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Abstract

An interactive mechanism is an algorithm that stores a data set and answers adap-
tively chosen queries to it. The mechanism is called differentially private, if any
adversary cannot distinguish whether a specific individual is in the data set by
interacting with the mechanism. We study composition properties of differential
privacy in concurrent compositions. In this setting, an adversary interacts with k
interactive mechanisms in parallel and can interleave its queries to the mechanisms
arbitrarily. Previously, Vadhan and Wang [2021] proved an optimal concurrent
composition theorem for pure-differential privacy. We significantly generalize and
extend their results. Namely, we prove optimal parallel composition properties for
several major notions of differential privacy in the literature, including approxi-
mate DP, Rényi DP, and zero-concentrated DP. Our results demonstrate that the
adversary gains no advantage by interleaving its queries to independently running
mechanisms. Hence, interactivity is a feature that differential privacy grants us for
free.
Concurrently and independently of our work, Vadhan and Zhang [2022] proved
an optimal concurrent composition theorem for f -DP [Dong et al., 2022], which
implies our result for the approximate DP case.

1 Introduction

By now, differential privacy [Dwork et al., 2006b] has been widely accepted as a standard framework
for protecting individual privacy when performing data analysis on data sets that may contain sensitive
information of individuals (see, e.g., the surveys by Dwork and Roth [2014], Vadhan [2017]).

LetM be an algorithm that runs on a data set x and calculates some information about it. Roughly
speaking,M is called differentially private, if the output distribution of A remains nearly identical
when we arbitrarily modify a single entry in x.

One essential feature of differential privacy is its composability. Composition captures the scenario
where a data analyst runs k differentially private algorithms sequentially, and releases the results
afterward. Typically, a composition theorem has the following form: if each of the k algorithms
satisfies differential privacy, then the analyst’s output is still differentially private with moderately
degraded privacy parameters.

Composition theorems are important for at least two reasons. First, we might want to perform
computation tasks on the same data set multiple times and still have reasonable control over the
privacy loss. In this case, composition theorems reveal how the privacy guarantee degrades over time.
More importantly, composition theorems allow us to build more complex and powerful differentially-
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private algorithms from simple primitives, and argue the privacy guarantee of the combined algorithm
in a straightforward way.

There is a rich literature concerning the composition property of differential privacy (see, e.g., Dwork
et al. [2006a, 2010], Kairouz et al. [2015], Murtagh and Vadhan [2018], Bassily et al. [2021]).
However, most existing composition theorems only consider the scenario where an analyst runs
several private algorithms sequentially. That is, the analyst will only move on to the next algorithm
after finishing their computation with the previous one. In contrast, many fundamental primitives in
differential privacy are interactive in nature, such as the sparse vector technique [Dwork et al., 2009,
Roth and Roughgarden, 2010] and private multiplicative weight updates [Hardt and Rothblum, 2010].
Hence, the interactivity issue appears to be a significant limitation of current composition theorems.
Namely, the data analyst may want to communicate with several interactive mechanisms concurrently,
and interleave its queries to the mechanisms arbitrarily. A sequential composition theorem completely
fails to capture this scenario. Also, in practice, deployments of DP algorithms often demand a better
understanding of concurrent compositions of interactive mechanisms [Hay et al., 2020].

Recently, Vadhan and Wang [2021] initiated a study of concurrent compositions and proved an
optimal concurrent composition theorem for pure differential privacy. In this work, we significantly
advance this research direction by proving optimal concurrent composition theorems for several
popular notions of differential privacy, including approximate DP, Rényi DP, zero-concentrated DP
and truncated concentrated DP.

1.1 Setup

Before we continue, we set up necessary pieces of notation. We use X and Y to denote the domain
of query messages and responses, respectively. We assume that both X and Y are finite sets.
This assumption is for easing some mathematical manipulation and is not restrictive: all practical
applications of differential privacy have finite input and output spaces anyway.

For a set S, denote by ∆(S) the set of all possible distributions supported over S. We define
interactive systems below.
Definition 1 (Interactive system). An interactive system is a (randomized) algorithmM : (X ×Y)∗×
X → ∆(Y). The input toM is an interaction history (x1, y1), (x2, y2), . . . , (xt, yt) ∈ (X × Y)t
together with a query xt+1. The output ofM is denoted by yt+1 ∼M((xi, yi)i∈[t], xt+1).

A technicality worth mentioning is that due to the internal memory and randomness of an interactive
system M, the response of M to the (t + 1)-th query might be correlated with its responses to
previous queries. Although the internal randomness ofM is not explicitly stated as a parameter,
Definition 1 captures this correlation by requiring that each query xt+1 toM is attached with the
interaction history (x1, y1), . . . , (xt, yt). This history is sufficient for determining the conditional
distribution of the responseM((xi, yi)i∈[t], xt+1) without specifying the internal randomness and
memory.

We make a distinction between mechanisms and systems. By “mechanism” we mean a differentially
private algorithmM that holds a sensitive input d and answers queries about it. When applied to a
concrete input d,M induces an interactive system, denoted byMd. According to the definition of
differential privacy, studying the privacy of a mechanism boils down to studying the pair of systems
(Md,Md′

) induced by running M on every pair of neighboring inputs (d, d′). For brevity, we
usually assume W.L.O.G. that the input only consists of a single bit b ∈ {0, 1}, and we compare the
two systemsM0,M1 induced byM.

Concurrent composition. We define concurrent composition of interactive systems. Suppose
M1,M2, . . . ,Mk are k systems. The concurrent composition of them is an interactive system
COMP(M1 . . .Mk) with query domain [k]×X and response domain Y . An adversary is a (possibly
randomized) query algorithm A : ([k]×X × Y)∗ → ∆([k]×X ). The interaction between A and
COMP(Mi) is a stochastic process that runs as follows. A first1 computes a pair (i1, x1) ∈ [k]×X ,
sends a query x1 toMi1 and gets the response y1. In the t-th step, A calculates the next pair (it, xt)
based on the history, sends the t-th query xt toMit and receives yt. There is no communication or

1We assume it is always the adversary who sends the first message. This is without loss of generality: we can
let the first message sent from the adversary to each system be an “Initiliazation” query. Having received the
initialization query, the system returns either a starting message or simply a “SUCCESS” symbol.
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interaction between the interactive systems. Each systemMi can only see its own interaction with A.
Let IT(A :M1, . . . ,Mk) denote the random variable recording the transcript of the interaction.

In the special case k = 1, there is only one systemM and the adversary is interacting with it. We
define approximate differential privacy for interactive mechanisms in this case.
Definition 2 (Indistinguishability and (ε, δ)-DP). Two interactive systemsM0,M1 are called (ε, δ)-
indistinguishable, if for every b ∈ {0, 1}, every adversary A and every collection of transcripts
S ⊆ {(xi, yi)i∈[T ]}, it holds that

Pr[IT(A :Mb) ∈ S] ≤ eε Pr[IT(A :M1−b) ∈ S] + δ. (1)

Let M be an interactive mechanism. M is called (ε, δ)-approximate differentially private (or
(ε, δ)-DP for short), if for every two neighboring data sets d and d′, the systemsMd andMd′

are
(ε, δ)-indistinguishable.

1.2 Differential Privacy in Concurrent Compositions

We study the privacy guarantee under concurrent compositions. LetMb
1, . . . ,Mb

k be k interactive
mechanisms, each satisfying (ε, δ)-DP. Consider their concurrent composition COMP(Mb

1 . . .Mb
k).

We want to find out the smallest parameters ε′, δ′ such that COMP(Mb
i ) satisfies (ε′, δ′)-DP. In the

sequential composition, the adversaryA interacts withMi’s in order and cannot interleave its queries.
In this case, it is known by the advanced composition theorem [Dwork et al., 2010] that IT(A :

M0
1, . . . ,M0

k) and IT(A :M1
1, . . . ,M1

k) are (O(
√

k log(1/δ′)ε), kδ + δ′)-indistinguishable.

However, in general, the adversary can interleave its queries arbitrarily, and the differential privacy
guarantee warranted by COMP(Mi) is less clear. Vadhan and Wang [2021] were the first to formally
study this question. They showed that in the special case δ = 0, an optimal composition holds for
COMP(Mi). That is, if we can prove an (ε′, δ′) upper bound on the privacy parameter for sequential
compositions ofMb

1, . . . ,Mb
k, then the concurrent composition COMP(Mi) also enjoys the same

(ε′, δ′)-DP.

Vadhan and Wang [2021] also considered the case δ > 0 (i.e., approximate DP). However, for this
case, they only showed an upper bound on ε′, δ′ that is inferior to the basic composition in the
sequential setting. It was asked as an open question in Vadhan and Wang [2021] whether the optimal
composition theorem for approximate DP still holds in the concurrent composition.

Besides pure and approximate DP, there are also other notions of differential privacy that are
extensively studied in the literature. A non-exhaustive list includes Rényi DP [Mironov, 2017],
concentrated DP [Dwork and Rothblum, 2016, Bun and Steinke, 2016, Bun et al., 2018], Gaussian
DP and f -DP [Dong et al., 2022] etc. Compared with the standard notion of (ε, δ)-approximate DP,
these variants of DP either allow for a simplified analysis of private algorithms or give sharper bounds
of privacy guarantee. In the sequential composition, the composition property of these variants has
been well understood. It is also interesting to extend these composition theorems to the concurrent
composition, thereby expanding the potential applicability of these DP notions.

2 Our Results

In this work, we give an affirmative answer to the open question mentioned above. Moreover, our
result confirms that several major differential privacy definitions in the literature enjoy the same
composition guarantee in the concurrent composition, just as they do in the sequential composition.

