
A Overview

Section B contains proofs of the main theoretical results. Section D expands on examples given in
the main text. Section E presents an unhackability diagram for a generic set of three policies a, b, c;
Section F shows a simplification diagram of the same policies.

B Proofs

Before proving our results, we restate assumptions and definitions. First, recall the preliminaries
from Section 4.1, and in particular, that we use F : Π → R|S||A| to denote the embedding of policies
into Euclidean space via their discounted state-action visit counts, i.e.;

F(π)[s, a] =

∞∑
t=0

γtP(St = s,At = a).

Given a reward function R, let R⃗ ∈ R|S||A| be the vector where R⃗[s, a] = ES′∼T (s,a)[R(s, a, S′)].
Note that J(π) = F(π) · R⃗.

We say R1 and R2 are equivalent on a set of policies Π if J1 and J2 induce the same ordering of Π,
and that R is trivial on Π if J(π) = J(π′) for all π, π′ ∈ Π. We also have the following definitions
from Sections 4 and 5:

Definition 1. A pair of reward functions R1, R2 are hackable relative to policy set Π and an
environment (S,A, T, I, , γ) if there exist π, π′ ∈ Π such that

J1(π) < J1(π
′) & J2(π) > J2(π

′),

else they are unhackable.

Definition 2. R2 is a simplification of R1 relative to policy set Π if for all π, π′ ∈ Π,

J1(π) < J1(π
′) =⇒ J2(π) ≤ J2(π

′) & J1(π) = J1(π
′) =⇒ J2(π) = J2(π

′)

and there exist π, π′ ∈ Π such that J2(π) = J2(π
′) but J1(π) ̸= J1(π

′). Moreover, if R2 is trivial
then we say that this is a trivial simplification.

Note that these definitions only depend on the policy orderings associated with R2 and R1, and so
we can (and do) also speak of (ordered) pairs of policy orderings being simplifications or hackable.
We also make use of the following definitions:

Definition 3. A (stationary) policy π is ε-suboptimal if J(π) ≥ J(π⋆)− ε, where ε > 0

Definition 4. A (stationary) policy π is δ-deterministic if ∀s ∈ S ∃a ∈ A : P(π(s) = a) ≥ δ, where
δ < 1.

B.1 Non-trivial Unhackability Requires Restricting the Policy Set

Formally, a set of (stationary) policies Π̇ is open if V(Π̇) is open in the smallest affine space that
contains V(Π), where Π is the set of all stationary policies. Note that this space is |S|(|A| − 1)-
dimensional, since all action probabilities sum to 1.

We require two more propositions for the proof of this lemma.

Proposition 1. If Π̇ is open then F is injective on Π̇.

Proof. First note that, since π(a | s) ≥ 0, we have that if Π̇ is open then π(a | s) > 0 for all s, a for
all π ∈ Π̇. In other words, all policies in Π̇ take each action with positive probability in each state.

Now suppose F(π) = F(π′) for some π, π′ ∈ Π̃. Next, define wπ as

wπ(s) =

∞∑
t=0

γtPτ∼π(St = s).

14

Note that if F(π) = F(π′) then wπ = wπ′ , and moreover that

F(π)[s, a] = wπ(s)π(a | s).

Next, since π takes each action with positive probability in each state, we have that π visits every state
with positive probability. This implies that wπ(s) ̸= 0 for all s, which means that we can express π as

π(a | s) = F(π)[s, a]

wπ(s)
.

This means that if F(π) = F(π′) for some π, π′ ∈ Π̃ then π = π′.

Note that F is not injective on Π; if there is some state s that π reaches with probability 0, then we
can alter the behaviour of π at s without changing F(π). But every policy in an open policy set
Π̇ visits every state with positive probability, which then makes F injective. In fact, Proposition 1
straightforwardly generalises to the set of all policies that visit all states with positive probability
(although this will not be important for our purposes).
Proposition 2. Im(F) is located in an affine subspace with |S|(|A| − 1) dimensions.

