
Appendix

A Diffusion Processes

A.1 Posteriors
Posterior of Amino Acid Types The generative diffusion kernel for amino acid types p(st−1

j |Rt, C)
(Eq.3) should align to the posterior q(st−1

j |stj , s0j). It can be derived from Eq.1 and Eq.2 [Hoogeboom
et al., 2021]:

q(st−1
j |stj , s0j) = Multinomial

([
αt

type · onehot(stj) + (1− αt
type) ·

1

20
· 1
]
⊙

[
ᾱt−1

type · onehot(s0j) + (1− ᾱt−1
type) ·

1

20
· 1
])

. (17)

The vector inside Multinomial(·) might not sum to one. In this case, the probability of a class is the
ratio of the value in the sum of the vector.

Posterior of Cα Coordinates The generative diffusion kernel p
(
xt−1
j

∣∣∣Rt, C
)

(Eq.7) should align
to the posterior obtained from Eq.5 and Eq.6 [Ho et al., 2020]:

q(xt−1
j | xt

j ,x
0
j) = N

(
xt−1
j

∣∣∣∣∣µq

(
xt
j ,x

0
j

)
,
(1− ᾱt−1

pos)βt
pos

1− ᾱt
pos

I

)
, (18)

where µq(· · ·) =

√
ᾱt−1

pos βt
pos

1− ᾱt−1
pos

x0
j +

√
αt

pos(1− ᾱt−1
pos)

1− ᾱt
pos

xt
j . (19)

A.2 Amino Acid Cα Position Normalization

As amino acid Cα positions could be arbitrary in the 3D space. We need to normalize them to use
the standard normal distribution with zero mean and unit variance as the prior distribution. First, we
need to derive the statistics of CDR positions. For each CDR in the SAbDab dataset, we shift the
overall structure such that the center point of the two CDR anchors is located in origin. Then, we
aggregate Cα positions in the shifted CDRs. Finally, we calculate the mean and standard deviation of
them. Before training and inference, we shift the whole structure according to their CDR anchors and
further shift and scale the structure according to the pre-calculated mean and standard deviation to
obtain the normalized coordinates.

B Distributions on SO(3)

B.1 Preliminary: Axis-Angle Representation of Rotations

Conventionally, a rotation is usually represented by 3 Euler angles (α, β, γ), which can be interpreted
as the composition of counter-clockwise rotations by α, β, γ about x, y, z axes. However, the
Euler representation is unsuitable for defining useful operations and distributions w.r.t. rotations
considered in this work. Alternatively, we introduce another rotation representation called axis-angle
representations. This representation parameterized a rotation with an rotational axis u (∥u∥2 = 1)
and an angle θ (θ ∈ R).

B.2 Logarithm of Rotation Matrices and Exponential of Skew-Symmetric Matrices
Logarithm of Rotation Matrices Derived from the definition of matrix logarithm, the logarithm of
a rotation matrix R is a skew-symmetric matrix [Gallier and Xu, 2003], which can be represented
as:

S := logR =

[
0 −vz vy
vz 0 −vx
−vy vx 0

]
. (20)

15

It can be proven that v = [vx, vy, vz] is the rotational axis of R, and ∥v∥2 is the rotational angle. For
brevity, we can use the vector notation v to represent a rotation in the logarithm space. The space is
also known as so(3) (different from the rotation group SO(3), the symbol is in lowercase).

To efficiently compute the logarithm of a rotation matrix without computing matrix logarithm or
solving rotational axis-angle, we can use the following formula [Gallier and Xu, 2003]:

logR =
θ

2 sin θ
(R−R⊺), (21)

where θ can be obtained from θ = cos−1
(
TrR−1

2

)
by the fact that Tr(R) = 1 + 2 cos θ. Specially,

when θ = 0 (or R = I), logR = [0,0,0].
Exponential of Skew-Symmetric Matrices The inversion of the rotation matrix logarithm is the
exponential of skew-symmetric matrices. Derived from the definition of matrix exponential, the
conversion formula is [Gallier and Xu, 2003]:

expS = I +
sin ∥v∥2
∥v∥2

S +
1− cos ∥v∥2
∥v∥22

S2, (22)

where S is a skew-symmetric matrix parameterized by three values v = [vx, vy, vz], identical to the
definition in Eq.20.
Remarks The logarithm and exponential defined above provide an easy way to create and ma-
nipulate rotations in the axis-angle parameterization space. For example, when we would like to
create a rotation matrix with an axis and an angle, we can first create a vector v whose direction is
the same as the given axis and whose length equals the angle. Then, we rewrite the vector v into a
skew-symmetric matrix S, and finally convert it to a rotation matrix by Eq.22. We can also manipulate
a rotation matrix, for example, changing its rotational angle, by mapping it to the logarithm space,
modifying the skew-symmetric matrix, and finally converting it back to a rotation matrix using the
exponential formula.