Approximate differential privacy. (ε, δ)-DP is arguably the most widely studied notion of differ-
ential privacy and is deemed the “standard” definition of DP. As our first main result, we show an
optimal concurrent composition theorem for approximate DP.
Theorem 1. LetM1, . . . ,Mk be k interactive mechanisms that run on the same data set. Suppose
that each mechanismMi satisfies (εi, δi)-DP. Then COMP(M1 . . .Mk) is (ε′, δ′)-DP, where ε′, δ′
are given by the optimal (sequential) composition theorem [Kairouz et al., 2015, Murtagh and Vadhan,
2018].

In particular, when the privacy parameter for each mechanism is the same (ε, δ), their concurrent
composition satisfies O(

√
k log(1/δ′)ε, δ′ + kδ)-DP for all δ′ ∈ (0, 1).
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Rényi differential privacy. Rényi differential privacy was first defined by Mironov [2017]. We recall
its definition.
Definition 3 (Rényi divergence and differential privacy). Let P,Q be two distributions supported
over X . For each α > 1, define the Rényi divergence of order α of P from Q as

Dα(P∥Q) :=
1

α− 1
log

(
E

x∼P

[(
P (x)

Q(x)

)α−1
])

.

Two interactive systems are called (α, ε)-Rényi close, if for every adversary A and every b ∈ {0, 1},
it holds that

Dα(IT(A :Mb)∥IT(A :M1−b)) ≤ ε.

LetM be a mechanism.M is called (α, ε)-Rényi differentially private (or (α, ε)-RDP for short), if
for every two neighboring data sets d and d′, the systemsMd andMd′

are (α, ε)-Rényi close.

A main advantage of Rényi DP is that it has a natural and simple composition. In the sequential
setting, it is known that if two mechanismsM1,M2 are (α, ε1) and (α, ε2)-RDP, respectively, then
the composition ofM1 andM2 is (α, ε1 + ε2)-RDP. Our next theorem generalizes this result to the
concurrent composition setting.
Theorem 2. LetM1, . . . ,Mk be k interactive mechanisms that run on the same data set. Suppose
that each mechanismMi is (α, εi)-RDP. Then COMP(M1 . . .Mk) is (α,

∑k
i=1 εi)-RDP.

One implication of Theorem 2 is that the zero-concentrated differential privacy by Bun and Steinke
[2016] and the truncated concentrated differential privacy by Bun et al. [2018] also compose nicely
under the concurrent composition. We state the corollary below, and prove it in Appendix A.3 for
completeness.
Corollary 1. LetM1, . . . ,Mk are k interactive mechanisms that run on the same data set. Suppose
that each mechanismMi is ηi-zCDP (resp. (ρi, ω)-tCDP). Then COMP(M1 . . .Mk) is (

∑
i ηi)-

zCDP (resp. (
∑

i ρi, ω)-tCDP).

Theorem 1, 2 and Corollary 1 provide compelling evidence that the adversary gains no advantage by
interleaving its queries to independently running mechanisms. Consequently, interactivity can be
viewed as a feature that differential privacy grants us for free.

Concurrent and independent work. Concurrently to our work, a recent work by Vadhan and Zhang
[2022] proves an optimal concurrent composition theorem for f -DP [Dong et al., 2022]. By the
standard connection, their result implies the optimal concurrent composition theorem for approximate
DP. However, our techniques are very different than theirs. Their result is stronger, as it is known
that approxiamte-DP can be seen as a special case of f -DP [Dong et al., 2022]. However, our
proof for approximate DP is more elementary: we do not need to work through f -DP as their proof
does. Furthermore, our proof comes with several interesting technical ingredients that might be of
independent interests. This includes a structural result for interactive mechanisms (Theorem 3), as
well as a dual perspective to reason about Rényi divergences (Lemma 4).

3 Implications of Our Results

In this section, we discuss implications of our results, and demonstrate how they offer more than the
sequential composition theorems.

Designing new algorithms. The optimal concurrent composition theorem makes it possible to design
new differentially private algorithm that involves running several building blocks concurrently. As
one motivating example, consider the Sparse Vector Technique (SVT). The standard SVT (as in
Dwork and Roth [2014]) and its variants have been studied extensively in the literature. In particular,
it was observed by Lyu et al. [2017], Zhu and Wang [2020] that one can add noise to the threshold
only once, and then use the noisy threshold to answer c > 1 “meaningful” queries (namely, after
reporting each meaningful query, the SVT algorithm does NOT refresh the noisy threshold). It was
argued in [Lyu et al., 2017, Zhu and Wang, 2020] that this variant of SVT can offer a higher accuracy
while consuming the same amount of privacy budget, both theoretically and empirically.

However, this variant of SVT has received relatively less attention in literature. One reason might be
that it is unclear what happens if we compose this SVT with other mechanisms. In particular, the
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standard SVT refreshes its threshold after answering each “meaningful” query, which allows one
to decompose the algorithm into c pieces of smaller SVT algorithms, and then compose with other
mechanisms via the sequential computation. In contrast, the variants by Lyu et al. [2017], Zhu and
Wang [2020] work by answering each “meaningful query” using the same noisy threshold, which do
not seem to admit such a decomposition. This makes this variant less appealing: in most applications,
people want to use SVT as a supporting subroutine for other algorithms. Therefore, it is crucial to
understand the (concurrent) composition behavior of SVT with other mechanisms.

Now, with the new concurrent composition theorem, we can plug this variant of SVT in any algorithm,
and argue the privacy guarantee of the whole computation by black-box applying Theorems 1
and 2 (depending on whether we are working with (ε, δ)-DP or RDP). To illustrate the idea, in
Appendix B, we apply Theorem 1 to analyze a simple algorithm: private “Guess-and-Check” with
the aforementioned variant of SVT as a subroutine. We hope our example can motivate people to
design more powerful algorithms by concurrently composing simple building blocks.

Practical Implication. Besides the theoretical interests, our theorem has implications for practical
deployments of interactive DP mechanisms. For one example, suppose there is a data center that holds
the private information of individuals and offers data analysts access to the database (interactively and
differentially-privately). Without knowing the concurrent composition theorem, it might be possible
that some k > 1 analysts can collude by coordinating their (interactive) queries to the database and
extracting much more sensitive information. Our result refutes the possibility of such an attack.
In particular, suppose each data analyst has only an (ε, δ)-DP amount of privacy “quota”. Then,
even if they collude and spend their privacy budget in whatever way, their computation result is still
(O(
√
k log(1/δ′)ε), kδ + δ′)-DP with respect to the private database.

4 Proof of Main Results

In this section, we show the proof of our results. We start with a very brief proof overview. We prove
Theorem 1 by a reduction to the sequential composition of k (approximate) randomized response
mechanisms. This generalizes the idea developed by Vadhan and Wang [2021]. To prove Theorem 2,
we take a completely different approach, and our technique offers new tools to analyze Rényi DP.
Namely, we propose an alternative characterization of Rényi divergence (Lemma 4), which allows for
a fine-grained account of the privacy loss in the complex interaction involving multiple mechanisms.
The characterization of Rényi divergence might find itself useful in other applications.

Notation. Let P,Q be two distributions supported over X . For a real η > 0, we say that P ≥ ηQ, if
for every S ⊆ X , it holds that

Pr
x∼P

[x ∈ S] ≥ η Pr
x∼Q

[x ∈ S].

Furthermore, we say P ≡ Q, if P and Q are identically distributed.

4.1 Approximate Differential Privacy

To prove Theorem 1, we follow the approach by Vadhan and Wang [2021], where they showed that
one can simulate two (ε, 0)-indistinguishable interactive systems by post-processing a randomized
response mechanism. This simulation enables them to reduce the concurrent composition to a
sequential composition, and the optimal composition theorem follows. It was asked as an open
question in Vadhan and Wang [2021] whether the same simulation can be carried out for approximate
DP. We answer this question affirmatively.

Review of the Vadhan-Wang approach. It would be instructive to review the proof by Vadhan and
Wang [2021] first. LetM0,M1 be the pair of systems by running the private mechanism on a pair of
neighboring data sets. The adversary A interacts withMb for some b ∈ {0, 1} and wants to find out
the value of b. An intuitive yet delicate fact due to Vadhan and Wang [2021] is that, ifM0 andM1

are (ε, 0)-indistinguishable, then there exist two systems N 0,N 1 such that, for every adversary A,
the distribution of IT(A :Mb) is identical to eε

1+εIT(A : N b) + 1
1+eε IT(A : N 1−b). This enables

one to simulate the many-round interaction between A andMb by running a one-round randomized
response mechanism.
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In more detail, let RRb
ε denote the standard randomized response mechanism, defined as follows.

RRb
ε only accepts one query. On the query, RRb

ε ignores the query message, returns b with probability
eε

1+eε , and returns 1 − b otherwise. We modify A to a new adversary A′: A′ first sends a query to
RRb

ε and receives a bit b′. Then A′ simulates the interaction between A and N b′ , and outputs the
transcript (i.e., IT(A : N b′)). Let Output(A′ : RRb

ε) denote the output distribution of A′ when
interacting with RRb

ε. It is clear that

Output(A′ : RRb
ε) ≡

eε

1 + ε
IT(A : N b) +

1

1 + eε
IT(A : N 1−b) ≡ IT(A :Mb).

Therefore, A′ simulates the interaction between A,Mb faithfully, by a single query to RRb
ε.

