulting in two instances of (6)) with S = C:

max D(f(x), fo(x)) = e D(My(f — fo,C)).

Computational complexity of (6). For the case of nonlinear additive f, we additionally assume that
C is a Cartesian product. It follows that S = Hj:1 §; is a Cartesian product (see Appendixfor
the brief justification) and () separates into one-dimensional optimizations over S,

€S z;€S;

d d
max/min ij(xj) = Zmax/min fi(zy). (8)
j=1

Jj=1

The computational complexity of (8)) is thus Z?Zl C;, where C; is the complexity of the jth one-
dimensional optimization. We discuss different cases of C; in Appendix [B.2} the important point is
that the overall complexity is linear in d.

In the GLM case where Z‘;:l f;(z;) = w”z, problem (6 is simpler and it is less important that C
be a Cartesian product. In particular, if C is a convex set, so too is S (again see Appendix [B.2]for
justification). Hence (6) is a convex optimization problem.

4.3 Tree ensembles

We now extend the idea used for single decision trees in Section . 1| to tree ensembles. This class
covers several popular methods such as Random Forests and Gradient Boosted Trees. It can also
cover rule ensembles [41] 42] as a special case, as explained in Appendix [B.3] We assume f is a tree
ensemble consisting of K trees and f; is a single decision tree. Let £;, denote the [th leaf of the kth
treein f forl =1,..., Lg, and Lo,, be the mth leaf fo, form =1,..., Ly. Correspondingly let y;,
and yo.,, denote the prediction values associated with each leaf.



Define a graph G(V, £), where there is a vertex for each leaf in f and fj, i.e.
V={l\Vk=1,...,K,1=1,...., Ly} U{mm =1,..., Lo} )
Construct an edge for each overlapping pair of leaves in V, i.e.

E={@NILiNL; #0,9(i,4) €V, i #j}. (10)

This graph is a K + 1-partite graph as leaves within an individual tree do not intersect and are
an independent set. Denote M to be the adjacency matrix of G. Following Chen et al. [32], a
maximum clique S of size K + 1 on such a graph provides a discrete region in the feature space with
a computable deviation. A clique is a subset of nodes all connected to each other; a maximum clique
is one that cannot be expanded further by adding a node. The model predictions y. and ¥, can be
ensembled from leaves in .S. Denote by D(S) the deviation computed from the clique S. Maximizing
over all such cliques solves (I}). However, complete enumeration is expensive, so informative bounds,
either using the merge procedure in Chen et al. [32] or the heuristic function in Devos et al. [33]] can
be used. We use the latter which exploits the K + 1-partite structure of G.

Specifically, we adapt the anytime bounds of Devos et al. [33] as follows. At each step of the
enumeration procedure, an intermediate clique .S contains selected leaves from trees in [1, .. ., k] and
unexplored trees in [k + 1,..., K + 1]. For each unexplored tree, we select a valid candidate leaf
that maximizes deviation, i.e.

vy = argmax D(SUly). (11)
lk,lkﬁi;&@,\ﬁes

Using these worst-case leaves, a heuristic function

K+1
H(S)=D(S)=D(S |J vm) (12)

m=k+1

provides an upper (dual) bound. In practice, this dual bound is tight and therefore very useful during
the search procedure to prune the search space. Each K + 1 clique provides a primal bound, so the
search can be terminated early before examining all trees if the dual bound is less than the primal
bound. We adapt the search procedure of Mirghorbani and Krokhmal [43]] to include the pruning
arguments. Appendix [B.3|presents the full algorithm. Starting with an empty clique, the procedure
adds a single node from each tree to create an intermediate clique. If the size of the clique is K + 1
the primal bound is updated. Otherwise, the dual bound is computed. A node compatibility vector is
used to keep track of all feasible additions.When the search is terminated at any step, the maximum
deviation is bounded by (Dyp, Dup)-

The algorithm works for the entire feature space. When the certification set C is a union of balls as in
(2), some additional considerations are needed. First, we can disregard leaves that do not intersect
with C during the graph construction phase. A validation step to ensure that the leaves of a clique all
intersect with the same ball in C is also needed.

4.4 Piecewise Lipschitz Functions

‘We saw the benefits of having specific (deterministic) interpretable functions as well as their extensions
in the context of safety. Now consider a richer class of functions that may also be randomized with
finite variance. In this case let f and f; denote the mean values of the learned and reference functions
respectively. We consider the case where each function is either interpretable or black box, where the
latter implies that query access is the only realistic way of probing the model. This leads to three
cases where either both functions are black box or interpretable, or one is black box. What we care
about in all these caseq|is to find the maximum (and minimum) of a function A(z) = f(z) — fo().
Let us consider finding only the maximum of A as the other case is symmetric. Given that f and fy
can be random functions A is also a random function and if A is black box a standard way to optimize
it is either using Bayesian Optimization (BO) [44] or tree search type bandit methods [45] 46]. We
repurpose some of the results from this latter literature in our context showcasing the benefit of
interpretability from a safety standpoint. To do this we first define relevant terms.

"For simplicity assume D(-, -) to be the identity function.



Definition 1 (Simple Regret [45]). If f7 denotes the optimal value of the function f on the certifica-
tion set C, then the simple regret rg after querying the f function ¢ times and obtaining a solution x,

is given by, rqc(f) = fi — f(zg).

Definition 2 (Order 8 c-Lipschitz). Given a (normalized) metric ¢ a function f is c-Lipschitz
continuous of order 5 > 0 if for any two inputs z, y and for ¢ > 0 we have, |f(z) — f(y)| <
¢ U(z,y)P.

Definition 3 (Near optimality dimension [43]]). If N'(C, ¢, €) is the maximum number of ¢ radius
balls one can fit in C given the metric £ and C. = {z € C|f(x) > f& — €}, then for ¢ > 0 the c-near

optimality dimension is given by, v = max (hm SUP(_;0 %723’)[’6)7 ()).

Intuitively, simple regret measures the deviation between our current best and the optimal solution.
The Lipschitz condition bounds the rate of change of the function. Near optimality dimension
measures the set size for which the function has close to optimal values. The lower the value of v, the
easier it is to find the optimum. We now define what it means to have an interpretable function.

Assumption 3 (Characterizing an Interpretable Function). If a function f is interpretable, then we
can (easily) find 1 < m < n partitions {CV),...,C(™)} of the certification set C such that the
function f() = {f(z)|z € CW} Vi € {1, ..., m} in each partition is c-Lipschitz of order j3.

Note that the (interpretable) function overall does not have to be c-Lipschitz of bounded order, rather
only in the partitions. This assumption is motivated by observing different interpretable functions.
For example, in the case of decision trees the m partitions could be its leaves, where typically the
function is a constant in each leaf (¢ = 0). For rule lists as well a fixed prediction is usually made
by each rule. For a linear function one could consider the entire input space (i.e. m = 1), where for
bounded slope « the function would also satisfy our assumption (¢ = a and 5 = 1). Examples of
models that are not piecewise constant or globally Lipschitz are oblique decision trees (Murthy et
al., 1994), regression trees with linear functions in the leaves, and functional trees. Moreover, m is
likely to be small so that the overall model is interpretable (viz. shallow trees or small rules). With
the above definitions and Assumption 3] we now provide the simple regret for the function A.

1. Both black box models: If both f and f; are black box then it seems no gains could be made in
estimating the maximum of A over standard results in bandit literature. Hence, using Hierarchical
Optimistic Optimization (HOO) with assumptions such as C being compact and A being weakly
Lipschitz [45] with near optimality dimension v the simple regret after ¢ queries is:

$(2)<0 ((lf]q)) ) (13)

2. Both interpretable models: If both f and fj are interpretable, then for each function based
on Assumption [3 we can find m, and my partitions of C respectively where the functions are ¢;
and cy-Lipschitz of order 51 and [y respectively. Now if we take non-empty intersections of these
partitions where we could have a maximum of m,m partitions, the function A in these partitions
would be ¢ = 2max(cy, ¢1)-Lipschitz of order 8 = min(fy, 51) as stated next (proof in appendix).
Proposition 3. If functions hy and hy are ¢y and ¢ Lipschitz of order By and 31 respectively, then
the function h = hg — hy is c-Lipschtiz of order 3, where ¢ = 2max(cg, ¢1) and 8 = min(Sp, 51).

Given that A is smooth in these partitions with underestimated smoothness of order 3, the simple
regret after ¢; queries in the i™ partition C(*) with near optimality dimension v; based on HOO is:

rgi(i) (A) <O (ql_ Y (UH_Z)) , where v; < %. If we divide the overall query budget ¢ across the

7 < mom, non-empty partitions equally, then the bound will be scaled by 7'/ (*i+2) when expressed
as a function of g. Moreover, the regret for the entire C can then be bounded by the maximum regret

across these partitions leading to
]
T8
r¢(A) <0 ((Z) ) (14)

Notice that for a model to be interpretable mg and m; are likely to be small (i.e. shallow trees or
small rule lists or linear model where m = 1) leading to a “smallish” 7 and v can be much >> % in
case 1. Hence, interpretability reduces the regret in estimating the maximum deviation.