Proof. To show that Im(F) is located in an affine subspace with |S|(|A| − 1) dimensions, first note
that ∑

s,a

F(π)[s, a] =

∞∑
t=0

γt =
1

1− γ

for all π. That is, Im(F) is located in an affine space of points with a fixed ℓ1-norm, and this space
does not contain the origin.

Next, note that J(π) = F(π) · R⃗. This means that if knowing the value of J for all π determines
R⃗ modulo at least n free variables, then Im(F) contains at most |S||A| − n linearly independent
vectors. Next recall potential shaping (Ng et al., 1999). In brief, given a reward function R and a
potential function Φ : S → R, we can define a shaped reward function R′ by

R′(s, a, s′) = R(s, a, s′) + γΦ(s′)− Φ(s),

or, alternatively, if we wish R′ to be defined over the domain S ×A,

R′(s, a) = R(s, a) + γES′∼T (s,a)[Φ(S
′)]− Φ(s).

In either case, it is possible to show that if R′ is produced by shaping R with Φ, and ES0∼I [Φ(S0)] =

0, then J(π) = J ′(π) for all π. This means that knowing the value of J(π) for all π determines R⃗
modulo at least |S|−1 free variables, which means that Im(F) contains at most |S||A|− (|S|−1) =
|S|(|A| − 1) + 1 linearly independent vectors. Since the smallest affine space that contains Im(F)
does not contain the origin, this in turn means that Im(F) is located in an affine subspace with
= |S|(|A| − 1) + 1− 1 = |S|(|A| − 1) dimensions.

Lemma 1. In any MDP \ R, if Π̇ is an open set of policies, then F(Π̇) is open in R|S|(|A|−1), and
F is a homeomorphism between V(Π̇) and F(Π̇).

Proof. By the Invariance of Domain Theorem, if

1. U is an open subset of Rn, and

2. f : U → Rn is an injective continuous map,

then f(U) is open in Rn and f is a homeomorphism between U and f(U). We will show that F and
Π̇ satisfy the requirements of this theorem.

We begin by noting that Π̇ can be represented as a set of points in R|S|(|A|−1). First, project Π̇ into
R|S||A| via V . Next, since

∑
a∈A π(a | s) = 1 for all s, Im(V) is in fact located in an affine subspace

with |S|(|A| − 1) dimensions, which directly gives a representation in R|S|(|A|−1). Concretely, this
represents each policy π as a vector V(π) with one entry containing the value π(a | s) for each

15

state-action pair s, a, but with one action left out for each state, since this value can be determined
from the remaining values. We will assume that Π̇ is embedded in R|S|(|A|−1) in this way.

By assumption, V(Π̇) is an open set in R|S|(|A|−1). Moreover, by Proposition 2, we have that F is
(isomorphic to) a mapping Π̇ → R|S|(|A|−1). By Proposition 1, we have that F is injective on Π̇.
Finally, F is continuous; this can be seen from its definition. We can therefore apply the Invariance
of Domain Theorem, and obtain that F(Π̇) is open in R|S|(|A|−1), and that F is a homeomorphism
between V(Π̇) and F(Π̇).

Figure 6: Illustration of the various realizable feature counts used in the proof of Theorem 1.

Theorem 1. In any MDP \ R, if Π̂ contains an open set, then any pair of reward functions that are
unhackable and non-trivial on Π̂ are equivalent on Π̂.

Proof. Let R1 and R2 be any two unhackable and non-trivial reward functions. We will show
that, for any π, π′ ∈ Π̂, we have J1(π) = J1(π

′) =⇒ J2(π) = J2(π
′), and thus, by symmetry,

J1(π) = J1(π
′) ⇐⇒ J2(π) = J2(π

′). Since R1 and R2 are unhackable, this further means that
they have exactly the same policy order, i.e. that they are equivalent.

Choose two arbitrary π, π′ ∈ Π̂ with J1(π) = J1(π
′) and let f .