Now, suppose the adversary A is interacting with k mechanisms Mb
1, . . . ,Mb

k in parallel. For
each i ∈ [k], assuming that M0

i and M1
i are (εi, 0)-indistinguishable, there is a decomposition

ofM0
i ,M1

i by some N 0
i and N 1

i . Again, we modify A to a new mechanism A′. A′ first queries
RRb

εi , i ∈ [k] in order, and receives k bits b′1, . . . , b
′
k. Then A′ simulates the interaction between A

and (N b′i
i )i∈[k] and outputs the transcript. One can show that

Output(A′ : RRb
ε1 , . . . ,RR

b
εk
) ≡ IT(A :Mb

1, . . . ,Mb
k). (2)

Note that the left hand side of (2) can be simulated by a sequential composition of k randomized
response mechanisms. Invoking the optimal composition theorem for sequential composition [Kairouz
et al., 2015, Murtagh and Vadhan, 2018] concludes the proof.

Extension to approximate DP. Now, if M0 and M1 are (ε, δ)-indistinguishable with δ > 0,
there might not be a nice decomposition ofMb into eε

1+eεN
b + 1

1+eεN
1−b. Still, it is plausible to

conjecture that there is a decomposition ofM0,M1 with four systems N 0,N 1, E0, E1 such that for
each b ∈ {0, 1},

Mb = δEb + (1− δ)

(
eε

1 + eε
N b +

1

1 + eε
N 1−b

)
. (3)

Our main technical result in this subsection proves the existence of such a decomposition.

Theorem 3. Two systemsM0,M1 are (ε, δ)-indistinguishable, if and only if there are four systems
N 0,N 1, E0, E1 satisfying the following: for every adversary A and b ∈ {0, 1}, it holds that

IT(A :Mb) ≡ δIT(A : Eb) + (1− δ)

(
eε

1 + ε
IT(A : N b) +

1

1 + eε
IT(A : N 1−b)

)
. (4)

Theorem 3 implies Theorem 1 by a similar reduction to (approximate) random response. For
completeness, we include a proof in Appendix A.1.

We prove Theorem 3 by establishing a series of lemmas. In the following, we state these lemmas and
explain their intuition. We defer the formal proof to Appendix A.1.

Lemma 1. SupposeM0,M1 are (ε, δ)-indistinguishable. There are two systems E0, E1 satisfying
the following.

• For every adversary A and b ∈ {0, 1}, it holds that IT(A :Mb) ≥ δ · IT(A : Eb).

• For every adversary A, every set of transcripts S ⊆ {(xi, yi)i∈[T ]} and b ∈ {0, 1}, it holds
that

Pr[IT(A :Mb) ∈ S]− δ Pr[IT(A : Eb) ∈ S]

≤ eε
(
Pr[IT(A :M1−b) ∈ S]− δ Pr[IT(A : E1−b) ∈ S]

)
.

Roughly, Lemma 1 says that there are two systems E0, E1 that capture the low-probability “bad
behavior” ofM0,M1. It is the primary technical contribution of this subsection. We prove Lemma 1
by explicitly constructing the two systems E0, E1. That is, we specify the probability density functions
Pr[Eb((xj , yj)j<i, xi) = yi] for E0, E1 step by step, in the increasing order of i = 1, 2, . . . , T .
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Lemma 2. SupposeM, E are two systems such that for every adversary A, it holds that IT(A :
M) ≥ δIT(A : E). Then there is a system N such that for every adversary A, it holds that

IT(A :M) ≡ δIT(A : E) + (1− δ)IT(A : N ).

For intuition, suppose P,Q are two distributions such that P ≥ δQ. Then one can easily find a
distribution Q′ such that P ≡ δQ+ (1− δ)Q′. The proof of Lemma 2 extends this simple idea.

Lemma 3 (Vadhan and Wang [2021]). Suppose N 0,N 1 are (ε, 0)-indistinguishable. Then there are
two systems N 0′ ,N 1′ such that for every adversary A, it holds that

IT(A : N b) ≡ eε

1 + eε
IT(A : N b′) +

1

1 + eε
IT(A : N (1−b)′).

Wrap-up. We can conclude the proof for Theorem 3 now. The “if” direction is obvious: the
existence of a decomposition satisfying (4) implies thatM0,M1 are (ε, δ)-indistinguishable. For
the other direction, we start by constructing E0, E1 using Lemma 1. Then we construct N 0,N 1

by Lemma 2. Lemma 1 and 2 together ensure that N 0 and N 1 are (ε, 0)-indistinguishable, which
enables us to invoke Lemma 3 and decompose N 0,N 1 into N 0′ ,N 1′ . (E0, E1,N 0′ ,N 1′) forms the
final decomposition. It is straightforward to verify that they satisfy (4).

4.2 Rényi Differential Privacy

Our result for Rényi differential privacy (Theorem 2) takes a completely different approach.

An intuition. LetM1 be an (α, ε)-Rényi DP mechanism. Intuitively, (α, ε)-Rényi DP means that
M1 has ε unit of privacy budget and can distribute it to T queries. Viewing the privacy budget as a
form of “deposit”, we hope to argue that two or more independently running mechanisms spend their
deposit independently, and an adversary cannot trigger any mechanism to spend more privacy budget
than it holds by interacting with other mechanisms.

However, unlike some intuitive and easy-to-measure resources such as time and energy, the notion of
privacy loss looks somewhat illusive. Even worse, we need to reason about this elusive resource in
a stochastic process consisting of interactions with multiple systems. It was not clear how one can
quantify the privacy loss in such an interactive and complex process. Nonetheless, we manage to find
a new approach to do so.

An alternative characterization for Rényi DP. We introduce the following characterization of Rényi
divergence based on Hölder’s inequality and duality. That is, we prove

Lemma 4 (An alternative characterization of Rényi divergence). Suppose P,Q are two distributions
supported over Y . For every α > 1 and B ≥ 0, let β = α

α−1 be the Hölder conjugate of α. The
following statements are equivalent.

• Dα(P∥Q) ≤ B.

• For every function h : Y → R≥0, it holds that Ey∼P [h(y)] ≤ e
B(α−1)

α Ey∼Q[h(y)
β ]1/β .

Note that if we let α → ∞, then Lemma 4 converges to a characterization of pure-DP. That is,
D∞(P∥Q) ≤ B if and only if Pr[P = y] ≤ eB Pr[Q = y] for every y ∈ Y .

Lemma 4 provides a convenient tool to reason about the privacy loss in an interactive environment
consisting of multiple rounds. Intuitively, this is because Condition 2 in the statement above is more
amenable to a “hybrid argument”. However, to quantify the privacy loss during an interaction, we
still need to find a way to track the privacy loss.

Measure theory setup. Before we continue, it would be more convenient to switch to a measure-
theoretic language. Consider two measures P,Q on a spaceY (P and Q are not necessarily probability
measures), we say that P is β-dominated by Q, denoted by P ⪯β Q, if for every measurable function
f : Y → R≥0, it holds that

∥f∥P,1 :=

∫
f(y)dP (y) ≤

(∫
f(y)βdQ(y)

)1/β

=: ∥f∥Q,β .
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When Y is a finite set, the integral coincides with an equivalent summation. i.e.,∫
f(y)dP (y) =

∑
y

P (y)f(y).

We will use integral and summation interchangeably.

In this notation, Lemma 4 can be equivalently stated as Dα(P∥Q) ≤ B if and only if P is β-
dominated by eBQ for β = α

α−1 .

The following lemma is essential for us.
Lemma 5. Let Y1×Y2 be a space. Consider two distributions P,Q on Y1×Y2. Assume supp(P ) =
supp(Q) = Y1×Y2. Let P1, P2 be the margin of P on Y1,Y2. For each y1 ∈ Y1, denote by P2|P1=y1

the marginal distribution of y2 conditioning on y1. Also define the same notation for Q.

Let β ≥ 1, B ≥ 0 be two reals. Let α = β
β−1 . For each y1 ∈ Y1, define

ℓ1(y1) = inf
K
{K : P2|P1=y1 ⪯β K ·Q2|Q1=y1} = exp(Dα(P2|P1=y1∥Q2|Q1=y1)).

Suppose P ⪯β eBQ. Consider the measure spaces (Y1, P1(y1) · ℓ1(y2)1/β) and (Y1, Q2). We have

P1ℓ
1/β
1 ⪯β eBQ1.

Intuitively, the function ℓ(y1) serves as the role of “privacy budget monitor”. To see this, fix an
adversary A and think of (y1, y2) as the responses of the system to the adversary2. After observing
y1, the adversary wants to distinguish between two conditional distributions P2|P1=y1

and Q2|Q1=y1
.

At this moment, ℓ(y1) shows up as an upper bound of “extra information” that the adversary can
extract by utilizing their second query. Alternatively, ℓ(y1) quantifies the amount of the remaining
privacy budget the mechanism has after outputting y1. On average, the function ℓ1(y1) provides a
fine-grained control of the privacy loss in the sense that P1ℓ

1/β
1 ⪯β eBQ1.

Proof for a 3-round toy example. We are ready to describe the proof for Theorem 2. To illustrate
the idea, we prove a toy case here and defer the full proof to Appendix A.2. The proof for the toy
case includes all the important ideas. Extending it to a full proof is straightforward.

We describe the toy scenario now. Suppose there are two mechanisms M1,M2 that run on a
sensitive input bit b ∈ {0, 1}. The interaction consists of 3 rounds. The adversary A communicates
with M1,M2,M1 in order, and outputs the response (y1, y2, y3). For brevity, we assume that
each response yi contains a copy of the query message xi, so that we recover the whole transcript
((x1, y1), (x2, y2), (x3, y3)) only from the responses.