3. Black box and interpretable model: Making no further assumptions on the black box model and
assuming A satisfies properties mentioned in case 1, the simple regret has the same behavior as (T3).
This is expected as the black box model could be highly non-smooth.

5 Case Studies

We present case studies to serve three purposes: 1) show that deviation maximization can lead to
insights about models, 2) illustrate the maximization methods developed in Section[d] and 3) quantify
the dependence of the maximum deviation on model complexity and certification set size (mostly in
Appendix [D). Two datasets are featured: a sample of US Home Mortgage Disclosure Act (HMDA)
data (see Appendix [D.2]for details), meant as a proxy for a mortgage approval scenario, and the UCI
Adult Income dataset [47], a standard tabular dataset with mixed data types. A subset of results is
shown in this section with full results, experimental details, and an additional Lending Club dataset in
Appendix D] Since these are binary classification datasets, we take the deviation function D to be the
absolute difference between predicted probabilities of class 1. For the certification set C, we consider
a union of /., balls @I) centered at test set instances. While we have used the test set here, any not
necessarily labelled dataset would suffice. The case » = 0 yields a finite set consisting only of the test
set, while » — oo corresponds to C being the entire domain X'. We reiterate that the dependence of
the certification set on a chosen dataset is only on (an expanded version of) the support of the dataset
and not on other aspects of the data distribution.

To demonstrate insights from deviation maximization, we study the solutions that maximize deviation
(the arg max in (I)) and discuss three examples below.

Identification of an artifact: The first example comes from the Adult Income dataset, where the
reference model f is a decision tree (DT) and f is an Explainable Boosting Machine (EBM) [48]], a
type of GAM (plots of both in Appendix [D.3). Here, the capital loss feature is the largest contributor
to the maximum deviation (the discussion below TableE]explains how this is determined), and Table@]
in Appendix [D.3] shows that as the certification set radius r increases, the maximizing values of
capital loss converge to the interval [1598, 1759]. The plot of the GAM shape function f; for capital
loss in Figure[T|shows that this interval corresponds to a curiously low value of the function. This
low region may be an artifact warranting further investigation since it seems anomalous compared to
the rest of the function, and since individuals who report capital losses on their income tax returns to
offset capital gains usually have high income (hence high log-odds score). Note that this potential
artifact was automatically identified through deviation maximization.

For the next two examples, we consider a simplified mortgage approval scenario using the HMDA
dataset. Suppose that a DT f; (shown in Figure [3|in Appendix has been trained to make final
decisions on mortgage applications. Domain experts have determined that this DT is sensible and
safe and are now looking to improve upon it by exploring EBMs. (Logistic regression (LR) models
are deferred to Appendix [D.2]because they do not have higher balanced accuracy than f;.)

Conflict between f, fy: We first examine solutions that result in the most positive difference between
the predicted probabilities of an EBM f with parameter max_bins=32 and the DT fjy. These all
occur in a leaf of fy (leaf 2 in Figure[3) where the applicant’s debt-to-income (DTI) ratio is too high
(> 52%) and f( predicts a low probability of approval. The other salient feature of the solutions
is that they all have ‘preapproval’=1, indicating that a preapproval was requested, which is given a
large weight by the EBM f in favor of approval (see Figure d]in Appendix and Table [ for more
feature values). Thus f and f are in conflict. Among different ways in which the conflict could be
resolved, a domain expert might decide that f; remains correct in rejecting risky applicants with high
DTI, even if there is a preapproval request and the new EBM model puts a high weight on it.

Trend toward extreme points, deviation can be good: We now look at solutions that yield the
most negative difference between the predicted probabilities of f and fy, for < 0.8. Table|l|shows
the 6 features that contribute most to the deviation (again see Appendix [D.2]for details). All of these
points lie in a leaf of fq (leaf 14 in Figure[3] denoted £14) that excludes several clearer-cut cases,
with the result being a less confident predicted probability of 0.652 from f;. The feature values
that maximize deviation tend toward extreme points of the region £14. Specifically, the values of
the continuous features debt-to-income ratio, loan-to-value ratio, property value, and income all
move in the direction of application denial. For the latter three features, the boundary of L4 is
reached as soon as r = 0.1, whereas for debt-to-income ratio, this occurs at » = 0.4. The movement



r debt_to_income (%) state loan_to_value (%) aus_l prop_value (000$) income (000$)

0.0 46.0 CA 95.0 3 415 71.0
0.1 [45.946.5] none [100. 100.92] 1 [120 120] <28.5
0.2 [45.546.5] none [100. 100.92] 1 [120 120] <285
0.4 [52.52.] none [100. 100.92] 1 [120 120] <28.5
0.6 [52.52.] none [100. 100.92] 1 [120 120] <28.5
0.8 [52.52.] none [100. 100.92] 1 [120 120] <28.5

Table 1: Values of top 6 features that maximize difference in predicted probabilities between a
decision tree reference model fj and an Explainable Boosting Machine f (max_bins = 32) on the
HMDA dataset. For radius » > 0, the maximizing values of continuous features form an interval
because the corresponding EBM shape functions f; are piecewise constant.

1.0 —— dual bound

—e— primal bound

b
©

o
©
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D w.r.t. single Decision Tree
o
<

0 1000 2000 3000 4000

o
o

T T T T T T T
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Number of estimators in Random Forest

Figure 1: EBM shape function f; for capital loss

feature, showing anomalously low interval identi-

fied by deviation maximization. Figure 2: Maximum deviation D on the Adult
Income dataset as a function of number of
estimators in a Random Forest.

toward extremes is expected for this f since its relevant shape functions f; are mostly increasing
or decreasing, as seen in Figure ] in Appendix The same behavior is observed in other GAM
and LR examples in Appendix [D] In this example, a domain expert might conclude that the large
deviation is in fact desirable because f is providing varying predictions in £14 in ways that make
sense, as opposed to the constant given by f. This shows that deviation maximization can work in
both directions, identifying where the reference model and its assumptions may be too simplistic and
giving an opportunity to improve the reference model.

Maximum deviation vs. number of trees in a RF: In Figure[2] we highlight one result from a set
of such results in Appendix D} showing maximum deviation as a function of model complexity, here
quantified by the number of estimators (trees) in a Random Forest (RF). This is a demonstration of
the method in Section [£.3] which in general provides bounds on the maximum deviation. In this
case, the upper (“‘dual”) bound is informative enough to actually show a decrease as the number of
estimators increases. The larger number of estimators increases averaging and may serve to make the
model smoother.

6 Conclusion

We have considered the relationship between interpretability and safety in supervised learning through
two main contributions: First, the proposal of maximum deviation as a means toward assessing safety,
and second, discussion of approaches to computing maximum deviation and how these are simplified
by interpretable model structure. We believe that there is much more to explore in this relationship.
Appendices|[C|and [B.5] provide further discussion of several topics and future directions.
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A Additional Problem Formulation Details

Deviation function D For the case where the inputs y, yo to D are real-valued scalars (which
covers binary classification and regression), while Assumption [T| was stated as a sufficient condition
for tractable optimization with GAMs, it is also an intuitively reasonable requirement: the deviation
should increase the farther y is from yg in either direction. In addition, symmetry may be desirable,
ie. D(y,y0) = D(yo,y), to not favor one of the two models over the other. Both Assumptions|I]
and 2] as well as symmetry are satisfied by monotonically increasing functions D(|y — yo|) of the
absolute difference, for example powers |y — yo|? for p > 0.

For the case where 3, 5o € R as in multi-class classification, it may be advantageous for D(y, o) to
decompose into a sum over output dimensions: D(y, yo) = Zi\il Dy (yk, yor ), where yx, yor, are the

components of y, yo. For example, the pth power of the £, distance ||y — yol/h = 22/[:1 Yk — Yok |P

is separable in this manner.

Models that abstain The formulation in Section2lcan also accommodate models that abstain from
predicting (and possibly defer to a human expert or other fallback system). If f(x) = (), representing
abstention, then we may set D((, yo) = d for any yo € ), where d > 0 is an intermediate value less
than the maximum value that D can take [49]. The value d might also be less than a “typically bad”
value for D, to reward the model for abstaining when it is uncertain.

B Additional Details on Deviation Maximization for Specific Model Classes

B.1 Trees

Rule lists A rule list as defined by Yang et al. [39], Angelino et al. [40] is a nested sequence of
IF-THEN-ELSE statements, where the IF condition is a conjunctive rule and the THEN consequent
is an output value. If each rule involves a single feature (i.e., the conjunctions are of degree 1), such
rule lists are one-sided trees in the sense of Section[4.1] The number of leaves in the equivalent tree
is equal to the number of rules in the list (including the last default rule).