= F(π), f ′ .
= F(π′). The proof has

3 steps:

1. We find analogues for f and f ′, f̃ and f̃ ′, within the same open ball in F(Π̂).

2. We show that the tangent hyperplanes of R⃗1 and R⃗2 at f̃ must be equal to prevent neighbors
of f̃ from making R1 and R2 hackable.

3. We use linearity to show that this implies that J2(π) = J2(π
′).

Step 1: By assumption, Π̂ contains an open set Π̇. Let π̂ be some policy in Π̇, and let f̂ .
= F(π̂).

Since Π̇ is open, Lemma 1 implies that F(Π̇) is open in R|S|(|A|−1). This means that, if v, v′ are the
vectors such that f̂ + v = f and f̂ + v′ = f ′, then there is a positive but sufficiently small δ such
that f̃ .

= f̂ + δv and f̃ ′ .
= f̂ + δv′ both are located in F(Π̇), see Figure 6. This further implies that

there are policies π̃, π̃′ ∈ Π̇ such that F(π̃) = f̃ and F(π̃′) = f̃ ′.

Step 2: Recall that J(π) = F(π) · R⃗. Since R1 is non-trivial on Π̂, it induces a
(|S|(|A| − 1)− 1)-dimensional hyperplane tangent to R⃗1 corresponding to all points x ∈ R|S|(|A|−1)

such that x · R⃗1 = f̃ · R⃗1, and similarly for R2. Call these hyperplanes H1 and H2, respectively.
Note that f̃ is contained in both H1 and H2.

Next suppose H1 ̸= H2. Then, we would be able to find a point f12 ∈ F(Π̇), such that f12 · R⃗1 >

f̃ ·R⃗1 but f12·R⃗2 < f̃ ·R⃗2. This, in turn, means that there is a policy π12 ∈ Π̇ such that F(π12) = f12,

16

and such that J1(π12) > J1(π̃) but J2(π12) < J2(π̃). Since R1 and R2 are unhackable, this is a
contradiction. Thus H1 = H2.

Step 3: Since J1(π) = J1(π
′), we have that f · R⃗1 = f ′ · R⃗1. By linearity, this implies that

f̃ · R⃗1 = f̃ ′ · R⃗1; we can see this by expanding f̃ = f̂ + δv and f̃ ′ = f̂ + δv′. This means that
f̃ ′ ∈ H1. Now, since H1 = H2, this means that f̃ ′ ∈ H2, which in turn implies that f̃ · R⃗2 = f̃ ′ · R⃗2.
By linearity, this then further implies that f · R⃗2 = f ′ · R⃗2, and hence that J2(π) = J2(π

′). Since
π, π′ were chosen arbitrarily, this means that J1(π) = J1(π

′) =⇒ J2(π) = J2(π
′).

Corollary 1. In any MDP \ R, any pair of reward functions that are unhackable and non-trivial on
the set of all (stationary) policies Π are equivalent on Π.

Proof. This corollary follows from Theorem 1, if we note that the set of all policies does contain an
open set. This includes, for example, the set of all policies in an ϵ-ball around the policy that takes all
actions with equal probability in each state.

Corollary 2. In any MDP \ R, any pair of reward functions that are unhackable and non-trivial
on the set of all ε-suboptimal policies (ε > 0) Πε are equivalent on Πε, and any pair of reward
functions that are unhackable and non-trivial on the set of all δ-deterministic policies (δ < 1) Πδ are
equivalent on Πδ .

Proof. To prove this, we will establish that both Πε and Πδ contain open policy sets, and then apply
Theorem 1.

Let us begin with Πδ. First, let π be some deterministic policy, and let πϵ be the policy that in each
state with probability 1− ϵ takes the same action as π, and otherwise samples an action uniformly.
Then if δ < ϵ < 1, πϵ is the center of an open ball in Πδ . Thus Πδ contains an open set, and we can
apply Theorem 1.

For Πε, let π⋆ be an optimal policy, and apply an analogous argument.