Let P,Q ∈ ∆(Y × Y × Y) be the output distribution when A interacts with (M0
1,M0

2) and
(M1

1,M1
2), respectively. SupposeM1,M2 are (α, ε1), (α, ε2)-Rényi DP respectively. Our goal is

to prove that
max {Dα(P∥Q), Dα(Q∥P )} ≤ ε1 + ε2.

We bound Dα(P∥Q) below. The bound for Dα(Q∥P ) is symmetric. Be Lemma 4, it suffices to
show that for every h : Y × Y → Y → R≥0 that

∑
y=(y1,y2,y3)

P (y)h(y) ≤

eε1+ε2
∑

y=(y1,y2,y3)

Q(y)h(y)β

1/β

(5)

where β = α
α−1 is the Hölder conjugate of α. Let P1, P2, P3 be the projection of P onto the three

rounds, and let Pi|y<i
denote the distribution of yi conditioning on y1, . . . , yi−1. Also define the

same notation for Q. Then we write∑
y=(y1,y2,y3)

P (y)h(y) =
∑
y1

(
P1(y1)

∑
y2

(
P2|y1

(y2)
∑
y3

P3|y<3
(y3)h(y)

))
. (6)

2Although the query made by A is not explicitly recorded, the pair (y1, y2) can capture this information by
requiring that each response yi must be attached with the query message xi. This does not leak any additional
information because xi is solely chosen by A.
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For every y1 ∈ Y , letM0
1|y1 (resp. M1

1|y1) denote the interactive systemM0
1 (resp. M1

1) condi-
tioning on that it has answered y1 to the first query (recall we have assumed that y1 contains x1).
Formally, for every b ∈ {0, 1}, (x2, y2), . . . , (xt, yt) and xt+1, define

Mb
1|y1((xj , yj)2≤j≤t, xt+1) :=Mb

1((xj , yj)1≤j≤t, xt+1).

Next, define

ℓ1(y1) := exp

(
sup

A:adversary

{
Dα

(
IT(A :M0

1|y1
)∥IT(A :M1

1|y1
)
)})

. (7)

From Lemma 5, one can show that P1ℓ
1/β
1 ⪯ eBQ1. Turning back to (5), we then have∑

y1

(
P1(y1)

∑
y2

(
P2|y1(y2)

∑
y3

P3|y<3(y3)h(y)

))
(8)

≤
∑
y1

P1(y1)
∑
y2

P2|y1
(y2)

(
ℓ1(y1)

∑
y3

Q3|y<3
(y3)h(y)

β

)1/β
 (9)

≤
∑
y1

P1(y1)

(
eε2
∑
y2

(
Q2|y1(y2)ℓ1(y1)

∑
y3

Q3|y<3
(y3)h(y)

β

))1/β
 (10)

=
∑
y1

P1(y1)ℓ1(y1)
1/β

(
eε2
∑
y2

(
Q2|y1(y2)

∑
y3

Q3|y<3
(y3)h(y)

β

))1/β
 (11)

≤

(
eε1+ε2

∑
y1

(
Q1(y1)

∑
y2

(
Q2|y1(y2)

∑
y3

Q3|y<3(y3)h(y)
β

)))1/β

(12)

=

(
eε1+ε2

∑
y

Q(y)h(y)β

)1/β

. (13)

Here, we used inequalities of the form
∑

y P (y) · h(y) ≤
(
C ·
∑

y Q(y) · h(y)β
)1/β

three times
(they are (8)⇒ (9)⇒ (10) and (11)⇒ (12)). We use underlines to highlight the “h” part of each
step in the deductions above.

(8)⇒ (9) is the most critical step. To see this, observe that knowing y2 does not change the view of
the first mechanism, because the second query is sent to the independently running mechanismMb

2.
Therefore,Mb

1|y1 remains the same after conditioning on both y1 and y2. Now, note that P3|y<3 (resp.
Q3|y<3 ) exactly describes one round of interaction between the adversary andM0

1|y1 (resp.M1
1|y1 ).

Consequently, the information leaked by y3 must be subject to the bound (7) and the inequality holds.
Having verified (8)⇒ (9), the steps (9)⇒ (10) and (11)⇒ (12) are straightforward.

Having justified (13) for every measure function h, we conclude that Dα(P∥Q) ≤ eε1+ε2 . A
symmetric argument shows that Dα(Q∥P ) ≤ eε1+ε2 . This completes the proof for the toy example.

Proof sketch for the general case. The proof for the general case extends the idea above with some
minor twists. By induction, we only need to prove the composition theorem for the case with two
mechanisms and many rounds. An issue worth noting is that A can choose the next query object
based on previous responses. However, we can suppose without loss of generality that A always
communicates with mechanisms alternately, by adding a vanilla query x∗ to the query space. If
the current mechanism is not the one A wishes to speak with, A just sends the vanilla query x∗.
The mechanism then returns a fixed response, which does not leak any information. We refer to
Appendix A.2 for the detail of the proof.

5 Conclusion and Future Directions

In this work, we consider the concurrent composition of interactive mechanisms. Regarding the
general privacy guarantee under the concurrent composition, our result gives optimal composition

9



theorems for several popular definitions of differential privacy, including (ε, δ)-DP and Rényi DP.
Our work is purely theoretical, and we do not see any negative societal impacts it may cause.

For future directions, we ask whether one can use our composition theorems to design new
differentially-private algorithms that may involve running several differentially-private mechanisms
in parallel. It is also interesting to explore more practical implications of the concurrent composition
phenomena.

We also note that there is a recent interest in fully adaptive compositions of differential privacy, which
studies how the data analyst can manage the privacy budget and monitor the privacy loss themselves.
In particular, the notion of privacy odometers and filters were proposed to capture these demands
Rogers et al. [2016], Feldman and Zrnic [2021], Whitehouse et al. [2022], Lécuyer [2021]. This
question necessitates a better understanding of information leakage in an interactive environment.
Our work developed several new tools and techniques to reason about interactive mechanisms. Can
our technique be useful in studying fully adaptive compositions?
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A Appendix: Missing Proofs

In this appendix, we show the formal proofs for all the lemmas and claims in the main paper.

A.1 Proofs for Approximate Differential Privacy

This subsection present omitted proofs in Section 4.1.

A.1.1 The key lemma

We start with the proof for Lemma 1.

Reminder of Lemma 1. Suppose M0,M1 are (ε, δ)-indistinguishable. There are two systems
E0, E1 satisfying the following.

• For every adversary A and b ∈ {0, 1}, it holds that IT(A :Mb) ≥ δ · IT(A : Eb).
• For every adversary A, every set of transcripts S ⊆ {(xi, yi)i∈[T ]} and b ∈ {0, 1}, it holds

that
Pr[IT(A :Mb) ∈ S]− δ Pr[IT(A : Eb) ∈ S]

≤ eε
(
Pr[IT(A :M1−b) ∈ S]− δ Pr[IT(A : E1−b) ∈ S]

)
.

Proof. Without loss of generality, we assume that the interaction betweenM0/1 and A consists of
exactly T ∈ N rounds. For every t ∈ [T ], each (xi, yi)i∈[t] and b ∈ {0, 1}, denote

M b((yi)i∈[t], (xi)i∈[t]) :=

t∏
i=1

Pr[Mb((xj , yj)j<i, xi) = yi]. (14)

Intuitively, M b((yi)i∈[t], (xi)i∈[t]) is the probability ofMb responding (y1, . . . , yt), conditioning
on that the query messages are fixed to (x1, . . . , xt). Note that knowing M b((yi)i∈[T ], (xi)i∈[T ]) for
every (xi, yi)i∈[T ] uniquely determines the system.

Let A be an arbitrary adversary. For each (xi, yi)i∈[t−1] and xt, denote

A((xi)i∈[t], (yi)i∈[t−1]) :=

t∏
i=1

Pr[A((xj , yj)j<i) = xi]. (15)

Note that A((xi)i∈[t], (yi)i∈[t−1]) is the probability of A sending queries (x1, . . . , xt), conditioning
on that the responses to the first t− 1 queries are fixed to (y1, . . . , yt−1).

In the following, when the size of a list (ℓi)i∈[L] is clear from context, we may omit the subscript and
simply write (ℓi) to denote the list. Now, having defined (14) and (15), we observe for each transcript
(xi, yi)i∈[T ] that

Pr[IT(A,Mb) = (xi, yi)i∈[T ]] = M b((yi), (xi)) ·A((xi), (yi)). (16)

In the following, we will construct two systems E0/1 such that, for every (xi, yi)i∈[T ], it holds that

M b((yi), (xi)) ≥ δEb((yi), (xi)) (17)

13



and

M b((yi), (xi))− δEb((yi), (xi)) ≤ eε
(
M1−b((yi), (xi))− δE1−b((yi), (xi))

)
. (18)

If we have two systems E0/1 satisfying the above, then we can verify that they satisfy the lemma
statement by combining (16), (17) and (18).

Now we describe the construction. We start by defining for each b ∈ {0, 1}, t ≤ T and every partial
history (xi, yi)i≤t−1 ∈ (X × Y)t−1, xt ∈ X a control function as

Lowerb((xi, yi)i<t, xt) :=

{∑
yt∈Y maxxt+1

{Lowerb((xi, yi)i≤t, xt+1)} t < T∑
yt∈Y max

{
M b((yi), (xi))− eεM1−b((yi), (xi)), 0

}
t = T

.

(19)

For every t ≤ T − 1 and (xi, yi)i≤t, we also define the following control function:

Upperb((xi, yi)i≤t) := M b((yi)i≤t, (xi)i≤t)− e−εM1−b((yi)i≤t, (xi)i≤t). (20)

We need the following two facts regarding the control functions.

