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Abstract

We provide the first formal definition of reward hacking, a phenomenon where
optimizing an imperfect proxy reward function, R̃, leads to poor performance
according to the true reward function, R. We say that a proxy is unhackable if
increasing the expected proxy return can never decrease the expected true return.
Intuitively, it might be possible to create an unhackable proxy by leaving some
terms out of the reward function (making it “narrower”) or overlooking fine-grained
distinctions between roughly equivalent outcomes, but we show this is usually
not the case. A key insight is that the linearity of reward (in state-action visit
counts) makes unhackability a very strong condition. In particular, for the set of all
stochastic policies, two reward functions can only be unhackable if one of them
is constant. We thus turn our attention to deterministic policies and finite sets of
stochastic policies, where non-trivial unhackable pairs always exist, and establish
necessary and sufficient conditions for the existence of simplifications, an important
special case of unhackability. Our results reveal a tension between using reward
functions to specify narrow tasks and aligning AI systems with human values.

1 Introduction

It is well known that optimising a proxy can lead to unintended outcomes: a boat spins in circles
collecting “powerups” instead of following the race track in a racing game (Clark and Amodei, 2016);
an evolved circuit listens in on radio signals from nearby computers’ oscillators instead of building
its own (Bird and Layzell, 2002); universities reject the most qualified applicants in order to appear
more selective and boost their ratings (Golden, 2001). In the context of reinforcement learning (RL),
such failures are called reward hacking.

For AI systems that take actions in safety-critical real world environments such as autonomous
vehicles, algorithmic trading, or content recommendation systems, these unintended outcomes can
be catastrophic. This makes it crucial to align autonomous AI systems with their users’ intentions.
Precisely specifying which behaviours are or are not desirable is challenging, however. One approach
to this specification problem is to learn an approximation of the true reward function (Ng et al., 2000;
Ziebart, 2010; Leike et al., 2018). Optimizing a learned proxy reward can be dangerous, however;
for instance, it might overlook side-effects (Krakovna et al., 2018; Turner et al., 2019) or encourage
power-seeking (Turner et al., 2021) behavior. This raises the question motivating our work: When is
it safe to optimise a proxy?

To begin to answer this question, we consider a somewhat simpler one: When could optimising a
proxy lead to worse behaviour? “Optimising”, in this context, does not refer to finding a global,
or even local, optimum, but rather running a search process, such as stochastic gradient descent
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(SGD), that yields a sequence of candidate policies, and tends to move towards policies with higher
(proxy) reward. We make no assumptions about the path through policy space that optimisation
takes.1 Instead, we ask whether there is any way in which improving a policy according to the proxy
could make the policy worse according to the true reward; this is equivalent to asking if there exists a
pair of policies π1, π2 where the proxy prefers π1, but the true reward function prefers π2. When this
is the case, we refer to this pair of true reward function and proxy reward function as hackable.

Given the strictness of our definition, it is not immediately apparent that any non-trivial examples of
unhackable reward function pairs exist. And indeed, if we consider the set of all stochastic policies,
they do not (Section 5.1). However, restricting ourselves to any finite set of policies guarantees at
least one non-trivial unhackable pair (Section 5.2).

Intuitively, we might expect the proxy to be a “simpler” version of the true reward function. Noting
that the definition of unhackability is symmetric, we introduce the asymmetric special case of
simplification, and arrive at similar theoretical results for this notion.2 In the process, and through
examples, we show that seemingly natural ways of simplifying reward functions often fail to produce
simplifications in our formal sense, and in fact fail to rule out the potential for reward hacking.

We conclude with a discussion of the implications and limitations of our work. Briefly, our work
suggests that a proxy reward function must satisfy demanding standards in order for it to be safe to
optimize. This in turn implies that the reward functions learned by methods such as reward modeling
and inverse RL are perhaps best viewed as auxiliaries to policy learning, rather than specifications
that should be optimized. This conclusion is weakened, however, by the conservativeness of our
chosen definitions; future work should explore when hackable proxies can be shown to be safe in a
probabilistic or approximate sense, or when subject to only limited optimization.

2 Example: Cleaning Robot

Consider a household robot tasked with cleaning a house with three rooms: Attic , Bedroom
, and Kitchen . The robot’s (deterministic) policy is a vector indicating which rooms it cleans:

π = [π1, π2, π3] ∈ {0, 1}3. The robot receives a (non-negative) reward of r1, r2, r3 for cleaning the
attic, bedroom, and kitchen, respectively, and the total reward is given by J(π) = π · r. For example,
if r = [1, 2, 3] and the robot cleans the attic and the kitchen, it receives a reward of 1 + 3 = 4.

Clean       ! 
𝑟𝑟proxy = [1, 0, 0]

Cleaning         is better than cleaning 
both       and      . 

Clean         and      !
𝑟𝑟proxy = [1, 1, 0]

Cleaning one room is never better than 
cleaning two rooms.