B.2 Finite Policy Sets

Theorem 2. For any MDP \ R, any finite set of policies Π̂ containing at least two π, π′ such that
F(π) ̸= F(π′), and any reward function R1, there is a non-trivial reward function R2 such that R1

and R2 are unhackable but not equivalent.

Proof. If R1 is trivial, then simply choose any non-trivial R2. Otherwise, the proof proceeds by
finding a path from R⃗1 to −R⃗1, and showing that there must be an R⃗2 on this path such that R2 is
non-trivial and unhackable with respect to R1, but not equivalent to R1.

The key technical difficulty is to show that there exists a continuous path from R1 to −R1 in R|S||A|

that does not include any trivial reward functions. Once we’ve established that, we can simply look for
the first place where an inequality is reversed – because of continuity, it first becomes an equality. We
call the reward function at that point R2, and note that R2 is unhackable wrt R1 and not equivalent
to R1. We now walk through the technical details of these steps.

First, note that J(π) = F(π) · R⃗ is continuous in R⃗. This means that if J1(π) > J2(π
′) then there is

a unique first vector R⃗2 on any path from R⃗1 to −R⃗1 such that F(π) · R⃗2 ̸> F(π) · R⃗2, and for this
vector we have that F(π) · R⃗2 = F(π) · R⃗2. Since Π̂ is finite, and since R1 is not trivial, this means
that on any path from R⃗1 to −R⃗1 there is a unique first vector R⃗2 such that R2 is not equivalent to
R1, and then R2 must also be a unhackable with respect to R1.

It remains to show that there is a path from R⃗1 to −R⃗1 such that no vector along this path corresponds
to a trivial reward function. Once we have such a path, the argument above implies that R2 must be a
non-trivial reward function that is unhackable with respect to R1. We do this using a dimensionality
argument. If R is trivial on Π̂, then there is some c ∈ R such that F(π) · R⃗ = c for all π ∈ Π̂. This
means that if F(Π̂) has at least d linearly independent vectors, then the set of all such vectors R⃗
forms a linear subspace with at most |S||A| − d dimensions. Now, since Π̂ contains at least two
π, π′ such that F(π) ̸= F(π′), we have that F(Π̂) has at least 2 linearly independent vectors, and

17

hence that the set of all reward functions that are trivial on Π̂ forms a linear subspace with at most
|S||A| − 2 dimensions. This means that there must exist a path from R⃗1 to −R⃗1 that avoids this
subspace, since only a hyperplane (with dimension |S||A|−1) can split R|S||A| into two disconnected
components.

Theorem 3. Let Π̂ be a finite set of policies, and R a reward function. The following procedure
determines if there exists a non-trivial simplification of R in a given MDP \ R:

1. Let E1 . . . Em be the partition of Π̂ where π, π′ belong to the same set iff J(π) = J(π′).

2. For each such set Ei, select a policy πi ∈ Ei and let Zi be the set of vectors that is obtained
by subtracting F(πi) from each element of F(Ei).

Then there is a non-trivial simplification of R iff dim(Z1 ∪ · · · ∪ Zm) ≤ dim(F(Π̂)) − 2, where
dim(S) is the number of linearly independent vectors in S.

Proof. This proof uses a similar proof strategy as Theorem 2. However, in addition to avoiding
trivial reward functions on the path from R⃗1 to −R⃗1, we must also ensure that we stay within the
“equality-preserving space”, to be defined below.

First recall that F(Π̂) is a set of vectors in R|S||A|. If dim(F(Π̂)) = D then these vectors are located
in a D-dimensional linear subspace. Therefore, we will consider F(Π̂) to be a set of vectors in RD.
Next, recall that any reward function R induces a linear function L on RD, such that J = L ◦ F ,
and note that there is a D-dimensional vector R⃗ that determines the ordering that R induces over all
points in RD. To determine the values of J on all points in RD we would need a (D+1)-dimensional
vector, but to determine the ordering, we can ignore the height of the function. In other words,
L(x) = x · R⃗+ L(⃗0), for any x ∈ RD. Note that this is a different vector representation of reward
functions than that which was used in Theorem 2 and before.