B.3 ScaleRot: Rotation Scaling Function

When we parameterize a rotation matrix with an axis and an angle, it is natural to define the rotation
scaling function ScaleRot as scaling the rotational angle. Formally, the definition is:

ScaleRot(k,R) := exp (k logR) , (23)

where k is the scaling factor and R is a rotation matrix. Specially, ScaleRot(0,R) = I for all
rotation matrix R. Intuitively, scaling a rotation matrix by 0 cancels its effect, leading to identity
transformation.

B.4 IGSO(3): Isotropic Gaussian Distribution on SO(3)

The isotropic Gaussian distribution on SO(3), denoted as IGSO(3), is defined on the axis-angle space
of rotation: S2 × [0, π], where S2 = {∥x∥2 = 1|x ∈ R3} is the unit sphere in R3. IGSO(3) is
parameterized by a mean rotation M and a scalar variance σ2. Let u ∈ S2 and θ denote the rotational
axis and angle random variables respectively. We first consider IGSO(3) with the identity matrix as
its mean: IGSO(3)(u, θ|I, σ2). Its p.d.f. is defined by the product of the uniform distribution on S2
and a special angular distribution [Matthies et al., 1970, Nikolayev and Savyolov, 1970, Leach et al.,
2022]:

pIGSO(3)
(u, θ|I, σ2) = puniform(S2)(u)pangular(θ|σ2), (24)

where puniform(S2)(u) =
1

4π
δ (∥u∥2 − 1) , (u ∈ S2) (25)

and pangular(θ|σ2) =
1− cos θ

π

∞∑

l=0

(2l + 1)e−l(l+1)σ2 sin
((
l + 1

2

)
θ
)

sin(θ2)
. (θ ∈ [0, π]) (26)

When the mean is other than I , to sample from the distribution, we can first sample an rotation E
from IGSO(3)(u, θ|I, σ2). Then, we left-multiply R to E to obtain the desired random value RE.

16

Sampling The algorithm for drawing samples from IGSO(3)(I, σ
2) (here, the mean rotation is

identity) can be broken down into two steps.

The first step is to draw a unit vector u from the uniform distribution on S2, puniform(S2)(u). This can
be done efficiently by sampling from the 3D standard Gaussian distribution and then normalizing the
sampled vector to unit length.

The second part is drawing samples from pangular(θ|σ2), which could be more tricky. We empirically
use two different proximate sampling strategies depending on the variance σ2. When σ is larger
than 0.1, the series (Eq.26) converges fast. In such cases, we use histograms to approximate the
distribution. In specific, we evenly partition [0, π] into 8192 bins, and use the probability density
pangular(θ|σ2) at the center of each bin as the bin weight. We randomly select a bin according to
the weights to draw samples from the discretized distribution. Then, we sample from the uniform
distribution spanning from the lower bound to the upper bound of the bin. The discretization process
is time-consuming. However, since the variances in the diffusion processes are predetermined, we
pre-compute and cache the bins and weights to draw samples efficiently. When σ is smaller than
0.1, we approximate the distribution using the truncated Gaussian distribution whose mean is 2σ
and the standard deviation is σ. Empirically, we find that the above proximate sampling algorithm is
sufficient for training and sampling from our diffusion model.

To sample from IGSO(3) with an arbitrary mean rotation R, we first draw a rotation from
IGSO(3)(I, σ

2), denoted as E. Finally, we left-multiply R to E to get the desired sample.

B.5 Uniform Distribution on SO(3)

The uniform distribution on SO(3) is equivalent to the uniform distribution of normalized quaternions
on S3 [Shoemake, 1992]. To sample a random rotation uniformly, we first sample a random vector
from the 4D standard normal distribution. Next, we normalize the vector and treat it as a quaternion.
Finally, we convert the quaternion to a rotation matrix which can be regarded as a sample from the
uniform distribution on SO(3).

