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A Omitted Proofs

A.1 Proof of Lemma 3.1

We split the statement into two separate parts.
Claim A.1.

ln
(
1− ak

2

)
≥ −ak

Proof. Consider the function f : [0, 1] → R≥0, where f(x) = ex (1− x/2). Clearly, if f(x) ≥ 1 for
all x ∈ [0, 1], then the claim follows by taking the (natural) logarithm of each side of the inequality,
and setting x = ak.
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We have df(x)
dx = −ex/2 (x− 1) ≥ 0 for all x ∈ [0, 1]. Therefore, f is increasing in [0, 1], and

thus attains its minimum for x = 0. Therefore, f(x) ≥ f(0) = 1 for all x ∈ [0, 1] and the claim
follows.

Claim A.2. For every j ∈ {1, 2, . . . , k − 1}, we have

ln

(
1− aj +

a2j
2

)
≥ −aj

Proof. Fix an arbitrary aj . Consider the function g : [0, 1] → R≥0, where g(x) = ex
(
1− x+ x2

/2
)
.

Clearly, if g(x) ≥ 1 for all x ∈ [0, 1], then the claim follows by taking the (natural) logarithm of each
side of the inequality, and setting x = aj .

We have dg(x)
dx = exx2

/2 ≥ 0 for all x ∈ [0, 1]. Therefore, g is increasing in [0, 1], and thus attains its
minimum for x = 0. Therefore, g(x) ≥ g(0) = 1 for all x ∈ [0, 1] and the claim follows.

A.2 Proof of Lemma 3.2

π is clearly a randomized OCRS because every time it sees an element, it makes an irrevocable
decision to select it, if it is active, before it sees the next element, and also, by the choice of Fπ,x, it
is easy to see that the set of elements it returns is always a singleton, and thus feasible in I, since
Fπ,x ⊆ I. Furthermore, the choice of Fπ,x is randomized, and thus π is a randomized OCRS.

Next, it is also easy to see that π is a greedy OCRS, because, given x, Fπ,x is a down-closed subfamily
of feasible sets and an active element e is always selected if {e} ∈ Fπ,x, since there are no previously
selected elements.

A.3 An alternate proof of Theorem 1.1

The following scheme is due to Jan Vondrák [Von].

Let π denote the OCRS we will create. π will draw a random set R where each element ei appears in
R independently with some probability qi. Afterwards, it will set

Fπ,x = {{ei} | ei ∈ R} .

We set qi = 1−e−xi/xi for all ei ∈ N . Afterwards, π selects the first element ei that is active and that
{ei} ∈ F .

The proof of the next lemma is identical to the proof of Lemma 3.2.
Lemma A.3. π is a randomized greedy OCRS.

Next, we quantify the probability that each element is selected by π, given that it is active.
Lemma A.4. π selects every element ei ∈ N , given that it is active, with probability at least 1/e.

Proof. We relabel the elements of N so that each ei arrives in the i-th step. Consider an element
ei ∈ N . Given that ei is active, since π is a greedy OCRS, π will select ei if and only if it has
not selected any elements before ei and also {ei} ∈ Fπ,x. Recall that we have {ei} ∈ Fπ,x with
probability exactly qi = 1−e−xi/xi. Furthermore, for every element ej where j < i, it needs to be
the case that we avoid having both {ej} ∈ Fπ,x and also ej coming up active. This happens with
probability 1 − xj · 1−e−xj/xj = e−xj for every ej where j < i. Overall, if we denote by ri the
probability that ei is selected by π, given that it is active, we have

ri =
1− e−xi

xi
·
∏
j<i

e−xj =
1− e−xi

xi
· e−

∑
j<i xj ≥ (1− e−xi) exi−1

xi
=

exi−1 − e−1

xi
,

where the inequality follows from
∑

i xi ≤ 1. This expression is minimized for xi → 0, and thus we
get ri ≥ 1/e, for all i ∈ N .

From Lemmas A.3 and A.4, it follows that π is a 1/e-selectable (randomized) greedy OCRS for P .
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Remark A.5. One can easily see that the difference between the two proofs is that, in our scheme,
the probability of selection qi of each element i ∈ N is a linear approximation of the selection
probability of Vondrák’s scheme. The result then follows due to the convexity of the selection
probability qi = 1−e−xi/xi of Vondrák’s scheme.