Suppose R2 is a reward function such that if J1(π) = J1(π
′) then J2(π) = J2(π

′), for all π, π′ ∈ Π̂.
This is equivalent to saying that L2(F(π)) = L2(F(π′)) if π, π′ ∈ Ei for some Ei. By the properties
of linear functions, this implies that if F(Ei) contains di linearly independent vectors then it specifies
a (di − 1)-dimensional affine space Si such that L2(x) = L2(x

′) for all points x, x′ ∈ Si. Note that
this is the smallest affine space which contains all points in Ei. Moreover, L2 is also constant for any
affine space S̄i parallel to Si. Formally, we say that S̄i is parallel to Si if there is a vector z such that
for any y ∈ S̄i there is an x ∈ Si such that y = x + z. From the properties of linear functions, if
L2(x) = L2(x

′) then L2(x+ z) = L2(x
′ + z).

Next, from the transitivity of equality, if we have two affine spaces S̄i and S̄j , such that L2 is constant
over each of S̄i and S̄j , and such that S̄i and S̄j intersect, then L2 is constant over all points in
S̄i ∪ S̄j . From the properties of linear functions, this then implies that L2 is constant over all points in
the smallest affine space S̄i ⊗ S̄j containing S̄i and S̄j , given by combining the linearly independent
vectors in S̄i and S̄j . Note that S̄i ⊗ S̄j has between max(di, dj) and (di + dj − 1) dimensions.
In particular, since the affine spaces of Z1 . . . Zm intersect (at the origin), and since L2 is constant
over these spaces, we have that L2 must be constant for all points in the affine space Z which is
the smallest affine space containing Z1 ∪ · · · ∪ Zm. That is, if R2 is a reward function such that
J1(π) = J1(π

′) =⇒ J2(π) = J2(π
′) for all π, π′ ∈ Π̂, then L2 is constant over Z . Moreover,

if L2 is constant over Z then L2 is also constant over each of E1 . . . Em, since each of E1 . . . Em

is parallel to Z . This means that R2 satisfies that J1(π) = J1(π
′) =⇒ J2(π) = J2(π

′) for all
π, π′ ∈ Π̂ if and only if L2 is constant over Z .

If dim(Z) = D′ then there is a linear subspace with D −D′ dimensions, which contains the (D-
dimensional) vector R⃗2 of any reward function R2 where J1(π) = J1(π

′) =⇒ J2(π) = J2(π
′) for

π, π′ ∈ Π̂. This is because R2 is constant over Z if and only if R⃗2 · v = 0 for all v ∈ Z . Then if Z
contains D′ linearly independent vectors vi . . . vD′ , then the solutions to the corresponding system of
linear equations form a (D−D′) dimensional subspace of RD. Call this space the equality-preserving
space. Next, note that R2 is trivial on Π̂ if and only if R⃗2 is the zero vector 0⃗.

Now we show that if the conditions are not satisfied, then there is no non-trivial simplification.
Suppose D′ ≥ D − 1, and that R2 is a simplification of R1. Note that if R2 simplifies R1 then

18

R⃗2 is in the equality-preserving space. Now, if D′ = D then L2 (and L1) must be constant for
all points in RD, which implies that R2 (and R1) are trivial on Π̂. Next, if D′ = D − 1 then the
equality-preserving space is one-dimensional. Note that we can always preserve all equalities of
R1 by scaling R1 by a constant factor. That is, if R2 = c · R1 for some (possibly negative) c ∈ R
then J1(π) = J1(π

′) =⇒ J2(π) = J2(π
′) for all π, π′ ∈ Π̂. This means that the parameter

which corresponds to the dimension of the equality-preserving space in this case must be the scaling
of R⃗2. However, the only simplification of R1 that is obtainable by uniform scaling is the trivial
simplification. This means that if D′ ≥ D − 1 then R1 has no non-trivial simplifications on Π̂.