Claim 1. For each b ∈ {0, 1} and x1 ∈ X , it holds that Lowerb(∅, x1) ≤ δ.

Proof. We construct an adversary A∗ as follows. A∗ is deterministic. It always sends x1 as the first
query. For every 1 ≤ t ≤ T − 1 and history (xi, yi)i∈[t], A∗ computes the next query as

A∗((xi, yi)i∈[t]) = argmax
xt+1

{Lowerb((xi, yi)i≤t, xt+1)}.

Now, define

Sb := {(xi, yi)i∈[T ] : Pr[IT(A∗,Mb) = (xi, yi)i∈[T ] > eε Pr[IT(A∗,M1−b) = (xi, yi)i∈[T ]]}.

Given thatM0 andM1 are (ε, δ)-indistinguishable, we know that∑
(xi,yi)∈Sb

Pr[IT(A∗,Mb) = (xi, yi)i∈[T ]]− eε Pr[IT(A∗,M1−b) = (xi, yi)i∈[T ]] ≤ δ.

On the other hand, by the definition of A∗ and (19), it holds that

Lowerb(∅, x1) =
∑

(xi,yi)∈Sb

Pr[IT(A∗,Mb) = (xi, yi)]− eε Pr[IT(A∗,M1−b) = (xi, yi)].

This can be verified by tracing how Lowerb(∅, x1) is determined from queries (x1, . . . , xT ) (in the
“max” operator), and noting that A∗ follows exactly the same queries. Combining two equations
above concludes the proof of Claim.

Claim 2. For every b ∈ {0, 1}, t ≤ T − 1 and (xi, yi)i≤t−1 ∈ (X × Y)t−1, xt ∈ X , it holds that

Lowerb((xi, yi)i<t, xt) ≤ Upperb((xi, yi)i<t) + e−εLower1−b((xi, yi)i<t, xt).

Proof. We prove this claim by downward induction on t. For the case t = T − 1, we have by
definition that

e−εLower1−b((xi, yi)i<t, xt)

=
∑
yt∈Y

max
{
e−εM1−b((yi), (xi))−M b((yi), (xi)), 0

}
(21)

=
∑
yt∈Y

e−εM1−b((yi), (xi))−M b((yi), (xi))+∑
yt∈Y

max
{
M b((yi), (xi))− e−εM1−b((yi), (xi)), 0

}
(22)

≥ −Upperb((xi, yi)i<t) + Lowerb((xi, yi)i<t, xt). (23)
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We justify the deductions briefly. (21) is by definition. (22) uses a simple trick that max {a, 0} =
a+max {−a, 0}. The last step (23) is by definition again. In particular, we observe that for every
xT ∈ X , it holds that∑

yT∈Y
M b((yi), (xi)) =

T−1∏
i=1

Pr[Mb((xj , yj)j<i, xi) = yi].

This proves the base case for t = T − 1.

Assume the claim is true for t+ 1 ≤ T − 1. We consider the case of t. We have

Lowerb((xi, yi)i<t, xt) =
∑
yt

max
xt+1

{Lowerb((xi, yi)i≤t, xt+1)}

≤
∑
yt

max
xt+1

{Upperb((xi, yi)i≤t) + e−εLower1−b((xi, yi)i≤t, xt+1)}

≤
∑
yt

Upperb((xi, yi)i≤t) + e−ε max
xt+1

{Lower1−b((xi, yi)i≤t, xt+1)}

= Upperb((xi, yi)i<t) + e−εLower1−b((xi, yi)i<t, xt).

The first inequality is due to the induction hypothesis. The second inequality is straightforward. This
completes the proof for the claim.

The construction. We are ready to describe the construction. In the following, we will assume ε > 0.
Having shown the construction for every ε > 0, the case for ε = 0 can be argued by continuity. We
will construct E0, E1 by specifying for every t ∈ [T ] and (xi, yi)i≤t the following:

Eb((yi)i≤t, (xi)i≤t) :=

t∏
i=1

Pr[Eb((xj , yj)j<i, xi) = yi].

Note that a valid Eb(·) uniquely defines a system Eb. For brevity, we also define E0(∅) = E1(∅) = 1.
Intuitively, we use ∅ to denote two “empty lists” (i.e., two lists (yi)i≤t, (xi)i≤t with t = 0).

We will construct Eb((yi)i≤t, (xi)i≤t) for t = 1, 2, . . . , T in order. Throughput the construction, we
maintain the following property. For every 0 ≤ t ≤ T , (xi, yi)i≤t and b ∈ {0, 1}, we require

δ · Eb((yi)i≤t, (xi)i≤t) ≥
{
maxxt+1∈X {Lowerb((xj , yj)j≤t, xt+1)} t < T

max
{
M b((yi), (xi))− eεM1−b((yi), (xi)), 0

}
t = T

(24)

and

δ · Eb((yi)i≤t, (xi)i≤t) ≤ Upperb((xi, yi)i≤t) + e−εδ · E1−b((yi)i≤t, (xi)i≤t). (25)

Meanwhile, for Eb((yi), (xi)) to describe a valid system, it is necessary and sufficient for it to be
non-negative and satisfy the following equation for every (xi, yi)i≤t ∈ (X × Y)t and xt+1:∑

yt+1∈Y
Eb((yi)i≤t+1, (xi)i≤t+1) = Eb((yi)i≤t, (xi)i≤t). (26)

Next, we shall prove that we can construct a valid E0/1 satisfying (24), (25) and (26). As we have
said, we will construct Eb gradually in the increasing order of t ∈ [T ]. For t = 0, we have set
E0(∅) = E1(∅) = 1. (24) holds by Claim 1, and (25) holds trivially.

Now let t < T . Also let (yi)i≤t ∈ Yt, (xi)i≤t ∈ X t be two lists. Suppose we have constructed
E0/1((yi)i≤t, (xi)i≤t) that satisfies (24) and (25). For every xt+1 ∈ X and yt+1 ∈ Y , we construct
E0/1((yi)i≤t+1, (xi)i≤t+1) in the following.

Fix xt+1 ∈ X . We temporarily set

Ẽb((yi)i≤t+1, (xi)i≤t+1) =
1

δ
·
{
maxxt+2∈X {Lowerb((xj , yj)j≤t+1, xt+2)} t+ 1 < T

max
{
M b((yi), (xi))− eεM1−b((yi), (xi)), 0

}
t+ 1 = T

.
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By Claim 2, we know that Ẽb satisfies (25). By the construction, Ẽb satisfies (24). However, Ẽb may
fail to satisfy (26). Still, we have∑

yt+1

Ẽb((yi)i≤t+1, (xi)i≤t+1) ≤
1

δ
Lowerb((xi, yi)i≤t, xt+1) ≤ Eb((yi)i≤t, (xi)i≤t).

In the following, we show that one can adjust Ẽb by increasing some Ẽb((yi)i≤t+1, (xi)i≤t+1)

properly, so that the new Ẽb satisfies all of (24), (25) and (26).

To begin with, we define for each b ∈ {0, 1} the quantity

Gapb := Eb((yi)i≤t, (xi)i≤t)−
∑
yt+1

Ẽb((yi)i≤t+1, (xi)i≤t+1). (27)

Our goal is to decrease Gap0,Gap1 to zero by increasing Ẽ. Since we only increase
Ẽb((yi)i≤t+1, (xi)i≤t+1), (24) can never be compromised and we only need to consider (25). Con-
sider yt+1 and b ∈ {0, 1}. We say that Ẽb is tight at yt+1, if

δẼb((yi)i≤t+1, (xi)i≤t+1) = Upperb((xi, yi)i≤t+1) + e−εδẼ1−b((yi)i≤t+1, (xi)i≤t+1).

Intuitively, Ẽb being tight at yt+1 means that we cannot increase Ẽb((yi)i≤t+1, (xi)i≤t+1) without
increasing Ẽ1−b((yi)i≤t+1, (xi)i≤t+1).

Here shows our adjustment strategy. We consider each yt+1 ∈ Y in an arbitrary but fixed order.
For each yt+1, we gradually increase Ẽ0/1((yi)i≤t+1, (xi)i≤t+1) until one of the following events
happens.

• Both Ẽ0 and Ẽ1 get tight at yt+1.

• Gap0 = 0, and Ẽ1 is tight at yt+1.

• Gap1 = 0, and Ẽ0 is tight at yt+1.

• Gap0 = Gap1 = 0.

It is easy to see that if none of the above happens, we can keep increasing Ẽ0/1 at yt+1
3. This

completes the description of the adjustment strategy.

Now, we claim that after the adjustment, we must have Gap0 = Gap1 = 0. Suppose it is not the
case. For example, suppose Gap0 ̸= 0. Then we know that Ẽ0 is tight at every yt+1. This means that∑

yt+1

δẼ0((yi)i≤t+1, (xi)i≤t+1) = Upper0((xi, yi)i≤t) + e−ε
∑
yt+1

δẼ1((yi)i≤t+1, (xi)i≤t+1).

Recall that

δE0((yi)i≤t, (xi)i≤t) ≤ Upper0((xi, yi)i≤t) + e−εδE1((yi)i≤t, (xi)i≤t).

Subtracting the inequality with the equality above, we deduce that Gap0 ≤ e−εGap1. It implies that
Gap1 > 0. And we can use a symmetric argument to show that Gap1 ≤ e−εGap0. Since e−ε < 1,
the only solution to the system of inequalities is Gap0 = Gap1 = 0, a contradiction!