Intersection of C with a Cartesian product If C = H?:l C; is also a Cartesian product, then
determining whether the intersection is non-empty amounts to checking whether all of the coordinate-
wise intersections with C;, 7 = 1,. .., d, are non-empty. If C is not a Cartesian product but is a union
of /., balls (which are Cartesian products), then the intersection is non-empty if the intersection with
any one ball is non-empty.

Relationship between Proposition [T|and [32, Theorem 1] In the case of a ' = 2-tree ensemble,
[32, Theorem 1] bounds the complexity of exact robustness verification as min{O(n?), O((4n)4} =
O(n?), where n is the maximum number of leaves in a tree and we assume that the feature dimension
d > 2. In Proposition [T} we account for the possibly different numbers of leaves L and Ly in the two
trees f and fj, and we exactly enumerate the edges, |£| < LoL < n2.

Additive reference model For the case where f is a decision tree and fj is a generalized additive
model, if the deviation function is symmetric, D(y,yo) = D(yo,y), then this case is covered in
Section 4.2

B.2 Linear and Additive Models

Categorical features A function f;(x;) of a categorical feature ; can be represented in two ways,
depending on whether f is a GAM or a GLM. In the GAM case, we may use the native representation
in which x; takes values in a finite set &; of categories. In the GLM case, x; is one-hot encoded into
multiple binary-valued features x j;, one for each category k. Then any function f; can be represented
as a linear function,

|51

Fi@s) = wikar,
k=1

where w;y, is the value of f; for category k.
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Implication of Assumption[I] The second condition implies that the deviation increases or stays
the same as y moves away from y in either direction.

Proof of Proposition[Z] Let x € S and S(z) = Z?zl fj(z;). Under Assumptionl, if S(z) =
9(yo), then

D(f(x), fo(x)) = D(g™" (9(0)), %0) = D(yo,30) = 0.

As S(z) increases from g(yo), f(z) also increases because g~! is an increasing function, and
)

o) increases or stays the same due to Assumption 2. Similarly, as S(z) decreases from
, f(x) decreases, and D(f(x), yo) again increases or stays the same. It follows that to maximize
), Yo), it suffices to separately maximize and minimize S(z), compute the resulting values of
), Yo), and take the larger of the two. This yields the result. O

Implication of Assumption 2)and identity link function g These two assumptions imply that the
deviation is measured on the difference between f and f; in the space in which they are additive.
For example, if f and f; are logistic regression models predicting the probability of belonging to
one of the classes, the difference is taken in the log-odds (logit) domain. It is left to future work to
determine other assumptions under which problem (I)) is tractable when f and f; are both additive.

Cartesian product C implies Cartesian product S In the cases of constant and additive fy, S = C.
In the decision tree case, since each leaf is a Cartesian product Lo, = H?Zl Romj, the intersections

S = Lom N C are also Cartesian products H;l:l S where S; = R NC;.

One-dimensional optimization complexities C; For discrete-valued x;, C; is proportional to the
number of allowed values |S;|. For continuous x;, it is common to use spline functions or tree
ensembles as f; in constructing GAMs. In the former case, C; is proportional to the number of
knots. In the latter, the tree ensemble can be converted to a piecewise constant function and Cj is
then proportional to the number of pieces. Lastly in the case where f;(z;) = wjx; is linear and

S; = [X;, X ] is an interval, C; = O(1) because it suffices to evaluate the two endpoints.

Convex S If C is a convex set, then in the cases of constant and additive fy, S = C is also
convex. In the case of tree-structured fy, S = Lg,, N C and each leaf L, can be represented as
a convex set, with interval constraints on continuous features and set membership constraints on
categorical features. The latter can be represented as x5, = 0 constraints on the one-hot encoding
(see “Categorical features” paragraph above) for non-allowed categories k. Hence S is also convex.

As a specific example, suppose that S is the product of independent constraints on each categorical
feature and an £,, norm constraint on the continuous features jointly. The maximization over each
categorical feature has complexity C; = |S;| as noted above, while the maximization of w?x over
continuous features lying in an £, ball has closed-form solutions for the common cases p = 1, 2, 0.

Relaxations of the Cartesian product assumption If the certification set C is not a Cartesian
product, then one way to still bound the maximum deviation is to find the smallest Cartesian product
C that contains C and maximize deviation over C. As long as it is relatively easy to optimize linear
functions over C, then constructing such a Cartesian product is similarly easy. Another conceivable
relaxation of the Cartesian product assumption is a Cartesian product of low-dimensional sets, not
just one-dimensional.

B.3 Tree Ensembles

The full algorithm for clique search from Section .3]is presented in Algorithm/[I] It uses Z as a node
compatibility vector to keep track of valid leaves and B a set of trees/partites not yet covered by the
maximum clique. The algorithm starts with and empty clique S and anytime bounds as 0. It starts the
search with the smallest tree to limit the search space. This is typically fy. Each leaf is added to the
intermediate clique S in turn (Line 6). A stronger primal bound can be achieved if the traversal is
ordered in a meaningful way. In particular, starting with nodes with the highest heuristic function
value H(.S) aids the algorithm to focus on better areas of the search space.
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If the size of the clique is K + 1 the primal bound is updated. Otherwise, the dual bound is computed.
If the node is promising, the algorithm recurses to the next level. When the search is terminated at
any step, the maximum deviation is bounded by (Dyp, D).

Algorithm 1 Max clique search for maximum deviation

Require: M adjacency matrix, H heuristic function

I Zli)=1WieV,B={1,2,...,K+1},5=0 > All nodes valid, all trees uncovered
2: Q = Enumerate(Z, B, S)
3: Initialize:D;, = 0, D, =0 > Anytime bounds
4: function Enumerate(Z, B, S):
5: t = argmax,{|Z,| | b € B} > Uncovered tree with fewest valid nodes
6: for i in Z; do
7. Z[i]=0 > Mark node as incompatible
8  S=SuU{i} > Add to candidate clique
9: if |S| = K + 1 then
10: Dy, = max (Dy, D(S5)) > Update primal bound
11: RQ=QUS > Add to set of max cliques
12: S =5\{i} > Backtrack
13:  else
14: Ziv1 = Zy N M(1) > Update valid nodes
15: B =B\ ({t} > Update uncovered trees
16: Dy = max (D, H(S)) > Update dual bound
17: if D, > Dy, then
18: Enumerate(Z;41, B, S) > Recurse to next level
19: end if
20: S =9\{i} > Backtrack
21; B=BU{t}
22:  endif
23: end for

Rule ensembles Similar to the tree ensembles considered in Section 4.3} a rule ensemble is a linear
combination of conjunctive rules, where the antecedent is a conjunction of conditions on individual
features, and the consequent takes a real value if the antecedent is true and zero otherwise. They
are produced by algorithms such as SLIPPER [50], that of Riickert and Kramer [51]], RuleFit [41]],
ENDER [42]] and have also been referred to as generalized linear rule models [52]]. A rule ensemble
can be converted into a tree ensemble by converting each conjunctive rule into an IF-THEN-ELSE rule
list, which is a one-sided tree (see Appendix [B.I)). Specifically, the conditions in the conjunction are
taken in any order, each condition is negated to become an IF condition, and the THEN consequents
are all output values of zero. The final ELSE consequent, which is reached if all the IF conditions are
false (and hence the original rule holds), returns the output value of the original rule. The number of
leaves in the resulting tree equals the number of conditions in the conjunction plus one.

B.4 Piecewise Lipschitz Functions

Proof of Proposition[3] Consider two inputs = and y then,
[h(z) = h(y)| = [(ho — h1) (@) — (ho — h1)(y)| = |ho(@) — ho(y) + hi(y) — hu ()|
< |ho(x) = ho(y)| + [l (@) = ha(y)] < co - £z, 9)™ + er - Lz, y)™
<c- £($7 y)B

where, ¢ = 2max(c, ¢1) and 8 = min(Sy, 51). O

Other choices for D(.,.): The results assumed D(.,.) to be the identity function, where A =
D( fo, f). This choice of function clearly satisfies Assumptions and Again consistent with these
assumptions we look at some other choices for D(.,.). If D(.,.) were an affine function with a
positive scaling such as D(yo,y) = «(yo — y) + b where a > 0, then our result in equation [14] would
be unchanged as only the Lipschitz constant of A would change, but not its (underestimated) order.
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If the function were a polynomial or exponential however, no such guarantees can be made and we
would be back to case 1.

B.S5 Other Model Classes: Neural Networks and Post Hoc Explanations

For model classes beyond the ones discussed in Section[4] it appears to be a greater challenge to obtain
reasonably tractable algorithms that guarantee exact computation of or bounds on the maximum
deviation. Here we outline some future directions for neural networks and post hoc explanations.