For the other direction, suppose D′ ≤ D − 2. Note that this implies that R1 is not trivial. Let
R3 = −R1. Now both R⃗1 and R⃗3 are located in the equality-preserving space. Next, since the
equality-preserving space has at least two dimensions, this means that there is a continuous path
from R⃗1 to R⃗3 through the equality-preserving space that does not pass the origin. Now, note that
Ji(π) = F(π) · R⃗i is continuous in R⃗i. This means that there, on the path from R⃗1 to R⃗3 is a first
vector R⃗2 such that F(π) · R⃗2 = F(π′) · R⃗2 but F(π) · R⃗1 ̸= F(π′) · R⃗1 for some π, π′ ∈ Π̂. Let
R2 be a reward function corresponding to R⃗2. Since R⃗2 is not 0⃗, we have that R2 is not trivial on
Π̂. Moreover, since R⃗2 is in the equality-preserving space, and since F(π) · R⃗2 = F(π′) · R⃗2 but
F(π) · R⃗1 ̸= F(π′) · R⃗1 for some π, π′ ∈ Π̂, we have that R2 is a non-trivial simplification of R1.
Therefore, if D′ ≤ D − 2 then there exists a non-trivial simplification of R1.

We have thus proven both directions, which completes the proof.

Corollary 3. For any finite set of policies Π̂, any environment, and any reward function R, if |Π̂| ≥ 2

and J(π) ̸= J(π′) for all π, π′ ∈ Π̂, then there is a non-trivial simplification of R.

Proof. Note that if Ei is a singleton set then Zi = {⃗0}. Hence, if each Ei is a singleton set then
dim(Z1 ∪ · · · ∪ Zm) = 0. If Π̂ contains at least two π, π′, and J(π) ̸= J(π′), then F(π) ̸= F(π′).
This means that dim(F(Π̂)) ≥ 2. Thus the conditions of Theorem 3 are satisfied.

C Any Policy Can Be Made Optimal

In this section, we show that any policy is optimal under some reward function.

Proposition 3. For any rewardless MDP (S,A, T, I, , γ) and any policy π, there exists a reward
function R such that π is optimal in the corresponding MDP (S,A, T, I,R, γ).

Proof. Let R(s, a, s′) = 0 if a ∈ Support(π(s)), and −1 otherwise.

This shows that any policy is rationalised by some reward function in any environment. Any policy that
gives 0 probability to any action which π takes with 0 probability is optimal under this construction.
This means that if π is deterministic, then it will be the only optimal policy in (S,A, T, I,R, γ).

D Examples

In this section, we take a closer look at two previously-seen examples: the two-state MDP \ R and
the cleaning robot.

D.1 Two-state MDP \ R example

Let us explore in more detail the two-state system introduced in the main text. We decsribe this
infinite-horizon MDP \ R in Table 1.

We denote πij (i, j ∈ {0, 1}) the policy which takes action i when in state 0 and action j when in
state 1. This gives us four possible deterministic policies:

{π00, π01, π10, π11}.

19

States S = {0, 1}
Actions A = {0, 1}
Dynamics T (s, a) = a for s ∈ S, a ∈ A

Initial state distribution Pr(start in s) = 0.5 for s ∈ S

Discount factor γ = 0.5

Table 1: The two-state MDP \ R in consideration.

There are 4! = 24 ways of ordering these policies with strict inequalities. Arbitrarily setting π00 < π11

breaks a symmetry and reduces the number of policy orderings to 12. When a policy ordering can be
derived from some reward function R, we say that R represents it, and that the policy ordering is
representable. Of these 12 policy orderings with strict inequalities, six are representable:

π00 < π01 < π10 < π11,

π00 < π01 < π11 < π10,

π00 < π10 < π01 < π11,

π01 < π00 < π11 < π10,

π10 < π00 < π01 < π11,

π10 < π00 < π11 < π01.