A.4 Proof of Lemma 4.1

Assume towards contradiction, that

min
e∈N


n∑

k=1

(
1− 1

n

)k−1 ∑
S⊆N : |S|=k

e∈S

αS

 >

(
1− 1

n

)n−1

.

The proof consists of a double counting argument. First, notice that, by the inequality above, we have

∑
e∈N

 n∑
k=1

(
1− 1

n

)k−1 ∑
S⊆N : |S|=k

e∈S

αS

 > n

(
1− 1

n

)n−1

. (1)

For any 0 ≤ k ≤ n, let βk =
∑

S⊆N : |S|=k αS be the total probability mass assigned by the greedy
OCRS to all sets of size k, and notice that

∑n
k=0 βk = 1. We can also compute the left-hand side of

(1) as

∑
e∈N

 n∑
k=1

(
1− 1

n

)k−1 ∑
S⊆N : |S|=k

e∈S

αS

 =

n∑
k=1

(1− 1

n

)k−1 ∑
e∈N

∑
S⊆N : |S|=k

e∈S

αS


=

n∑
k=1

k

(
1− 1

n

)k−1 ∑
S⊆N : |S|=k

αS


=

n∑
k=1

(
βk · k

(
1− 1

n

)k−1
)
. (2)

where the second equality follows from the fact that in the double sum, for every S such that |S| = k,
every coefficient aS appears exactly k times, one for each element it contains. Under the constraint∑n

k=0 βk = 1, we have that
∑n

k=1

(
βk · k (1− 1/n)

k−1
)

is maximized for βn = 1 and βm = 0 for

all m < n, as k (1− 1/n)
k−1 is strictly increasing in k. Therefore,

∑
e∈N

 n∑
k=1

(
1− 1

n

)k−1 ∑
S⊆N : |S|=k

e∈S

αS

 ≤ n

(
1− 1

n

)n−1

. (3)

Together, (1) and (3) yield a contradiction.

A.5 Proof of Lemma 5.2

Consider an active element u ∈ U . Since π is a greedy OCRS, it will select u if and only if there
exists a neighbor v of u such that u ∈ Rv, and also, together with the set S of elements already
selected by π, S + u ∈ F . First, for every element w ∈ U , let Ew denote the event that there exists
an element v ∈ V such that w ∈ Rv . In other words, Ew is the event that w is in some set of F . For
Eu, we have

Pr[Eu] = 1−
∏

v∈N(u)

(1− qu) = 1− (1− qu)
|N(u)|

=
1− e−xu

xu
.
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Furthermore, the set S selected prior to seeing u has to be independent, thus S ∈ F , and thus for
S + u /∈ F , it has to be that for every v ∈ N(u), we have |S ∩Rv| ≥ 1. Therefore, the probability
that S + u /∈ F is

Pr [S + u /∈ F | S] =
∏

v∈N(u)

1−
∏

u′∈N(v)
u′ ̸=u

(1− x′
u Pr[Eu′ ])



=
∏

v∈N(u)

1−
∏

u′∈N(v)
u′ ̸=u

(
1− x′

u

1− e−xu′

xu′

)

=
∏

v∈N(u)

1−
∏

u′∈N(v)
u′ ̸=u

e−xu′


=

∏
v∈N(u)

(
1− e−

∑
u′∈N(v):u′ ̸=u xu′

)
≤

∏
v∈N(u)

(
1− e−1+xu

)
=
(
1− e−1+xu

)|N(u)|
,

where the inequality follows from the fact that, for every v ∈ V ,
∑

w∈N(v) xw ≤ 1 due to x ∈ P .
Therefore, we have

Pr[u ∈ π(R)|u ∈ R] = Pr[Eu] · Pr [S + u ∈ F | S]

≥ 1− e−xu

xu

(
1−

(
1− e−1+xu

)|N(u)|
)
.

Let fk(x) = 1−e−x
/x
(
1−

(
1− e−1+x

)k)
, for k ≥ 1 and x ∈ [0, 1]. It is easy to see that fk(x) ≥

1/e for every k ≥ 1 and x ∈ [0, 1]. Furthermore, we have that for k ≥ 3, fk(x) is minimized in [0, 1]
for x = 1, and yields fk(1) = 1− 1/e.
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