Robustness verification for neural networks has attracted a great deal of attention and made con-
siderable progress, with exact approaches including satisfiability modulo theory [24] and mixed
integer programming [25. [26], and incomplete methods that compute bounds using bound propaga-
tion [22} [19], linear programming and duality [18} 20} 21]], and semidefinite programming [23| 27].
However, all of these methods consider a single model, effectively comparing it to a constant. Ro-
bustness verification is thus essentially a single-model case of our problem (I)) in which fj is a
constant (and with an appropriate choice of the deviation function D(f, fo)). While we may expect
that solutions to a two-model verification problem would leverage existing robustness verification
methods, developing such solutions remains for future work. Furthermore, evaluation of robustness
verification methods has largely been limited to local neighborhoods around input points (with typical
radii € < 0.1 in terms of normalized feature values). This limitation may also need to be addressed to
enable evaluation of maximum deviation in the way envisioned in this paper.

It is also natural to ask whether post hoc explanations for the model can help. One way in which
this could occur is if the post hoc explanation approximates the model f by a simpler model f
and if the deviation function D satisfies the triangle inequality D(f(x), fo(z)) < D(f(z), f(x)) +

D(f(z), fo(z)). Then the maximum deviation in (I)) would be bounded as

max D(f(x), fo(x)) < max D(f(), f(x)) + max D(f(x), fo(x)). (15)

While we may choose f to be interpretable so that the rightmost maximization is tractable, the middle
maximization asks for a uniform bound on the deviation between f and f , 1.e, the fidelity of f . We
are not aware of a post hoc explanation method that provides such a guarantee. Indeed, in general,
the middle maximization might not be any easier than the left-hand one that we set out to bound.

A (practical) possibility may be to perform quantile regression [S3]] for a large enough quantile to learn

f, as opposed to minimizing expected error as is typically done. This may be an interesting direction
to explore in the future as quantile regression algorithms are available for varied model classes
including linear models, tree ensembles [54] and even neural networks [S5]. More investigation is
needed into whether quantile regression methods can provide approximate guarantees on the middle

term in (T3).

Assuming that uniform proxies in the above sense can be constructed, then for certain modalities or
applications it may be possible to train highly accurate proxies. For instance for tabular data, Random
Forests or boosted trees might very well replicate the behavior of a neural network, in which case
the machinery introduced in Section[d.3|could be used. Even for other modalities such as text and
images, interpretable models such as Neural Additive Models (NAMs) [56] and continued fraction
networks (CoFrNets) [57] may prove to be sufficient in some cases.

Finally, there are recent architectures such as Lipschitz neural networks [S8]] which are adversarially
robust and hence valuable in practice. Our analysis presented in Section 4.4 for piecewise Lipschitz
models would be applicable here, where the simple regret of standard bandit algorithms for a given
number of queries could be reduced to as opposed to (T3).

C Further Discussion

Worst-case approach The formulation of (1) as the worst case over a certification set represents
a deliberate choice to depend as little as possible on a probability distribution or a dataset sampled
from one. As stated in Section [2] Certification Set paragraph, C can depend at most on (an expanded
version of) the support set of a distribution. The reason for this choice is because safety is an out-of-
distribution notion: harmful outputs often arise precisely because they were not anticipated in the
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data. The trade-off inherent in this choice is that the maximum deviation may be more conservative
than needed. The high maximum deviation values in e.g. Figure |l 1|may reflect this. Given definition
(T) as a starting point in this paper, future work could consider variations that depend more on a
distribution and are thus less conservative, but may also offer a weaker safety guarantee.

Choice of reference model The proposed definition of maximum deviation (I}) depends on the
choice of reference model fj. Different choices will lead to different deviation values and, perhaps
more importantly, different combinations of features that maximize the deviation. We have discussed
possible choices in Section and the results in SectionE]indicate that, as with the assessed model f,
interpretable forms for fj can ease the computation of maximum deviation. Beyond these guidelines,
it is up to ML practitioners and domain experts to decide on appropriate reference models for their
application (and there may be benefit to considering more than one). We mention an additional
concern with the reference model in the Ethics Discussion.

For some real applications it may be difficult to come up with a globally interpretable reference model.
But specific to particular scenarios it may be possible. For instance, it might be difficult to provide
general rules for how to drive a car, but in specific scenarios such as there being an obstacle in front,
one can suggest that you stop or turn, which is a simple rule. So our machinery could potentially be
applied at a local level where the reference model is interpretable in that locality. This might help in
“spot checking" a deployed model and estimating its safety by computing these maximum deviations
in scrupulously selected (challenging) scenarios.

Impossible inputs in certification set Mathematically simple sets such as Cartesian products and
¢, balls permit simpler algorithms for optimizing functions over them. Accordingly, these sets have
been the focus of not only the present work but also the related literature on ML verification and
adversarial robustness. However, they may not serve to exclude inputs that are physically or logically
impossible from the certification set C, and thus, the resulting maximum deviation values may be too
large and conservative. Here it is important to distinguish between impossible inputs and those that
are merely implausible (i.e., with low probability). Techniques for capturing implausibility have been
proposed for contrastive/counterfactual explanations [8} 59], whereas we expect the set of impossible
inputs to be smaller and more constrained. As a simple example from the Adult Income dataset, if
we agree that a wife/husband is defined to be of female/male gender (regardless of the gender of the
spouse), then the cross combinations male-wife and female-husband cannot occur. Future work can
consider the representation and handling of such constraints.

White-box vs. grey-box models In this paper, we have assumed full “white-box” access to both
f and fy, namely complete knowledge of their structure and parameters. Interesting questions may
arise when this assumption is relaxed to different “grey-box” possibilities. For example, one could
further investigate the third case in Section where one of f, fy is black-box and the other is
white-box interpretable. There may exist assumptions that we have not identified that would improve
the query complexity compared to generic black-box optimization.

Other interpretability-safety relationships This paper has focused on one relationship between
the interpretability of a model and the safety of its outputs. It has not addressed other ways in
which interpretability/explainability can affect the risk of a model (in the plain English sense, not the
expectation of a loss function). For example, in regulated industries such as consumer finance, not
providing explanations or providing inadequate ones can lead to legal, financial, and reputational risks.
On the other hand, providing explanations is associated with its own risks [60]. These include the
leakage of personal information or model information (intellectual property), an increase in appeals
of decisions for the decision-making entity, and strategic manipulation of attributes (i.e. “gaming”)
by individuals to gain more favorable outcomes.

Applicability to RL settings In RL, if one views the actions as labels and state representation
as features, one can build a tree, albeit likely a deep/wide one, to represent exactly the RL policy,
where the probability distribution over the actions can be viewed as the class distribution in a normal
supervised setting. Rolling up the states, creating leaves with multiple states, and simply averaging
the probabilities for each action would yield smaller trees that approximate the policy. Our work
lays a foundation where in principle we can also compare f and f that are policies using such tree
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representations. This may be related to a popular global explainability method [61]] that samples
policies and builds trees to explain them.

Ethics The safety of machine learning systems has been called out by the European Commission’s
regulatory framework [62]. The commission states seven key dimensions to be evaluated and audited
by a cross-disciplinary team: (i) human agency and oversight, (ii) technical robustness and safety,
(iii) privacy and data governance, (iv) transparency, (v) diversity, non-discrimination and fairness,
(vi) environmental and societal well-being, and (vii) accountability. The second of these dimensions
is safety. However, Sloane et al. [63]] argue that algorithmic audits are ill-defined as the underlying
definitions are vague. The proposed work helps fill that ill-definedness using a quantitative approach.
One may argue against this particular choice of quantification, but it does start the community down
the path toward being more concrete in its definitions.

As with many other technologies, the proposed approach may be misused. For example, the reference
model may be chosen in a way that hides the safety concerns of the model being evaluated. Transparent
documentation and reporting with provenance guarantees can help avoid this kind of purposeful
deceit [64]].
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D Experiment Details and Additional Results

D.1 General Experiment Details

Data processing We use the training set of each dataset to train models and the test set as the
basis for evaluating maximum deviation, specifically as the set of centers for the ¢, balls in ().
Continuous features are standardized and categorical features are one-hot encoded. The /., norm is
computed on the resulting normalized feature values.

Models We use scikit-learn [[63]] to train decision tree (DT), logistic regression (LR), and Random
Forest (RF) models. The corresponding complexity parameters are the number of leaves for DT
(parameter max_leaf_nodes), the amount of /; regularization for LR (inverse /; penalty C'), and
the number of estimators/trees for RF (n_estimators). For additive models, we use Explainable
Boosting Machines (EBM) from the InterpretML package [48]] with zero interaction terms (so that
the models are indeed additive). Smoothness is controlled by the max_bins parameter, the number
of discretization bins for continuous features.

Deviation maximization In all cases, when the certification set radius » = 0, maximum deviation
can be computed simply by evaluating the models on the test set. For the case where r > 0, f isa DT
or RF, and fj is a DT, Algorithm I]is used (on a bipartite graph if f is a DT). The cases where f is
LR or EBM fall under the generalized additive case of Section Given that fj is a DT, we use (7)),
@ to determine the maximum deviation. For » < oo when C is a union of ¢, balls, we maximize
separately over each intersection between a ball and a leaf of f; and then take the maximum over the
intersections.

Computation All experiments were run on CPU nodes with 64GB memory. For decision trees
and tree ensembles run times of Algorithm were limited to 2 hours, after which the best available
bounds were used.