Simplification in this environment is nontrivial – given a policy ordering, it is not obvious which
strict inequalities can be set to equalities such that there is a reward function which represents the new
ordering. Through a computational approach (see Section D.3) we find the following representable
orderings, each of which is a simplification of one of the above strict orderings.

π00 = π01 < π11 < π10,

π00 = π10 < π01 < π11,

π00 < π01 = π10 < π11,

π01 < π00 = π11 < π10,

π10 < π00 = π11 < π01,

π00 < π01 < π10 = π11,

π10 < π00 < π01 = π11,

π00 = π01 = π10 = π11.

Furthermore, for this environment, we find that any reward function which sets the value of three
policies equal necessarily forces the value of the fourth policy to be equal as well.

D.2 Cleaning robot example

Recall the cleaning robot example in which a robot can choose to clean a combination of three
rooms, and receives a nonnegative reward for each room cleaned. This setting can be thought of as a
single-step eight-armed bandit with special reward structure.

D.2.1 Hackability

We begin our exploration of this environment with a statement regarding exactly when two policies
are hackable. In fact, the proposition is slightly more general, extending to an arbitrary (finite) number
of rooms.
Proposition 4. Consider a cleaning robot which can clean N different rooms, and identify each
room with a unique index in {1, . . . , N}. Cleaning room i gives reward r(i) ≥ 0. Cleaning multiple
rooms gives reward equal to the sum of the rewards of the rooms cleaned. The value of a policy πS

which cleans a collection of rooms S is the sum of the rewards corresponding to the rooms cleaned:
J(πS) =

∑
i∈S r(i). For room i, the true reward function assigns a value rtrue(i), while the proxy

reward function assigns it reward rproxy(i). The proxy reward is hackable with respect to the true

20

reward if and only if there are two sets of rooms S1, S2 such that
∑

i∈S1
rproxy(i) <

∑
i∈S2

rproxy(i)

and
∑

i∈S1
rtrue(i) >

∑
i∈S2

rtrue(i).

Proof. We show the two directions of the double implication.

⇐ Suppose there are two sets of rooms S1, S2 satisfying
∑

i∈S1
rproxy(i) <

∑
i∈S2

rproxy(i)

and
∑

i∈S1
rtrue(i) >

∑
i∈S2

rtrue(i). The policies πSi
= “clean exactly the rooms in Si”

for i ∈ {1, 2} demonstrate that rproxy, rtrue are hackable. To see this, remember that J(πS) =∑
i∈S r(i). Combining this with the premise immediately gives Jproxy(πS1) < Jproxy(πS2)

and Jtrue(πS1
) > Jtrue(πS2

).

⇒ If rproxy, rtrue are hackable, then there must be a pair of policies π1, π2 such that Jproxy(π1) <
Jproxy(π2) and Jtrue(π1) > Jtrue(π2). Let S1 be the set of rooms cleaned by π1 and S2 be
the set of rooms cleaned by π2. Again remembering that J(πS) =

∑
i∈S r(i) immediately

gives us that
∑

i∈S1
rproxy(i) <

∑
i∈S2

rproxy(i) and
∑

i∈S1
rtrue(i) >

∑
i∈S2

rtrue(i).

In the main text, we saw two intuitive ways of modifying the reward function in the cleaning robot
example: omitting information and overlooking fine details. Unfortunately, there is no obvious
mapping of Proposition 4 onto simple rules concerning how to safely omit information or overlook
fine details: it seems that one must resort to ensuring that no two sets of rooms satisfy the conditions
for hackability described in the proposition.

D.2.2 Simplification

We now consider simplification in this environment. Since we know the reward for cleaning each
room is nonnegative, there will be some structure underneath all the possible orderings over the
policies. This structure is shown in Figure 7: regardless of the value assigned to each room, a policy
at the tail of an arrow can only be at most as good as a policy at the head of the arrow.