Having proven the claim, we know there is a way to adjust Ẽ0/1 so that they satisfy all of (24),
(25), (26). We then set E0/1((yi)i≤t+1, (xi)i≤t+1) to be Ẽ0/1((yi)i≤t+1, (xi)i≤t+1) and finish the
construction for (xi, yi)i≤t and xt+1.

We use the construction above for t = 0, 1, . . . , T − 1 in order to construct E0/1. It remains to verify
that E0/1 satisfies the lemma statement. It suffices to verify for every (xi, yi)i≤T ∈ (X × Y)T and
b ∈ {0, 1} that

M b((yi), (xi)) ≥ δEb((yi), (xi))

3To see this, note that for b ∈ {0, 1}, we can keep increasing Ẽb until either (1) Ẽb gets tight at yt+1, or (2)
Gapb = 0. Therefore, if we cannot increase both Ẽ0 and Ẽ1, it must be one of the four cases above.
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and

(M b((yi), (xi))− δEb((yi), (xi))) ≤ eε(M1−b((yi), (xi))− δE1−b((yi), (xi))).

In fact, since eε > 1, it suffices to verify the second inequality for b ∈ {0, 1}. This can be verified
by utilizing (25): note that Upperb((xi, yi)i≤T ) = M b((yi), (xi))− e−εM1−b((yi), (xi)), and (25)
tells us that

δEb((yi), (xi)) ≤M b((yi), (xi))− e−εM1−b((yi), (xi)) + e−εδE1−b((yi), (xi)).

Re-arranging proves the desired inequality.

Remark 1. Note that to verify the correctness of E0/1, we only used the condition (25). It seems that
(24) is useless in this proof. However, note that it is possible that Upperb((yi), (xi)) is negative for
some (xi, yi)i≤t, which makes it unclear whether (25) can always be satisfied by a positive valuation
of E. This is why we need the other control function Lower.

A.1.2 Wrap-up

Next, we quickly prove Lemma 2.

Reminder of Lemma 2. SupposeM, E are two systems such that for every adversary A, it holds
that IT(A :M) ≥ δIT(A : E). Then there is a system N such that for every adversary A, it holds
that

IT(A :M) ≡ δIT(A : E) + (1− δ)IT(A : N ).

Proof. We follow the notation in Section A.1.1. Namely, for each (xi, yi)i≤t, define

M((yi)i≤t, (xi)i≤t) =

t∏
i=1

Pr[M((xj , yj)j<i, xi) = yi].

Also define the same notation for E. Then we construct

N((yi)i≤t, (xi)i≤t) =
1

1− δ
(M((yi)i≤t, (xi)i≤t)− δE((yi)i≤t, (xi)i≤t)) .

SinceM≥ δE , we know that N((yi), (xi)) is always non-negative. Moreover, N encodes a valid
system because ∑

yt+1∈Y
N((yi)i≤t+1, (xi)i≤t+1)

=
1

1− δ

∑
yt+1∈Y

M((yi)i≤t+1, (xi)i≤t+1)− δE((yi)i≤t+1, (xi)i≤t+1)

=
1

1− δ
(M((yi)i≤t, (xi)i≤t)− δE((yi)i≤t, (xi)i≤t))

= N((yi)i≤t, (xi)i≤t).

Finally, it is easy to verify IT(A :M) ≡ δIT(A : E) + (1− δ)IT(A :M).

As we have shown in Section 4.1, combining Lemma 1, 2 and 3 together, we can prove Theorem 3
easily. Next, we show how Theorem 3 implies Theorem 1.

Proof of Theorem 1. LetM1, . . . ,Mk be k mechanisms, whereMi is (εi, δi)-approximate differ-
entially private. We assume without loss of generality that all ofMi’s hold a bit b ∈ {0, 1} as the
sensitive data.

Let A be an arbitrary adversary interacting with COMP(M1, . . . ,Mk). Next, we show how
one can simulate IT(A,COMP(Mb

1, . . . ,Mb
k)) by running k (approximate) randomized response
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mechanisms. For eachMb
i , construct an approximate randomized response mechanism RRb

εi,δi . The
output distribution of RRb

εi,δi is:

RRb
εi,δi =


(b,⊤) w.p. δ
(b,⊥) w.p. (1− δ) eε

1+eε

(1− b,⊥) w.p. (1− δ) 1
1+eε

.

We also prepare the decomposition ofM0/1
i with N 0/1

i , E0/1i as promised by Theorem 3.

Now, we construct a simulator S as follows. For each i ∈ [k], S runs RRb
εi,δi and gets a pair (bi, σi).

If σi = ⊤, then let Bi ← Ebii . Otherwise, let Bi ← N bi
i . In this way, S gets a list of k systems

(B1, . . . ,Bk). The simulator then simulates the interaction between A and B1, . . . ,B, and outputs
the interaction history. Let Output(S, b) denote the output distribution of S. We claim that

Output(S, b) ≡ IT(A :Mb
1, . . . ,Mb

k). (28)

To see this, for eachMb
i , consider a two-party communication, where one party isMb

i , and the other
party consists of A andMb

j for j ̸= i. The second party simulates all the interactions between A and
Mb

j , and only sends queries toMb
i when A queriesMb

i . From the second party’s viewpoint,Mb
i

looks identical to δiEbi + (1− δi)
eε

1+eεN
b
i + (1− δi)

1
1+eεN

1−b
i . Therefore,

IT(A :Mb
1, . . . ,Mb

i , . . . ,Mb
k) ≡

3∑
j=1

pj · IT(A :Mb
1, . . . ,Mb

i,j , . . . ,Mb
k).

Here, we use (p1, p2, p3) = (δi, (1 − δi)
eε

1+eε , (1 − δi)
1

1+eε ) and (Mb
i,1,Mb

i,2,Mb
i,3) =

(Ebi ,N b
i ,N

1−b
i ) for convenience. Applying this decomposition for every i ∈ [k] proves (28).

Finally, note that Output(S, b) is just a post-processing of the sequential composition of k (approx-
imate) randomized response mechanisms. Hence, the optimal sequential composition theorem holds
for Output(S, b), which completes the proof.

A.2 Proofs for Rényi Differential Privacy

In this section, we show omitted proofs for Theorem 2.

A.2.1 Preliminaries

We need some technical preparations first. Consider a measure space (X,µ). For two measurable
functions f, g, define their inner product as

⟨f, g⟩µ =

∫
f · gdµ.

For a real α ≥ 1, define the ℓα-norm of a function f as

∥f∥µ,α :=

(∫
fαdµ

)1/α

.

Recall Hölder’s inequality, which is essential for our proof.
Fact 1. Suppose α, β ≥ 1 are Hólder conjugates of each other (i.e., 1

α + 1
β = 1). Suppose f, g are

two measurable functions. Then we have

⟨f, g⟩µ ≤ ∥f∥µ,α · ∥g∥µ,β .
The inequality is sharp in the sense that for every measurable function f , we have

∥f∥µ,α = sup
h:h̸≡0

⟨f, h⟩µ
∥h∥µ,β

.

Recall our definition of dominance. For two measures P,Q on a space Y , we say that P is β-
dominated by Q, denoted by P ⪯β Q, if for every measurable function f : Y → R≥0, it holds that
∥f∥P,1 ≤ ∥f∥Q,β .
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A.2.2 Proof for lemmas

We are ready to show the proofs now. We start with Lemma 4.

Reminder of Lemma 4. Suppose P,Q are two distributions supported on Y . For every α > 1 and
B ≥ 0, let β = α

α−1 be the Hölder conjugate of α. The following statements are equivalent.

• Dα(P∥Q) ≤ B.

• For every function h : Y → R≥0, it holds that Ey∼P [h(y)] ≤ e
B(α−1)

α Ey∼Q[h(y)
β ]1/β .

Proof. First, if there is y ∈ Y such that 0 = Pr[Q = y] < Pr[P = y], then we have Dα(P∥Q) =∞
and Condition 2 does not hold for any B <∞. In the following, we assume supp(P ) = supp(Q) =
Y . Note that in this case, we have Dα(P∥Q) <∞.

We write P (y), Q(y) as shorthands for Pr[P = y] and Pr[Q = y] for brevity. Now, note that
Dα(P∥Q) ≤ B is equivalent to eDα(P∥Q) ≤ eB , which is further equivalent to

E
y∼Q

[
P (y)α

Q(y)α

]1/α
= E

y∼P

[
P (y)α−1

Q(y)α−1

]1/α
≤ e

B(α−1)
α .

Consider the measure space M = (Y, Q). By Holder’s inequality, we have

E
y∼Q

[(
P (y)

Q(y)

)α]1/α
=

∥∥∥∥PQ
∥∥∥∥
Q,α

= sup
h:h̸≡0

{
⟨h, P

Q ⟩Q
∥h∥Q,β

}
.

Moreover, since P (y)
Q(y) is non-negative, it suffices to consider only non-negative h in the supremum

above. Now we are ready to verify the equivalence.

• If Condition 1 holds, we have

sup
h:h ̸≡0

{
⟨h, P

Q ⟩Q
∥h∥Q,β

}
=

∥∥∥∥PQ
∥∥∥∥
Q,α

≤ e
B(α−1)

α .

Therefore, for every h : Y → R≥0, it holds that

E
y∼P

[h(y)] = E
y∼Q

[
h(y) · P (y)

Q(y)

]
≤
∥∥∥∥PQ

∥∥∥∥
Q,α

∥h∥Q,β ≤ e
B(α−1)

α E
y∼Q

[h(y)β ]1/β .

• On the other hand, if Condition 2 holds, we have∥∥∥∥PQ
∥∥∥∥
Q,α

= sup
h:h ̸≡0

{
⟨h, P

Q ⟩Q
∥h∥Q,β

}
≤ e

B(α−1)
α .