D.2 Home Mortgage Disclosure Act Dataset

Data source and pre-processing The data is made available by the US Consumer Finance Pro-
tection Bureau (CFPB) under the Home Mortgage Disclosure Act (HMDA). We use the national
snapshot from year 201 SEI of “loan/application records,” which contain information on mortgage
applications and their outcomes. According to their website, the CFPB has modified the data to
protect applicant and borrower privacy.

We processed the 2018 loan/application records as summarized below. These steps were informed by
Gill et al. [66] but not identical to theirs:

* Restrict to complete, submitted applications with ‘action_taken’ < 3 (loan originated,
application approved but not accepted by applicant, or application denied).

* Create a binary-valued target variable representing approval by binarizing ‘action_taken’
(originated or approved — 1, denied — 0).

* Restrict to purchases of principal residences (the most consequential in terms of people’s
lives, i.e., not refinances or for investment) and single-family homes.

* Restrict to loans that are not “special” in any way: conventional loans, first mortgages, not
manufactured homes, no non-amortizing features, etc.

* Drop columns that are not applicable for site-built single-family homes.

* Drop columns that are not applicable or recorded until the approval/origination decision is
made. For example, loan costs (points and fees) are not recorded until a loan is originated,
the type of entity that purchases a loan does not apply unless the loan is originated, etc. This
is in keeping with the mortgage approval scenario that we consider.

* Drop all demographic columns to reflect laws that forbid lending decisions from explicitly
depending on applicant demographics.

"https://ffiec.cfpb.gov/data-publication/snapshot-national-loan-level-dataset/
2018
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Figure 3: Decision tree reference model with 8 leaves for the HMDA dataset.

* Drop geographical columns that have too many unique values (e.g., census tract).

* Drop rows that have null or “exempt” values in key features such as loan-to-value ratio,
debt-to-income ratio, property value, income.

Take a 10% sample of the records remaining after the above processing, to make experimen-
tation less time- and resource-consuming.

* Split the subsampled dataset 80%—20% into training and test sets.

The dataset resulting from the above processing is imbalanced, with nearly 93% of mortgage
applications approved. Thus in training models, we balance the classes by weighting, either using the
class_weight=‘balanced’ option in scikit-learn or defining sample weights for the same purpose.
On the test set, we evaluate balanced accuracy instead of accuracy.

Reference model Figure [3]depicts the 8-leaf DT reference model used in the experiments on the
HMDA dataset. This DT has a test set balanced accuracy of 70.9% and area under the receiver
operating characteristic (AUC) of 0.750. The top-level split is based on debt-to-income ratio, a
measure often used in lending. Other common mortgage measures such as loan-to-value ratio,
property value, and whether a preapproval was requested (value 2 means no) also appear. ‘aus_1’=5
and ‘aus_1’=6 refer to the automated underwriting system used to evaluate the application, with
values 5 and 6 denoting “other” and “not applicable”.

LR and GAM models In Tables[2]and[3] we show the values of inverse /1 penalty C' and max_bins
that were used for LR and GAM respectively, as well as statistics of the resulting classifiers. Test
set balanced accuracy and AUC increase and reach a plateau. For LR, we take the ¢; norm of the
coefficients to be the main measure of smoothness as it depends on both the number of nonzero
coefficients as well as their magnitudes, which both affect the extreme values attained in @ Since
the LR balanced accuracy and AUC are not higher than those of the reference DT, we focus less on
LR in what follows.
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C  nonzeros /{1 norm bal. acc. AUC

le-4 2 04 0.605 0.663
3e-4 7 1.3 0.633  0.695
le-3 17 4.6 0.663 0.736
3e-3 26 7.7 0.669 0.744
le-2 42 12.7 0.674 0.750
3e-2 68 16.6 0.675 0.751
le-1 85 20.3 0.675 0.752
3e-1 96 222 0.676  0.752
le+0 99 229 0.675 0.752
3e+0 100 232 0.675 0.752

Table 2: Number of nonzero coefficients, /1 norm of coefficients, test set balanced accuracy, and
area under the receiver operating characteristic (AUC) for logistic regression models on the HMDA
dataset as a function of inverse ¢; penalty C.

max_bins bal. acc. AUC

4 0.669 0.743

8 0.695 0.772

16 0.711 0.785
32 0.720  0.798
64 0.723  0.799
128 0.722  0.800
256 0.722  0.800
512 0.723  0.800
1024 0.723  0.800

Table 3: Test set balanced accuracy and AUC for Explainable Boosting Machines on the HMDA
dataset as a function of max_bins parameter.

For EBM, based on Table [3] we select max_bins = 32 as a representative model with balanced
accuracy and AUC nearly equal to the maximum attainable values. Plots for this EBM model are
shown in Figure ] First note that whether a preapproval was requested (value 1 means yes) is quite
predictive of final approval. The shape functions for the four continuous features debt-to-income
ratio, loan-to-value ratio, property value, and income are mostly monotonic and agree with domain
knowledge. The log-odds of mortgage approval decrease as debt-to-income ratio and loan-to-value
ratio increase, with abrupt drops around 50% for debt-to-income ratio and at 80% and 100% for
loan-to-value ratio. For property value and income, after a minimum value is reached, the shape
function increases rapidly and then stays more or less constant for high property values and incomes.
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Overall Importance: preapproval
Mean Absolute Score
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Figure 4: Feature importances and selected univariate functions f; for the Explainable Boosting
Machine with max_bins = 32 on the HMDA dataset.
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r preapproval  appl_credit loan_to_value co_appl_credit intro_rate_period debt_to_income

_score_type (%) _score_type (%)
0.0 1 2 74.35 10 122.0 55.0
0.1 1 3 [80. 80.] 1 [28.4 43.6] [53.956.1]
0.2 1 1 [29.3332.42] 1 [57. 60.5] [52.8 57.2]
0.4 1 7 [ 4.34 32.42] 7 [329.7 360. ] [52. 53.4]
0.6 1 7 [ 0.49 32.42] 7 [314.5 360. ] [52. 55.6]
0.8 1 7 [ 0.49 32.42] 7 [299.3 300. ] [52. 57.7]
0.999 1 7 [ 0.49 32.42] 7 [120.5 163. ] [52. 53.9]
1.001 1 6 [ 0.49 32.42] 6 [120.5 159.9] [52. 62.5]
1.2 1 6 [ 0.49 32.42] 6 [120.5 151. ] [56.9 62.5]
1.4 1 6 [ 0.49 32.42] 6 [120.5 163. ] [52. 57.3]
1.6 1 6 [ 0.49 32.42] 6 [120.5 163. ] [52. 60.5]
1.8 1 6 [ 0.49 32.42] 6 [120.5 163. ] [52. 52.7]
2.0 1 6 [ 0.49 32.42] 6 [120.5 163. ] [52. 62.5]
00 1 6 [ 0.49 32.42] 6 [120.5 163. ] [52. 62.5]

Table 4: Feature values that result in most positive difference in predicted probabilities between an
Explainable Boosting Machine f (max_bins = 32) and an 8-leaf decision tree reference model fj
on the HMDA dataset. The 6 features that contribute most are shown as a function of certification set
radius r. For radius » > 0, the maximizing values of continuous features form an interval because
the corresponding functions f; are piecewise constant.

Feature combinations that maximize deviation Table 4] shows feature values that yield the most
positive difference between the predicted probabilities of the EBM f with max_bins= 32 and the
8-leaf DT fy. This table corresponds to the second “Conflict between f, f,”” example in Section 3]
The 6 features that contribute most to the deviation are shown. These contributions are determined
using (B)); since the maximum deviation occurs in one of the /., ball-leaf intersections and this
intersection is a Cartesian product, the feature-wise decomposition in (8] applies. The contribution of
feature j is then max,cs; fj(2;). We take an average of the contributions over 7 to give a single
ranking of features for all . The same method is used to determine feature contributions and choose
the top 6 features for Table

As mentioned in Section [5] all solutions in Table @ have ‘preapproval’=1 and debt-to-income ratios
> 52% that place them in leaf 2 in Figure (3| The latter results in a low predicted probability of
approval from f while the former makes a large positive contribution to the probability from f (see
Figure ). The values of the other features also make increasingly larger positive contributions to f
as r increases. Loan-to-value ratio decreases, while co-applicant credit score type moves from type
10 (no co-applicant, hence weaker application) to increasingly favorable score types (1, 7, 6, see
Figure [d); applicant credit score is similar. This behavior is similar to the movement toward extreme
points seen in Table[T}

Dependence on model complexity Figure [5|shows the dependence of maximum deviation on the
complexity of model f, quantified by the number of leaves for DTs, coefficient ¢; norm for LR,
max_bins for EBM, and the number of estimators (trees) for RF. The DT and RF cases demonstrate
the methods in Section4.3] specifically Algorithm[I] where in the RF case, the algorithm may only
provide bounds after a time limit of two hours. The plots show that maximum deviation may or
may not increase with model complexity. In Figure[5a the deviation is small for a 10-leaf DT and
increases rapidly. Figures[5b|and [5c|indicate that maximum deviation is sensitive to the ¢; norm of
LR models but not to the max_bins parameter of EBMs. The latter may increase the resolution of
the EBM shape functions but not their dynamic range.