[0, 0, 0]

[0, 0, 1]

[0, 1, 0]

[1, 0, 0]

[0, 1, 1]

[1, 0, 1]

[1, 1, 0]

[1, 1, 1]

Figure 7: The structure underlying all possible policy orderings (assuming nonnegative room value).
The policy at the tail of the arrow is at most as good as the policy at the head of the arrow.

If we decide to simplify an ordering by equating two policies connected by an arrow, the structure of
the reward calculation will force other policies to also be equated. Specifically, if the equated policies
differ only in position i, then all pairs of policies which differ only in position i will also be set equal.

For example, imagine we simplify the reward by saying we don’t care if the attic is cleaned or not,
so long as the other two rooms are cleaned (recall that we named the rooms Attic, Bedroom and
Kitchen). This amounts to saying that J([0, 1, 1]) = J([1, 1, 1]). Because the policy value function
is of the form

J(π) = J([x, y, z]) = [x, y, z] · [r1, r2, r3]
where x, y, z ∈ {0, 1}, this simplification forces r1 = 0. In turn, this implies that J([0, 0, 0]) =
J([1, 0, 0]) and J([0, 1, 0]) = J([1, 1, 0]). The new structure underlying the ordering over policies is
shown in Figure 8.

[X, 0, 0]
[X, 0, 1]

[X, 1, 0]
[X, 1, 1]

Figure 8: The updated ordering structure after equating “clean all the rooms” and “clean all the rooms
except the attic”. X can take either value in {0, 1}.

21

An alternative way to think about simplification in this problem is by imagining policies as corners of
a cube, and simplification as flattening of the cube along one dimension – simplification collapses
this cube into a square.

D.3 Software repository

The software suite described in the paper (and used to calculate the representable policy orderings and
simplifications of the two-state MDP \R) can be found at https://anonymous.4open.science/
r/simplified-reward-5130.

E Unhackability Diagram

Consider a setting with three policies a, b, c. We allow all possible orderings of the policies. In
general, these orderings might not all be representable; a concrete case in which they are is when
a, b, c represent different deterministic policies in a 3-armed bandit.

We can represent all unhackable pairs of policy orderings with an undirected graph, which we call an
unhackability diagram. This includes a node for every representable ordering and edges connecting
orderings which are unhackable. Figure 9 shows an unhackability diagram including all possible
orderings of the three policies a, b, c.

b < a = c

a < c < b
c < a = b

a = b = cc < b < a

a = b < c

c < a < b
a < b = c

b < c < a b < a < c

a < b < c

b = c < a

a = c < b

Figure 9: Illustration of the unhackable pairs of policy orderings when considering all possible
orderings over three policies a, b, c. Edges of the graph connect unhackable policy orderings.

22

https://anonymous.4open.science/r/simplified-reward-5130
https://anonymous.4open.science/r/simplified-reward-5130

F Simplification Diagram

We can also represent all possible simplifications using a directed graph, which we call a simpli-
fication diagram. This includes a node for every representable ordering and edges pointing from
orderings to their simplifications. Figure 10 presents a simplification diagram including all possible
orderings of three policies a, b, c.

a < b < c

a < b = c

a < c < b

a = b < c

a = b = c

a = c < b

b < a < c

b < a = c

b < c < a

b = c < a

c < a < b

c < a = b

c < b < a

Figure 10: Illustration of the simplifications present when considering all possible orderings over
three policies a, b, c. Arrows represent simplification: the policy ordering at the head of an arrow is a
simplification of the policy ordering at the tail of the arrow.

We note that the simplification graph is a subgraph of the unhackability graph. This will always be
the case, since simplification can never lead to reward hacking.

23

	Overview
	Proofs
	Non-trivial Unhackability Requires Restricting the Policy Set
	Finite Policy Sets

	Any Policy Can Be Made Optimal
	Examples
	Two-state MDPR example
	Cleaning robot example
	Hackability
	Simplification

	Software repository

	Unhackability Diagram
	Simplification Diagram