C Neural Network Parameterization

C.1 Computing Residue Orientations

The orientation of a residue is determined by the coordinate of its three backbone atoms: Cα, C, and
N. Let xα

i , xC
i , and xN

i denote the 3D coordinates of the three backbone atoms of the i-th residue
respectively. The orientation of the residue, denoted by Oi, can be constructed using the following
Gram-Schmidt-based algorithm:

v1 ← xC
i − xα

i , (27)

e1 ←
v1

∥v1∥
, (28)

v2 ← xN
i − xα

i , (29)
u2 ← v2 − ⟨e1,v2⟩e1, (30)

e2 ←
u2

∥u2∥
, (31)

e3 ← e1 × e2, (32)
Oi ← [e1, e2, e3] . (33)

C.2 Architectures
Amino Acid Embedding Layer The embedding layer for each amino acid takes into account the
following information:

• Amino acid type: Each of the 20 amino acid types is represented by an embedding vector
denoted by etype

i .

• Heavy atom local coordinates: The coordinate of each heavy atom in an amino acid
is projected to the local coordinate frame using the rule xlocal

i = O⊺
i (x

atom
i − xα

i). All

17

of the local coordinates are concatenated into a single vector denoted by ecoord
i . If some

heavy atoms are missing, their local coordinates are filled with zeros. Note that the local
coordinates are invariant to global rotation and translation thanks to the projection rule.

• Backbone dihedral angles: The backbone dihedrals of amino acid, including ϕ, ψ, and ω
[Liljas et al., 2016, Ingraham et al., 2019], are transformed using a series of sine and cosine
functions with different frequencies, which are then concatenated into a single vector edihed

i .
• CDR flags and anchor flags: Amino acids on the CDR or by the two ends of the CDR

(anchors) are differentiated from other amino acids by special 0-1 flags denoted as eflag
i .

All of the vectors above are concatenated and fed to an MLP to produce the final embedding vector
for each residue.
Pairwise Embedding Layer Pairwise embeddings include information about the relationship
between two residues. The pairwise embedding for residue i and j involves the following information:

• Amino acid types of both amino acids: There are 20 × 20 = 400 combinations of two
amino acid types. We represent each of them using an embedding vector denoted by ztype

ij .

• Sequential relative position: If two residues are on the same chain and their distance on
the sequence is less than or equal to 32 (dseq

ij ∈ {−32 . . . 32}), the distance is represented by
an embedding vector zseq

ij . Otherwise, the distance embedding is filled with zeros.

• Pairwise distances: The distances between all pairs of atoms are flattened into a vector and
transformed by e−cdij (c is a learnable coefficient) into the spatial distance embedding zdist

ij .
Missing pairs are filled with zeros.

• Pairwise backbone dihedrals: The backbone dihedrals between any two amino acids i and
j are defined as ϕij = Dihedral(xC

i ,x
N
j ,x

α
j ,x

C
j) and ψij = Dihedral(xN

i ,x
α
i ,x

C
i ,x

N
j).

These two dihedrals are transformed by a series of sine and cosine functions into pairwise
dihedral embeddings zdihed

ij .

We concatenate the above vectors and feed them into an MLP to get the final pairwise embeddings
for each pair of amino acids zij .
Encoder The encoder for encoding the current diffusion state consists of a stack of orientation-
aware invariant 3D attention layers. Its aim is to capture relationships between amino acids and
provide high-level representations for each residue to denoise.

Let hℓ
i denote the hidden representation output from the last layer (when ℓ = 0, the representation is

the initial residue embedding). The formulas for computing the logit of attention weight between
residue i (query) and j (key) is:

aij =
〈
q
(
hℓ
i

)
,k
(
hℓ
j

)〉
+ f (zij) + g

({
Oi

⊺(xatom
j − xα

i)
}

atom

)
, (34)

where q(·), k(·), f(·), and g(·) are MLP subnetworks. The attention weights can be obtained by
taking softmax: wij = softmaxNj=1(aij). Note that, for simplicity, we do not consider attention
heads in the formula, but in practice we use multiple attention heads and different heads can be
combined easily via concatenation.

The formula for computing the value passed from residue j to i is:

vij = v
(
hℓ
j , zij ,

{
Oi

⊺(xatom
j − xα

i)
}

atom

)
, (35)

where v(·) is a network consisting of MLPs. Finally, the values along with attention weights are used
to update the amino acid representations with residual connection and layer normalization, same as
the standard transformer [Vaswani et al., 2017].

C.3 Notes on the Notations of the Denoising Networks F , G, and H

The notations F , G, and H do not only denote the MLPs following the encoder that outputs denoising
results. It refers to the embedding layers, the encoder, and the specific output MLP (for example,
F includes the MLP for denoising amino acid types). Therefore, the input to F , G, and H is the
diffusion state (sequence and structure) rather than hidden representations. Treating the three sections
as a whole allows us to neatly express the equivariance property of the model.