Dependence on certification set size Figure [6|shows the dependence of maximum deviation on
the certification set radius r. For LR and GAM, the maximum deviation is greater for r > 0 than
for r = 0, showing that evaluation on a finite test set may not be sufficient and infinite certification
sets (with » > 0) should be considered, especially to account for unexpected, out-of-distribution
deviations. There are jumps at » = 1 because this is the radius that permits values of categorical
features of test set points (the ball centers in (2)) to change to any other value. In the case of GAM,
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Figure 5: Maximum deviation D on the HMDA dataset as a function of model complexity for (a) DT
(number of leaves), (b) LR (¢; norm), (¢c) GAM (max_bins), and (d) RF (number of estimators).

this jump is sufficient for the deviation to equal that for r = co (C = X, dashed line in figure). On
the other hand, the deviation for DT and RF remains constant as a function of r.

Running time Figure[7|shows the time required to compute the maximum deviation for LR and
GAM on the HMDA dataset. These times were obtained using a single 2.0 GHz core of a server with
64 GB of memory (only a small fraction of which was used) running Ubuntu 16.04 (64-bit). The
times increase with the /. ball radius  because of the increasing number of ball-leaf intersections
that become non-empty and hence need to be evaluated. The time for » = 0 is minimal because this
case requires only model evaluation over the finite test set, as mentioned. The jumps at » = 1 are
due again to the ability of categorical features to change values, leading to an increase in ball-leaf
intersections. The filled-in regions show that there was little variation due to different ¢; norms for
LR or max_bins for GAM. This was most likely because of a vectorized implementation, which
operates on all LR coefficients or all GAM bins at once (i.e., without a for loop).
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Figure 8: Decision tree reference model with 8 leaves for the Adult Income dataset.

D.3 Adult Income dataset

We use the given partition of the Adult Income dataset into training and test sets.

Reference model Figure [§] depicts the 8-leaf DT reference model used in the experiments on
the Adult Income dataset. This DT has 85.0% accuracy on the test set. The root node separates
individuals based on whether the marital status is Married-civ-spouse. The remaining splits divide
the population into those with high and low education, high and low capital gains, and high and low
capital losses. In particular, having high capital gains or losses is a good predictor of high income
(> $50000).

LR and GAM models Tables 5 and [§] show the values of C' and max_bins used for LR and GAM
respectively together with statistics of the resulting classifiers. Based in part on Tables [5]and [6} we
select C' = 0.01 and max_bins = 8 as representative models that remain simple and have accuracies
and AUCs not far from the maximum attainable. Plots for these two models are shown in Figures

and
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C' nonzeros {1 norm accuracy AUC

3e-4 1 0.2 0.764  0.715
le-3 6 2.6 0.825 0.885
3e-3 7 4.7 0.840 0.895
le-2 16 7.4 0.848  0.900
3e-2 30 12.9 0.852  0.905
le-1 38 17.3 0.853  0.905
3e-1 62 253 0.853  0.905
le+0 83 40.7 0.852  0.905
3e+0 92 54.6 0.852  0.905
le+1 101 65.1 0.852  0.904
3e+1 105 73.5 0.852  0.904
le+2 107 77.6 0.852  0.904
3e+2 107 79.1 0.852  0.904

Table 5: Number of nonzero coefficients, ¢; norm of coefficients, test set accuracy, and AUC for
logistic regression models on the Adult Income dataset as a function of inverse ¢; penalty C'

max_bins accuracy AUC

4 0.858 0.910

8 0.862 0915

16 0.865 0.920
32 0.870  0.924
64 0.871 0.925
128 0.871 0.925
256 0.872  0.925
512 0.871 0.925
1024 0.871 0.925

Table 6: Test set accuracy and AUC for Explainable Boosting Machines on the Adult Income dataset
as a function of max_bins parameter.

intercept |
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Relationship= Own-child A
Relationship= Wife

WorkClass= Self-emp-not-inc - L
Gender= Female ]
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Gender= Male A
-2 -1 0 1 2

Figure 9: Coefficient values of the logistic regression model with C' = 0.01 (16 nonzeros) for the
Adult Income dataset.
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Figure 11: Maximum deviation D on the Adult Income dataset as a function of model complexity for
(a) DT (number of leaves), (b) LR (/1 norm), and (c) GAM (max_bins).

Dependence on model complexity Figure[TT|shows the dependence on model complexity for DT
(number of leaves), LR (coefficient ¢; norm), and EBM (max_bins). In Figure[ITa] the maximum
deviation is 0.114 for trees with 9 and 10 leaves, and remains moderate up to 26 leaves, which is
different than in Figure[5a] Similar to Figures[5b|and[5¢] ¢; norm has a larger effect on maximum
deviation than max_bins (note the vertical scale in Figure[TIc).

Dependence on certification set size Figure shows the dependence on the certification set
radius 7 for DT, LR, and GAM. The patterns are similar to those in Figure[6} the deviations for LR
and GAM increase from 7 = 0 and have jumps at » = 1, while the deviation for DT remains constant.
One difference is that the LR curve in Figure [[2a] meets its  — oo asymptote (dashed line in figure),
similar to GAM.

Figure[I12b]shows the upper bound on the maximum deviation as a function of the certification set
size for two RF models. As the test set is large in this case, the deviations observed even for small
values of r are high and grow to reach the value of the full feature space quickly.
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Figure 12: (Left) Maximum deviation D on the Adult Income dataset as a function of certification set
radius r for DT, LR, and GAM. (Right) Upper bound on maximum deviation of f, a Random Forest,
trained on the Adult Income dataset.

Relationships with accuracy and robust accuracy In Figure[I3] we show maximum deviation as
a function of test set accuracy for the DT, LR, and GAM models shown in Figure [IT](the LR and
GAM models are listed in Tables [5|and [6). Broadly, the plots show two regimes: one where accuracy
increases and maximum deviation increases moderately or not at all, and one where accuracy stalls
while maximum deviation increases. The latter is less desirable as it suggests increasing safety risks
without a gain in accuracy. The last branch of the DT curve actually decreases in accuracy, indicating
overfitting, while maximum deviation is high.

We also consider the relationship of maximum deviation to robust accuracy. Following Wong and
Kolter [20], robust loss for a pair (x, y) is defined as the worst-case loss over an ¢, ball centered at
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Figure 13: Maximum deviation D (at certification set radius = 0.2) vs. test set accuracy on the
Adult Income dataset.
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Figure 14: Maximum deviation D vs. robust accuracy (e = 0.1, » = 0.1) on the Adult Income
dataset.

max L(f(z+ A),y), (16)

[Allo <e

and robust accuracy is therefore 1 minus the average robust 0-1 loss over a dataset. While Wong and
Kolter [20] focus on bounding robust loss for feedforward neural networks with ReLLU activations,
we find that the results in Section.2]apply to computing robust loss (T6) exactly for LR and GAM
models. Specifically, for 0-1 loss and £+, balls, the separable optimization (8) applies, and the worst
case is obtained by minimizing f when the label y is positive and maximizing f when y is negative.

The resulting robust accuracy values for DT, LR and GAM are plotted in Figure [T4]in a similar
fashion as Figure[I3] Here we set e = 0.1 and r = 0.1 as well in computing maximum deviation.
The DT plot shows maximum deviation increasing with model complexity while robust accuracy
is stable up to a point. In the subsequent regime, when there are a large number of leaves, model
robustness reduces while deviation remains high. The LR plot begins similarly to the one in Figure[I3]
in that robust accuracy increases along with maximum deviation, but then it stalls and decreases
for maximum deviation above 0.94. In the GAM plot, robust accuracy actually decreases with the
max_bins parameter, i.e., the curve goes from right to left.

Breakdown by leaves of f, In Figures we plot the maximum log-odds achieved by model
f (max on RHS of (7)), the minimum log-odds achieved by f, and the reference model log-odds
9(yom ) over each leaf of the decision tree reference model in Figure (8} Plots are on the log-odds
scale to show the deviations more clearly, including those that would be compressed by the nonlinear
logistic function g=1(2) = 1/(1 + e~*). Figuresand show the dependence on the certification
set radius r while Figures [I6] and [I8]show dependence on the smoothness parameters for LR and
GAM. These figures provide a more granular picture corresponding to the summary in Figure [T1]
and support the trends seen there. In Figures[I5]and[T7] there are jumps at 7 = 1 because this is the
smallest radius that permits the values of categorical features of test set points (the ball centers in (2)))
to change to any other value. (Recall that categorical features are one-hot encoded into binary-valued
features.) In Figure[T7] the GAM achieves the limiting deviations corresponding to = co (C = X,
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dashed lines) no later than r = 1.2. In Figure T3] the LR model achieves the lower limit on log-odds
as soon as r > 1 but the upper limit is not achieved for most leaves.
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Figure 15: Minimum and maximum predicted log-odds for a logistic regression model with inverse
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Running time Figure[I9)shows the time required to compute the maximum deviation for LR and
GAM on the Adult Income dataset. The same observations apply as in Figure[7)earlier.