This completes the proof.

The next lemma is Lemma 5.

Reminder of Lemma 5. Let Y1 × Y2 be a space. Consider two distributions P,Q on Y1 × Y2.
Assume supp(P ) = supp(Q) = Y1 × Y2. Let P1, P2 be the margin of P on Y1,Y2. For each
y1 ∈ Y1, denote by P2|P1=y1

the marginal distribution of y2 conditioning on y1. Also define the same
notation for Q.

Let β ≥ 1, B ≥ 0 be two reals. For each y1 ∈ Y1, define

ℓ1(y1) = inf
K
{K : P2|P1=y1

⪯β K ·Q2|Q1=y1
} .

Suppose P ⪯β eBQ. Consider the measure spaces (Y1, P1(y1) · ℓ1(y2)1/β) and (Y1, Q2). We have

P1ℓ
1/β
1 ⪯β eBQ1.
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Proof. Suppose by contradiction that the conclusion of the lemma does not hold. That is, there is a
function g : Y1 → R≥0 such that

∥g∥
P1ℓ

1/β
1 ,1

> ∥g∥eBQ1,β .

In the following, we show this contradicts with P ⪯β eBQ. First off, for each y1 ∈ Y1, by the
definition of ℓ1(y1), there is a function fy1

: Y2 → R≥0 such that

∥fy1
∥P2|P1=y1

,1 =

∫
fy1

dP2|P1=y1
=

(∫
fβ
y1
d(ℓ1(y1)Q2|Q1=y1

)

)1/β

= ∥fy1
∥ℓ1(y1)Q2|Q1=y1

,β .

By scaling fy1
properly, we can ensure that ∥fy1

∥P2|P1=y1
,1 = ℓ1(y1)

1/β . Consequently, we have

∥fy1
∥Q2|Q1=y1

,β = ∥fy1
∥ℓ1(y1)Q2|Q1=y1

,β · ℓ1(y1)−1/β = 1.

Define a new function f : Y1 × Y2 → R≥0 as f(y1, y2) = g(y1) · fy1
(y2). Then, we have

∥f∥P,1 =

∫∫
f(y1, y2)dP

=

∫ (∫
fy1

(y2)dP2|P1=y1

)
g(y1)dP1

=

∫
g(y1)d(ℓ

1/β
1 P1)

>

(∫
g(y1)

βd(eBQ1)

)1/β

=

(∫
g(y1)

β∥fy1∥
β
Q2|Q1=y1

,βd(e
BQ1)

)1/β

=

(∫ (
g(y1)

β

∫
fy1(y2)

βd(Q2|Q1=y1)

)
d(eBQ1)

)1/β

=

(∫∫
g(y1)

βfy1(y2)
βd(eBQ)

)1/β

=

(∫∫
fβd(eBQ)

)1/β

= ∥f∥eBQ,β . (29)

This contradicts to the assumption that P ⪯ eBQ. Therefore, we conclude that such function g does
not exist and P1ℓ

1/β
1 ⪯ eBQ1.

A.2.3 Proof of the composition theorem

We prove the following theorem, which is equivalent to Theorem 2.
Theorem 4. LetM1,M2 be two interactive mechanisms that run on the same data set. Suppose that
M1,M2 are (α, ε1), (α, ε2)-Rényi DP, respectively. Then COMP(M1,M2) is (α, ε1 + ε2)-Rényi
DP.

Theorem 4 implies Theorem 2 because we can interpret COMP(M1, . . . ,Mk) as
COMP(COMP(M1, . . . ,Mk−1),Mk) and use Theorem 4 inductively. Now we prove Theorem 4.

Proof. Suppose without loss of generality that both mechanisms run on a single sensitive input bit
b ∈ {0, 1}. Also suppose that there are 2T rounds of interactions. Starting withM1, the adversary
communicates with two mechanisms alternately. This is without loss of generality: suppose the
adversary A can decide the next query object based previous responses. Let IT(A :M1,M2) be
the transcript of the interaction betweenA andM1,M2. We reduce the interaction to a new protocol
where the adversary speaks with two mechanism alternately. Let A′ denote a modification of A,
defined as follows. A′ simulates A while always alternating between two mechanisms. If the current
mechanism is not the one that A wants to speak with, A′ will send a special “SKIP” query, and the
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mechanism responds with an “ACK” message. After this round of interaction, A′ will switch to
interact with the other mechanism, which allows it to continue simulating A. Let IT(A′ :M1,M2)
denotes the transcript of the new interaction. Therefore, for b ∈ {0, 1}, it is easy to establish a
bijection between supp(IT(A′ :Mb

1,Mb
2)) and supp(IT(A :Mb

1,Mb
2)). Moreover, the bijection

mapping is independent of b4. Therefore, bounding the divergences between IT(A : Mb
1,Mb

2),
b ∈ {0, 1} is equivalent to bounding those between IT(A′ :Mb

1,Mb
2), b ∈ {0, 1}.

Let Y,Z denote the response domains of M1,M2 respectively. Also let y1, . . . , yT , z1, . . . , zT
denote the lists of responses returned byM1 andM2 respectively. We assume that each response
yi, zj contains a copy of the corresponding query message (so that we can recover the whole
interaction history just from the responses).

Now, fix A to be an arbitrary adversary. Let P,Q ∈ ∆((Y × Z)T ) denote the output distributions
when A interacts with (M0

1,M0
2) and (M1

1,M1
2) respectively. Our goal is to prove that

max {Dα(P∥Q), Dα(Q∥P )} ≤ ε1 + ε2.

We bound Dα(P∥Q) below. The bound for Dα(Q∥P ) is symmetric.

For a distribution D, we always use D(x) to denote Pr[D = x]. Write y = (y1, . . . , yT ) where yi
denotes the i-th response. Also write z = (z1, . . . , zT ) and denote yz := (y1, z1, . . . , yT , zT ). By
Lemma 4, it suffices to show that for every h : (Y × Z)T → R≥0, it holds that

∑
y∈YT ,z∈ZT

P (yz)h(yz) ≤

eε1+ε2
∑

y∈YT ,z∈ZT

Q(yz)h(yz)β

1/β

(30)

where β = α
α−1 is the Hölder conjugate of α.

For each i ∈ [T ], let P y
i , P

z
i be the projection of P onto yi, zi. For each i ∈ [T ], let y≤i, z≤i denote

the first i responses from y and z. Denote (yz)≤i = (y1, z1, . . . , yi, zi). Then, let P y
i |yz<i denote the

distribution of yi conditioning on (yz)<i, and P z
i |yz<i,yi denote the distribution of zi conditioning

on (yz)<i and yi. Also define the same notation for Q. Then we write∑
y∈YT ,z∈ZT

P (yz)h(yz) =
∑

(yz)≤T−1

P ((yz)≤T−1)
∑
yT ,zT

P y
T |yz<T

(yT )P
z
T |yz<T ,yT

(zT )h(yz) (31)

For every t < T and every y≤t, let M0
1|y≤t

(resp. M1
1|y≤t

) denote the interactive system M0
1

(resp.M1
1) conditioning on that it has answered y1, . . . , yt to the first t queries. Formally, for every

(xt+1, yt+1), . . . , (xt′ , yt′) and xt′+1, define

Mb
1|y≤t

((xi, yi)t<i≤t′ , xt′+1) :=Mb
1((xi, yi)1≤i≤t′ , xt′+1).

We also define the same notation for the second mechanismM2. Next, define

ℓt(y≤t) := exp

(
sup

A:adversary

{
Dα

(
IT(A :M0

1|y≤t
)∥IT(A :M1

1|y≤t
)
)})

(32)

and

rt(z≤t) := exp

(
sup

A:adversary

{
Dα

(
IT(A :M0

2|z≤t
)∥IT(A :M1

2|z≤t
)
)})

. (33)

By the assumed Rényi DP guarantee, we have that ℓ0(∅) ≤ eε1 and r0(∅) ≤ eε2 . We claim the
following.

Claim 3. For each t ≤ T − 1 and y<t, z<t, consider two measures P y
t |yz<t

(y)ℓt(y<t ◦ y) and
Qy

t |yz<t
(y) on the space Y (here ◦ denotes concatenation). It holds that

P y
t |yz<t

(y)ℓt(y<t ◦ y)1/β ⪯β ℓt−1(y<t)Q
y
t |yz<t

(y).

A symmetric conclusion holds for P z and z. Namely

P z
t |yz<t,yt(z)rt(z<t ◦ z)1/β ⪯β rt−1(z<t)Q

z
t |yz<t,yt(z).

4This is to say, suppose M0
1,M0

2,M1
1,M1

2 are four systems, then the bijection between supp(IT(A :
Mb

1,Mb
2)) and supp(IT(A′ : Mb

1,Mb
2)) would be the same for b ∈ {0, 1}.
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Proof. Construct an adversaryA′ interacting withMb
1|y<t as follows. A′ startsA with the condition-

ing that A has gone through the interaction history yz<t. Then A′ simulates one step of A and sends
a query toMb

1|y<t . Upon receiving the response y, A′ observes yt and switches to run the optimal
adversary againstMb

1|y≤t
provided by (32). By definition,Mb

1|y<t is (α, log(ℓt−1(y<t)))-Rényi DP.
Applying Lemma 5 on IT(A′,Mb

1|y<t
) completes the proof. The proof for P z

t is similar.