18

C.4 Proof of Equivariance

Lemma 1. The Euclidean distance function between two points is invariant to rotations and transla-
tions, i.e. d(Rx1 + r,Rx2 + r) = d(x1,x2), ∀R ∈ SO(3), r ∈ R3.

Proof.

d(Rx1 + r,Rx2 + r) = ∥(Rx1 + r)− (Rx2 + r)∥2
= ∥R(x1 − x2)∥2
= (x1 − x2)

⊺���R⊺R(x1 − x2)

= ∥x1 − x2∥2
= d(x1,x2).

Lemma 2. The dihedral function for four points is invariant to rotations and translations, i.e.
Dihedral(Rx1+r,Rx2+r,Rx3+r,Rx4+r) = Dihedral(x1,x2,x3,x4), ∀R ∈ SO(3), r ∈
R3. Here, Dihedral(· · ·) is defined as:

Dihedral(x1 . . .x4) = atan2(v2 · ((v1 × v2)× (v2 × v3)), ∥v2∥(v1 × v2) · (v2 × v3)), (36)

where vi = xi+1 − xi (i = 1, 2, 3).

Proof. First, we note that:

(Rxi+1 + r)− (Rxi + r) = R(xi+1 − xi) = Rvi.

By the equivariance of cross product (Ra×Rb = R(a× b)) and the invariance of inner product
(Ra ·Rb = a · b), we have:

Dihedral(Rxi + r|i = 1 . . . 4) = atan2(Rv2 · (R(v1 × v2)×R(v2 × v3)),

∥Rv2∥R(v1 × v2) ·R(v2 × v3))

= atan2(Rv2 ·R((v1 × v2)× (v2 × v3)),

∥v2∥(v1 × v2) · (v2 × v3))

= atan2(v2 · ((v1 × v2)× (v2 × v3)),

∥v2∥(v1 × v2) · (v2 × v3))

= Dihedral(xi|i = 1 . . . 4)

Lemma 3. The per-amino-acid orientation Oi is equivariant to rotations and translations, i.e.,
O(Rxα

i + r,RxC
i + r,RxN

i + r) = RO(xα
i ,x

C
i ,x

N
i)

Proof. First, we show that the first two basis vectors e1 and e2 are equivariant:

e1(Rxα
i + r,RxC

i + r) =
(RxC

i + r)− (Rxα
i + r)

∥(RxC
i + r)− (Rxα

i + r)∥

= R
xC
i − xα

i

∥vxCi − xα
i ∥

= Re1(x
α
i ,x

C
i).

Let v2 = xN
i −xα

i . We have (RxN
i +r)− (Rxα

i +r) = Rv2. Then, we can prove the equivariance
of e2:

e2(Rxα
i + r,RxC

i + r,RxN
i + r) = Rv2 − ⟨Re1,Rv2⟩Re1

= Rv2 − ⟨e1,v2⟩Re1
= R(v2 − ⟨e1,v2⟩e1)
= Re2(x

α
i ,x

C
i ,x

N
i)

By the equivariance of cross product, it is straightforward to show that e3 is also equivariant. Finally,
combining the equivariance of e1, e1, and e3, we prove the equivariance of the orientation matrix:

O(Rxα
i + r,RxC

i + r,RxN
i + r) = [Re1,Re2,Re3]

= RO(xα
i ,x

C
i ,x

N
i).

19

Lemma 4. The per-amino-acid and pairwise embedding layers are invariant to rotations and
translations of the input structure. i.e.

e(si, {xatom
i }atom, ϕi, ψi, ωi, e

flag
i) = e(si, {Rxatom

i + r}atom, ϕi, ψi, ωi, e
flag
i), and

z({d(xatom1
i ,xatom2

j)}atom1, atom2, · · ·) = z({d(Rxatom1
i + r,Rxatom2

j + r)}atom1, atom2, · · ·).

Proof. Before embedding atom positions for an amino acid, the network first projects the positions
using the orientation by the rule:

xlocal
i = O⊺

i (x
atom
i − xα

i)

The projection operation is invariant to rotations and translations, using Lemma 3:

xlocal
i (Rxatom

i + r,Rxα
i + r) = (ROi)

⊺((Rxatom
i + r)− (Rxα

i + r))

= O⊺
i �

��R⊺R(xatom
i − xα

i)

= xlocal
i (xatom

i ,xα
i).

The formulas for computing dihedral angles (ϕi, ψi, ωi) are also invariant by Lemma 2 Other variables
(amino acid types and CDR flags) are independent of the 3D structure and hence they are invariant.

So far, we have shown that all the components of embedding layers are invariant to rotations and
translations of the overall 3D structure. Therefore, the embedding layer is invariant.