Primal bounds for RF  The primal bound for max-deviation shown in Figure 2] for RF is updated
each time the algorithm finds a K + 1 partite, i.e. has examined all trees in the Random Forest. The
max-deviation computed for such a partite is a valid deviation. To prove if its optimal, Algorithm
[M]needs to run to completion which may not be feasible. Figure 2]shows that as the RF models get
larger (number of partites increase), it gets harder to find primal solutions.

Maximal cliques evaluated for DT, RF To investigate the effectiveness of pruning by bounds in
Algorithm ([T} we investigate the number of times all the decision trees in the Random Forest have
to be processed. This represents number of times the state could not be pruned and needed to be
evaluated fully.

Figure [20]shows two aspects at play. (a) Pruning by bound is effective in restricting the search space
more so for Random Forests than for decision trees, and (b) for larger graphs, more time is spent in
computing bounds in Eq. (TT).
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Figure 20: Effectiveness of pruning by bound for tree-based models

Feature combinations that maximize deviation In Tables[7)and[8] we report feature values that
maximize deviation over selected leaves of the DT reference model, for LR and GAM respectively.
For Table[7} we have chosen the minimum log-odds over leaf 6 (corresponding to Figure[I3] leaf 6,
blue curve), which is one of the two leaves m in (7)) that maximize the deviation overall (the other
being leaf 8). For Table[8] the minimum log-odds over leaf 12 is chosen (corresponding to Figure[T7]
leaf 12, blue curve) because this maximizes the deviation overall for most values of r. The tables
show the 6 features that contribute most to the minimum log-odds. These contributions are again
determined using (8) (with max replaced by min); since the minimum log-odds occurs in one of
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the (o, ball-leaf intersections and this intersection is a Cartesian product, the decomposition in (§)
applies. The contribution of feature j is then ming;es; f; (x;). Asin Tables I andl we take an
average of the contributions over r to give a single rankmg of features for all r.

r EducationNum  HoursPerWeek  Age MaritalStatus Occupation Relationship
0.0 9.0 15,0 23.0 Never-married Sales Own-child
0.1 4.7 33.8 26.6 Never-married Transport-moving Not-in-family
0.2 4.5 32,5 25.3 Never-married Transport-moving Not-in-family
0.4 4.0 30.1 22.5 Never-married Transport-moving Not-in-family
0.6 35 27.6 19.8 Never-married Transport-moving Not-in-family
0.8 1.0 26.1 17.0 Never-married Farming-fishing  Not-in-family
0.999 1.0 7.7 17.0 Never-married Other-service Own-child
1.001 1.0 1.0 17.0 Never-married Other-service Own-child
1.2 1.0 1.0 17.0 Never-married Other-service Own-child
14 1.0 1.0 17.0 Never-married Other-service Own-child
1.6 1.0 1.0 17.0 Never-married Other-service Own-child
1.8 1.0 1.0 17.0 Never-married Other-service Own-child
2.0 1.0 1.0 17.0 Never-married Other-service Own-child
00 1.0 1.0 17.0 Never-married Other-service Own-child

Table 7: Feature values that minimize log-odds for a logistic regression model (C' = 0.01) over leaf 6
of the decision tree reference model. The 6 features that contribute most to the minimum are shown
as a function of certification set radius r.

As r increases, the predominant trend of the values of continuous features is toward extremes of
the domain X, depending on the sign of the corresponding LR coefficient w; or shape of the GAM
function f;. For example, EducationNum (education on an ordinal scale), hours per week, and age
decrease toward minimum values, while capital gain occupies the minimal interval permitted for
leaf 12 (see Figure [§). (These examples make sense since the log-odds of high income is being
minimized.) This movement toward extremes is expected in the LR case because the functions w;x;
are either increasing or decreasing, and it is also true for GAM if the function f; is mainly increasing
or decreasing. The values sometimes change abruptly in the opposite direction, for example hours
per week in both Tables and age in the latter. These abrupt changes are due to the minimum
jumping from one ball in (2)) to another as 7 increases, but the overall trend eventually prevails. For
categorical features, the trend is toward values that minimize f; (z j), e.g., Never-married marital
status, Without-pay work class. While the contribution of each of these features to minimizing
log-odds may be limited, together they do add up.

r CapitalLoss Age  HoursPerWeek WorkClass  CapitalGain Race
0.0 0 29.0 40.0 Private 7298 White
0.1 [040] [53.656.4] [18.8 20.5] 7 [50955119] White
0.2 [078] [23.323.5] [4.59.5] State-gov  [5095 5119] White
0.4 [078] [20.523.5] [2.111.9] State-gov  [5095 5119] White
0.6 [078] [28.829.5] [30.6 31.5] Private  [5095 5119] Asian-Pac-Islander
0.8 [1598 1759] [20.1 23.5] [30.1 31.5] State-gov  [5095 5119] White
0.999 [1598 1759] [21.423.5] [27.7 31.5] Private  [5095 5119]  Amer-Indian-Eskimo
1.001  [1598 1759] [17.23.5] [11.620.5] Without-pay [50955119] Amer-Indian-Eskimo
1.2 [1598 1759] [17.23.5] [9.220.5] Without-pay [50955119] Amer-Indian-Eskimo
1.4 [1598 1759] [17.23.5] [6.720.5] Without-pay [50955119] Amer-Indian-Eskimo
00 [1598 1759] [17.23.5] [1.20.5] Without-pay [50955119] Amer-Indian-Eskimo

Table 8: Feature values that minimize log-odds for an Explainable Boosting Machine (max_bins
= 8) over leaf 12 of the decision tree reference model. The 6 features that contribute most to the
minimum are shown as a function of certification set radius r. For > 0, the minimizing values of
continuous features form an interval because the corresponding functions f; are piecewise constant.

A notable exception to the trend toward extremes is capital loss in Table[8] This was discussed in the
“Identification of an artifact” example in Section [5]

Given the results in Tables [7]and [8] one question that arises is whether the feature combinations
are indeed possible, if not the ones for » — oo, then at least for some finite value of . For the top
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features shown in the two tables, while some combinations may appear improbable (for example,
EducationNum = 1 and 1 hour per week), we submit that none appear impossible. However, if one
considers features beyond the top 6, then some “impossible” combinations do occur (e.g., a female
husband), although the contributions of these features to the minimum log-odds are much less. We
touch upon this issue in Appendix [C]

The next question one might consider is the implication of these maximal deviations. From Figure|[§]
it is seen that leaf 6 classifies individuals with high capital gains as high income with high probability
(0.965). Leaf 12 adds the attributes of married status and high education, and hence classifies as high
income with even higher probability (0.996). At the same time, the feature values in Tables[7]and 8]
which minimize log-odds for LR and GAM, also make sense according to basic domain knowledge.
For example, few hours per week and young age are associated with lower income, as are Without-pay
work class and Amer-Indian-Eskimo race in the United States. When these conflicting associations
occur in combination and the combination does not appear impossible, the question may be which
one prevails. Such a question might be resolvable by a domain expert. Alternatively, the disagreement
between models f and fj on the extreme examples in Tables may be reason to be cautious about
using either of the models in these cases. This might lead to a way of combining the models or
abstaining from prediction altogether. Lastly, the anomalously low region in the CapitalLoss function
identified in Table[§]is a clear, concrete example where further investigation is warranted.
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D.4 Lending Club dataset

This dataset consists of 2.26 million rows with 14 features on loans. The target variable is whether a
loan will be paid-off or defaulted on. Features describe the terms of the loan, e.g. duration, grade,
purpose, etc. and borrower financial information such as credit history and income. For this case
study, we consider a loan approval scenario using only information available at the time of application.
In particular, we exclude the feature ‘total_pymnt’ (total payment over time on the loan), which
becomes known at essentially the same time as the target variable. (When ‘total_pymnt’ is included
as a feature, the prediction task becomes easy and accuracies in the high 90% range are possible.)

node #0
sub_grade <= 11.5
samples = 100.0%

value = [0.201, 0.799]

#1 #2
sub grade <=6.5 sub_grade <= 19.5
58. 41.4%
[0.126, 0.874] [0.307, 0.693]
7= #6 #3 #4
28.2% sub, grade <=8.5 term= 60 months <= 0.5 added dt| < 5.926
g 31.2%
005, QY1) 0. 169 o 8311 [0.273, 0.727] 0. 411 o 589]
7 # #1
e e added_dti <= 3.922 e e e
o
[0.139, 0.861] [0.188, 0.812] (0249, 0.756] [0.329, 0.671] [0.305, 0.695] [0.435. 0.565]
#11 #12
7.0% 133%
[0.203, 0.797] [0.265, 0.735]

Figure 21: Decision tree reference model with 8§ leaves for the Lending Club dataset.