Turning back to (31), we first deduce that∑
(yz)≤T−1

P ((yz)≤T−1)
∑
yT ,zT

P y
T |yz<T

(yT )P
z
T |yz<T ,yT

(zT )h(yz)

≤
∑

(yz)≤T−1

P ((yz)≤T−1)
∑
yT

P y
T |yz<T

(yT )

(
rT−1(z<T )

∑
zT

Qz
T |yz<T ,yT

(zT )h(yz)
β

)1/β

≤
∑

(yz)≤T−1

P ((yz)≤T−1)

(
rT−1(z<T )ℓT−1(y<T )

∑
yT ,zT

Qy
T |yz<T

(yT ) Q
z
T |yz<T ,yT

(zT )h(yz)
β

)1/β

.

(34)

So far we haven’t utilized Claim 3 yet. Denote

H(yz≤T−1) :=

(
ℓT−1(y<T )

∑
yT ,zT

Qy
T |yz<T

(yT ) Q
z
T |yz<T ,yT

(zT )h(yz)
β

)1/β

.

Applying Claim 3 on (34) for P z
T−1 yields that∑

(yz)≤T−2,yT−1

P ((yz)≤T−2, yT−1)
∑
zT−1

P z
T−1|yz≤T−2,yT−1

(zT−1)rT−1(z<T )
1/βH

≤
∑

(yz)≤T−2,yT−1

P ((yz)≤T−2, yT−1)

rT−2(z≤T−2)
∑
zT−1

Qz
T−1|yz≤T−2,yT−1

(zT−1)H
β

1/β

.

(35)

We proceed to apply Claim 3 on (35) for P y
T−1, P

z
T−2, P

y
T−2 . . . , P

z
1 , P

y
1 in order. We can get∑

(yz)≤T−1

P ((yz)≤T−1)
∑
yT ,zT

P y
T |yz<T

(yT )P
z
T |yz<T ,yT

(zT )h(yz)

≤

(
ℓ0(∅)r0(∅)

∑
yz

Q(yz)h(yz)β

)1/β

. (36)

This shows that P ⪯ eε1+ε2Q, which consequently implies that Dα(P∥Q) ≤ ε1 + ε2. Similarly, we
can bound Dα(Q∥P ) ≤ ε1 + ε2. Combining two bounds together completes the proof.

A.3 Proof for Concentrated DP

In this section, we prove Corollary 1. We recall the definition of zero-concentrated DP and truncated
concentrated DP.

Definition 4 (zero-concentrated differential privacy, Bun and Steinke [2016]). Let ρ > 0 be a real
andM be a mechanism. M is called ρ-zero-concentrated DP (or ρ-zCDP for short), if for every
α ∈ (1,+∞),M is (α, α · ρ)-RDP.

Definition 5 (truncated concentrated differential privacy Bun et al. [2018]). Let ρ > 0, ω > 1 be
two reals, andM be a mechanism. M is called (ρ, ω)-truncated DP (or (ρ, ω)-tCDP), if for every
α ∈ (1, ω),M is (α, α · ρ)-RDP.

We are ready to prove Corollary 1 below.
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Proof. We first prove for zCDP. SupposeM1, . . . ,Mk are k interactive mechanisms, where for
each i ∈ [k],Mi is ρi-zCDP. By definition, we know thatMi is (α, αρi)-RDP for every α > 1. By
Theorem 2, we know that COMP(M1, . . . ,Mk) satisfies (α, α(

∑
i ρi))-RDP. Since this argument

holds for every α > 1, we conclude that COMP(M1, . . . ,Mk) satisfies (
∑

i ρi)-zCDP.

The proof for tCDP is similar. Fix ω > 1. Again letM1, . . . ,Mk are k interactive mechanisms,
where for each i ∈ [k],Mi is (ρi, ω)-tCDP. Then, for every α ∈ (1, ω), we know thatMi is (α, αρi)-
RDP by definition. Theorem 2 then shows that COMP(M1, . . . ,Mk) satisfies (α, α(

∑
i ρi))-RDP.

Since the argument holds for every α ∈ (1, ω), we conclude that COMP(M1, . . . ,Mk) satisfies
(
∑

i ρi, ω)-tCDP.

B A Motivating Example of Concurrent Composition

To demonstrate the power of concurrent composition, in this section, we use Theorem 1 to analyze a
simple private “Guess-and-Check” algorithm. We remark that this is a rather preliminary application:
the weaker concurrent composition theorem by Vadhan and Wang [2021] is sufficient to do the job.
However, the main purpose of this section is to highlight the importance of concurrent composition,
and hopefully inspire researchers to design more sophisticated algorithms.

Setup. Now we describe the problem. The private algorithm holds a sensitive data set X . The user
keeps issuing queries to the algorithm, where each query consists of a 1-Lipschitz function fi and
a guess τi ∈ R for the value of fi(X). The algorithm’s job is to verify if fi(X) ≈ τi. If it is the
case, the algorithm reports “PASS” and continues to the next query. Otherwise, the algorithm reports
“WRONG” and a value vi that is approximately equal to fi(X) (i.e., the algorithm not only declares
the invalidity of the user’s guess, but also provides a correct estimation for fi(X)).

We consider the following algorithm.

Algorithm 1: The Private Guess-and-Check
Input: Private dataset X . Error tolerance parameter E > 0. Privacy-related parameters

c ≥ 1, ε ∈ (0, 1).
1 Program:
2 ρ← Lap

(
1
ε

)
// Note that this noise has standard deviation ≈ 1

ε
3 for i = 1, 2, . . . , do
4 Receive the next query (fi, τi)
5 γi ← Lap(c/ε)
6 if |fi(X)− τi|+ γi ≥ E + ρ then
7 vi ← fi(X) + Lap(c/ε)
8 Report (WRONG, vi)
9 t← t+ 1

10 if t = c then
11 HALT the algorithm.

12 else
13 Return PASS

Discussions. Algorithm 1 is parameterized by an error tolerance parameter E > 0 and two privacy
parameters c ≥ 1, ε ∈ (0, 1). Roughly speaking, it can process queries until identifying at least c
queries whose guesses deviate from the true value by at least (roughly) E. It works by (concurrently)
composing a variant of the sparse vector technique by Lyu et al. [2017] with the standard Laplace
noise-adding mechanism.

The main advantage of the Lyu et al. [2017] SVT is that it only adds noise to the threshold once (Line
2 of algorithm 1), using a much smaller noise, which makes the SVT algorithm more accurate. Since
the utility guarantee of the algorithm is not the focus of this work, we omit more discussions here and
refer interested readers to [Lyu et al., 2017, Zhu and Wang, 2020] for more detail.

We consider the privacy guarantee of Algorithm 1. In fact, without the concurrent composition
framework, it is not clear whether or not Algorithm 1 is really private! If we replace Line 7 of
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the algorithm by vi ← 0, then the algorithm is indeed (3ε, 0)-private, because it is just a faithful
implementation of the Lyu et al. [2017] SVT. However, in Algorithm 1, the algorithm reports a correct
estimation vi for each inaccurate guess, which implies that the future query to the algorithm may
depend on vi, and thus on the private data set X . In this case, the original analysis from [Lyu et al.,
2017] does not hold anymore.

Analyzing the privacy. While it is not hard to prove the privacy property of Algorithm 1 by
examining the proof of Lyu et al. [2017] carefully and applying some modifications, here we show
that Algorithm 1 admits a fairly straightforward privacy proof under the concurrent composition
framework, using the privacy theorem by Lyu et al. [2017] as a black box. We do the analysis now.
First, we have the following lemma from [Lyu et al., 2017].
Lemma 6 (Theorem 2 in Lyu et al. [2017]). Consider replacing Line 7 of Algorithm 1 with vi ← 0.
The resulting algorithm is (3ε, 0)-DP.

The following fact is well known.
Lemma 7 (Laplace mechanism). Consider the following algorithm: given a list of c adaptively
chosen, 1-Lipschitz queries (g1, · · · , gc), answer each query with gi(X) + Lap(c/ε). The algorithm
is (ε, 0)-DP.

Combining Lemmas 6 and 7 under the concurrent composition framework directly yields the following
result.
Theorem 5. Algorithm 1 is (4ε, 0)-DP.

Proof. Consider simulating Algorithm 1 by concurrently composing two algorithms A1, A2. A1

is just a modification of Algorithm 1 where we replace Line 7 in Algorithm 1 with vi ← 0. By
Lemma 6, A1 is (3ε, 0)-DP. A2 accepts at most c 1-Lipschitz query. For each query gi, A2 responds
with gi(X)+Lap(c/ε). By Lemma 7, A2 is (ε, 0)-DP. By Theorem 1, COMP(A1, A2) is (4ε, 0)-DP.

We now describe how to simulate Algorithm 1 with COMP(A1, A2). For each query (fi, τi) to
Algorithm 1, we first feed it into A1 and observe the outcome. We pass this query if the outcome
is PASS. Otherwise, the outcome must be (WRONG, 0). We then query A2 with fi to get an
estimation fi + Lap(c/ε), and think of this estimation as the “vi” returned by Algorithm 1. In this
way, it is easy to see that we faithfully simulate Algorithm 1 by interacting with COMP(A1, A2).
Since COMP(A1, A2) is (4ε, 0)-DP, Algorithm 1 must be (4ε, 0)-DP also. This completes the
proof.

Remark 2. Finally, we remark that a similar private “Guess-and-Check” algorithm was also
proposed and analyzed by Zhu and Wang [2020], where the authors also considered using a version
of SVT without refreshing the threshold after answering each “meaningful” query. Therefore, their
algorithm is also subject to the concurrent composition issue, which seems to be overlooked in the
original analysis of Zhu and Wang [2020]. Since they were working with Rényi DP, our Theorem 2
provides a remedy to this issue easily.
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