Pairwise embedding layers involve distances between residues, which are invariant by Lemma 2.
Other variables are irrelevant to 3D structures. Hence, the pairwise embedding layer is invariant.

Lemma 5. The orientation-aware attention layer is invariant to rotations and translations if the
input hidden representations hi, zij(i, j = 1 . . . N) come from invariant functions.

Proof. First, we show that projecting atoms on the j-th amino acid to the orientation of the i-th amino
acid is invariant to rotations and translations by Lemma 3:

(ROi)
⊺((Rxatom

j + r)− (Rxα
i + r)) = O⊺

i �
��R⊺R(xatom

j − xα
i).

As other inputs to the attention layer (hi, zij(i, j = 1 . . . N)) are invariant to rigid transforms on the
structure, the networks for computing attention weights and values are invariant. Hence, the attention
layer is invariant.

In the case where we stack multiple attention layers, each layer outputs invariant representations for
its next layer. Therefore, the network consisting of multiple attention layers is invariant.

Proposition 2. For any proper rotation matrix R ∈ SO(3) and any 3D vector r ∈ R3 (rigid
transformation (R, r) ∈ SE(3)), F , G and H satisfy the following equivariance properties:

F (RRt + r,RC + r) = F (Rt, C), (37)

G(RRt + r,RC + r) = RG(Rt, C), (38)

H(RRt + r,RC + r) = RH(Rt, C), (39)

where RRt+r := {stj ,xt
j+r,ROt

j}l+m
j=l+1 and RC+r := {si,xi + r,ROi}i∈{1...N}\{l+1,...,l+m}

denote the transformed structure.

Proof. By Lemma 5, we know that the encoder network produces invariant representations. Therefore,
the MLP for predicting amino acid types that transforms the invariant representations into a probability
over 20 categories is invariant, so F is invariant.

The MLP for predicting local coordinate changes MLPG(hi) is invariant. The local coordinate
change is converted to the global coordinate change using the following rule:

ϵ̂j = Ot
j MLPG (hj) .

By Lemma 3, the above rule is equivariant to rotations, and hence G is equivariant to rotations.

Similarly, the MLP for predicting changes in orientation MLPH(hi) is invariant. The changes is
applied to the original orientation by:

Ôt−1
j = Ot

jMj ,

which is equivariant to rotations according to Lemma 3. Therefore, H is equivariant to rotations.

20

D Sampling Algorithms

D.1 Backbone Atoms and Sidechain Cβ Construction

The coordinates of backbone atoms (N, Cα, C, O) and sidechain Cβ can be determined by the
orientation and the Cα position of an amino acid because the geometry of these atoms is inflexible
[Liljas et al., 2016]. To construct the position of N, Cα, C, and Cβ for the i-th amino acid, we use
the following formula:

xatom
i = Oic

atom + xi, (atom ∈ {N, Cα, C, Cβ}) (40)

where Oi and xi is the model-predicted amino acid orientation and Cα position. catom is the local
coordinate derived from experimental data relative to the orientation and the Cα position, as shown
in the following table.

Atom cx cy cz

N -0.526 1.361 0.000
Cα 0.000 0.000 0.000
C 1.525 0.000 0.000
Cβ -0.500 -0.733 -1.154

The position of O depends on the ψ angle of the amino acid, which relies on the next amino acid in
the sequence. Therefore, after constructing backbone atoms, we calculate the ψ angle for each amino
acid (ψi = Dihedral(Ni,Ci

α,C
i,Ni+1)), and use the following rule to construct O coordinates:

xO
i = Oic

O(ψi) + xi, (41)

where

cO(ψi) =

[
1 0 0
0 cosψi − sinψi

0 sinψi cosψi

][
2.151
−1.062
0.000

]
. (42)

D.2 Sidechain Packing and Full Atom Refinement

We use PackRotamersMover in PyRosetta [Chaudhury et al., 2010] to pack sidechains only for
amino acids on the generated CDR. The packing program is based on the Dunbrack 2010 rotamer
library [Shapovalov and Dunbrack Jr, 2011] and the REF2015 energy function [Alford et al., 2017].

After packing sidechains, we refine the structure with OpenMM [Eastman et al., 2017]. Specifically,
we first use PDBFixer to prepare the structure for refinement. We minimize the potential energy of
the structure. The potential energy is AMBER99SB force field plus quadratic constraint terms that
restrain the position of atoms outside the generated CDR.

E Source Code

Code and data are available at https://github.com/luost26/diffab

21

https://github.com/luost26/diffab

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Our

method might be used to design malicious proteins.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Appendix E
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] Single A100 GPU.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

22