Reference model Figure|21|depicts the 8-leaf DT reference model for the Lending Club dataset.
Most of the splits partition the ‘sub_grade’ feature, which is a measure of the quality of the loan
(0-34 range, lower is better). Node 3 differentiates between 60-month terms and 36-month terms
(the only alternative), while nodes 4 and 7 split on ‘added_dti’ (added debt-to-income ratio), which
is the ratio between 12 months worth of the loan’s payment installments and the borrower’s annual
income. While the structure of the DT agrees with domain knowledge (lower ‘sub_grade’ and lower
‘added_dti’ correlate with higher repayment probability), the test set accuracy of 79.8% is no better
than that of the trivial predictor that always returns the majority class of “paid off”. The DT’s AUC
of 0.689 however does indicate an improvement over the trivial predictor.

LR and GAM models Tables [9] and [10l show the statistics of the LR and GAM classifiers that
were trained on the Lending Club data. Similar to the DT reference model, the difference compared
to Tables [5] [6] for the Adult Income dataset is that the accuracies remain no better than that of the
trivial predictor, while the AUC does not show much increase either. These statistics suggest that
the prediction task is difficult with the features available. Figures [22]and 23| display plots for the
LR model with C' = 0.01 and GAM with max_bins = 8, which are again chosen as representative
models. The GAM in particular shows sensible monotonic behavior as functions of ‘sub_grade’,
‘int_rate’ (interest rate), ‘dti’ (debt-to-income ratio), etc., despite the unimpressive accuracy.
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C  nonzeros ¢;norm accuracy AUC

le-4 1 0.4 0.798  0.693
3e-4 2 0.6 0.799  0.695
le-3 6 1.0 0.799 0.702
3e-3 8 1.3 0.799 0.702
le-2 12 1.6 0.800 0.702
3e-2 17 2.1 0.799 0.703
le-1 22 3.1 0.799 0.703
3e-1 24 3.7 0.799 0.703
le+0 26 4.1 0.799 0.703
3e+0 26 4.2 0.799 0.703

Table 9: Number of nonzero coefficients, /1 norm of coefficients, test set accuracy, and AUC for
logistic regression models on the Lending Club dataset as a function of inverse ¢; penalty C.

max_bins accuracy AUC

4 0.798  0.696

8 0.798 0.703

16 0.799 0.704
32 0.799  0.705
64 0.799  0.705
128 0.799  0.705
256 0.799  0.705
512 0.799  0.705
1024 0.799  0.705

Table 10: Test set accuracy and AUC for Explainable Boosting Machines on the Lending Club dataset
as a function of max_bins parameter.

intercept I
sub_grade 4 I
term= 36 months I
annual_inc § |
dti 4 |
purpose=small_business - |
installment |
int_rate |
added_dti 4 |
purpose=debt_consolidation | |
credit_history |
funded_amnt |
revol_util

-0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25

Figure 22: Coefficient values of the logistic regression model with C' = 0.01 (12 nonzeros) for the
Lending Club dataset.
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Figure 26: Maximum deviations computed for tree and tree ensembles on the Lending Club dataset

Maximum deviation summary Figures 24H26| show maximum deviation as functions of certifica-
tion set radius r and model complexity parameters, in a similar manner as Figure [IT]for the Adult
Income dataset. The qualitative patterns are similar to before: increasing maximum deviation in all
cases except with the number of RF estimators in Figure[26b] where the upper bound is stable around
0.7. A major quantitative difference is that the maximum deviations for the GAM in Figure [25] are
much lower than for the other models, in particular LR in Figure 24} This is likely due to the fact
that the GAM functions f; in Figure @ are bounded while still being monotonic, unlike the linear

functions w;z; in the LR model.
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Figure 27: Minimum and maximum predicted log-odds for a logistic regression model with inverse
£ penalty C' = 0.01 on the Lending Club dataset, as a function of certification set size (radius ) and
broken down by leaves of the decision tree reference model.

Breakdown by leaves of f, Figures show a breakdown of the deviations for LR and GAM
by leaves of the reference model, similar to Figures [T5HI8| and again on the log-odds scale. One
difference is that in Figure [27] the deviations for finite 7 do not come close to their r — oo
counterparts in most cases. In Figure 29 however, the » — oo values are all attained when r is slightly
greater than 1.
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Running time, maximal cliques evaluated Figure [31]| shows the time required to compute the
maximum deviation for LR and GAM on the Lending Club dataset. Figure [32]shows the number of
K + 1-maximal cliques evaluated for DT and RF as well as the number of nodes in the graph. The
observations are the same as in Figures[T9)and 20]
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Figure 31: Time to compute maximum deviation for logistic regression models (left) and Explainable
Boosting Machines (right) on the Lending Club dataset as a function of certification set size (radius r).
The filled-in region shows the min-max variation with model complexity (¢/; norm for LR, max_bins
for EBM).
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Figure 32: Effectiveness of pruning by bound for tree-based models on the Lending Club dataset

Feature combinations that maximize deviation Tables[TT]and [I2]present the feature values that
maximize deviation for LR and GAM respectively. For both tables, the minimum log-odds over leaf
5 of the DT reference model is selected (corresponding to Figures [27) and 29] leaf 5, blue curve)
because this choice maximizes the deviation overall for most values of 7.

The previous trend toward extreme feature values that minimize log-odds also holds here as r
increases. For example, debt-to-income ratios increase to outlier values above 100%, annual income
drops to the minimum of $100, the term changes to 60 months in Table[l I|for » > 1, and the purpose
changes to small business, the category with the lowest log-odds in Figure[23] The decrease in income
and increases in debt-to-income ratios are qualitatively in accordance with each other. However, these
quantities are related to each other by deterministic formulas (at least in theory) that also involve the
interest rate and installment amount. It is not clear whether the values in Tables[T1]and [12] violate
these relationships. This may be an instance that could benefit from constraints on possible feature
combinations, as briefly mentioned in Appendix [C]
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r dti  annual_inc term purpose int_rate  credit_history
0.0 505 1700 36 months credit_card 74 2557
0.1 506 100 36 months credit_card 6.9 2283
0.2 507 100 36 months credit_card 6.4 2009
0.4 884 100 36 months debt_consolidation 10.1 3897
0.6 886 100 36 months debt_consolidation 9.1 3349
0.8 889 100 36 months debt_consolidation 8.2 2801
0.999 891 100 36 months debt_consolidation 7.2 2256
1.001 891 100 60 months small_business 7.2 2251
1.2 893 100 60 months small_business 6.3 1706
1.4 895 100 60 months small_business 53 1158
1.6 898 100 60 months small_business 5.3 1095
1.8 900 100 60 months small_business 5.3 1095
2.0 902 100 60 months small_business 5.3 1095
00 999 100 60 months small_business 53 1095

Table 11: Feature values that minimize log-odds for a logistic regression model (C' = 0.01) over leaf
5 of the decision tree reference model for the Lending Club dataset. The 6 features that contribute
most to the minimum are shown as a function of certification set radius 7.

T term int_rate dti purpose annual_inc added_dti
0.0 60 months 9.9 46.4  debt_consolidation 35000 25.5
0.1 60 months  [10.4 11.] [28.630.9]  debt_consolidation  [31800 38001] [10. 11.2]
0.2 60 months [12. 13.1] [27.8 31.8]  debt_consolidation  [36600 38001] [10. 11.7]
0.4 60 months  [13.6 14.3] [27.8 30.4] small_business [ 100 38001] [12.7 15.3]
0.6 60 months  [15.6 16.3] [27.8 36.1] small_business  [19801 38001] [12.7 15.]
0.8 60 months  [15.6 16.4] [27.8 28.4] small_business  [14402 38001] [12.7 15.7]
0.999 60 months [18.2 18.4] [27.8 38.8] small_business  [33069 38001] [12.7 14.5]
1.001 60 months [18.2 18.8] [27.8 35.3] small_business [ 935 38001] [12.7 18.5]
1.2 60 months  [18.2 20.2] [27.8 33.3] small_business [ 7602 38001] [12.7 18.1]
1.4 60 months  [18.2 21.2] [27.8 35.6] small_business [ 100 38001] [12.7 20.4]
1.6 60 months  [18.2 19.2] [27.8 29.9] small_business [ 100 38001] [12.7 24.5]
1.8 60 months  [18.2 26.1] [27.8 28.5] small_business [ 100 38001] [12.7 24.4]
2.0 60 months  [18.2 27.1] [27.8 30.7] small_business [ 100 38001] [12.7 26.6]
9 60 months  [18.231.] [27.8999.] small_business [ 100 380011 [ 12.7 3179.3]

Table 12: Feature values that minimize log-odds for an Explainable Boosting Machine (max_bins
= 8) over leaf 5 of the decision tree reference model for the Lending Club dataset. The 6 features
that contribute most to the minimum are shown as a function of certification set radius . For r > 0,
the minimizing values of continuous features form an interval because the corresponding functions
f; are piecewise constant.
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