(a) 𝑟𝑟proxy is gameable (b) 𝑟𝑟proxy is not gameable

I want        ,       , and       cleaned, and care about all rooms equally: 𝑟𝑟true = [1, 1, 1]. 

Figure 1: An illustration of hackable and unhackable proxy rewards arising from overlooking
rewarding features. A human wants their house cleaned. In (a), the robot draws an incorrect
conclusion because of the proxy; this could lead to hacking. In (b), no such hacking can occur: the
proxy is unhackable.

At least two ideas come to mind when thinking about “simplifying” a reward function. The first one
is overlooking rewarding features: suppose the true reward is equal for all the rooms, rtrue = [1, 1, 1],
but we only ask the robot to clean the attic and bedroom, rproxy = [1, 1, 0]. In this case, rproxy and
rtrue are unhackable. However, if we ask the robot to only clean the attic, rproxy = [1, 0, 0], this is
hackable with respect to rtrue. To see this, note that according to rproxy cleaning the attic (Jproxy = 1)
is better than cleaning the bedroom and the kitchen (Jproxy = 0). Yet, rtrue says that cleaning the
attic (Jtrue = 1) is worse than cleaning the bedroom and the kitchen (Jtrue = 2). This situation is
illustrated in Figure 1.

1This assumption – although conservative – is reasonable because optimisation in state-of-the-art deep RL
methods is poorly understood and results are often highly stochastic and suboptimal.

2See Section 4.2 for formal definitions.
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The second seemingly natural way to simplify a reward function is overlooking fine details: suppose
rtrue = [1, 1.5, 2], and we ask the robot to clean all the rooms, rproxy = [1, 1, 1]. For these values, the
proxy and true reward are unhackable. However, with a slightly less balanced true reward function
such as rtrue = [1, 1.5, 3] the proxy does lead to hacking, since the robot would falsely calculate that
it’s better to clean the attic and the bedroom than the kitchen alone.

These two examples illustrate that while simplification of reward functions is sometimes possible,
attempts at simplification can easily lead to reward hacking. Intuitively, omitting/overlooking details
is okay so long as all these details are not as important together as any of the details that we do
share. In general, it is not obvious what the proxy must look like to avoid reward hacking, suggesting
we should take great care when using proxies. For this specific environment, a proxy and a true
reward are hackable exactly when there are two sets of rooms S1, S2 such that the true reward gives
strictly higher value to cleaning S1 than it does to cleaning S2, and the proxy says the opposite:
J1(S1) > J1(S2) & J2(S1) < J2(S2). For a proof of this statement, see Appendix D.2.1.

3 Related Work
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Figure 2: An illustration of
reward hacking when op-
timizing a hackable proxy.
The true reward first in-
creases and then drops off,
while the proxy reward
continues to increase.

While we are the first to define hackability, we are far from the first to
study specification hacking. The observation that optimizing proxy met-
rics tends to lead to perverse instantiations is often called “Goodhart’s
Law”, and is attributed to Goodhart (1975). Manheim and Garrabrant
(2018) provide a list of four mechanisms underlying this observation.

Examples of such unintended behavior abound in both RL and other
areas of AI; Krakovna et al. (2020) provide an extensive list. Notable
recent instances include a robot positioning itself between the camera
and the object it is supposed to grasp in a way that tricks the reward
model (Amodei et al., 2017), the previously mentioned boat race exam-
ple (Clark and Amodei, 2016), and a multitude of examples of reward
model hacking in Atari (Ibarz et al., 2018). Reward hacking can occur
suddenly. Ibarz et al. (2018) and Pan et al. (2022) showcase plots similar
to one in Figure 2, where optimizing the proxy (either a learned reward
model or a hand-specified reward function) first leads to both proxy and
true rewards increasing, and then to a sudden phase transition where the
true reward collapses while the proxy continues going up.

Note that not all of these examples correspond to optimal behavior according to the proxy. Indeed,
convergence to suboptimal policies is a well-known issue in RL (Thrun and Schwartz, 1993). As
a consequence, improving optimization often leads to unexpected, qualitative changes in behavior.
For instance, Zhang et al. (2021) demonstrate a novel cartwheeling behavior in the widely studied
Half-Cheetah environment that exceeds previous performance so greatly that it breaks the simulator.
The unpredictability of RL optimization is a key motivation for our definition of hackability, since we
cannot assume that agents will find an optimal policy. Neither can we rule out the possibility of sudden
improvements in proxy reward and corresponding qualitative changes in behavior. Unhackability
could provide confidence that reward hacking will not occur despite these challenges.

Despite the prevalence and potential severity of reward hacking, to our knowledge Pan et al. (2022)
provide the first peer-reviewed work that focuses specifically on it, although Everitt et al. (2017) tackle
the closely related issue of reward corruption. The work of Pan et al. (2022) is purely empirical; they
manually construct proxy rewards for several diverse environments, and evaluate whether optimizing
these proxies leads to reward hacking; in 5 out of 9 of their settings, it does. In another closely related
work, Zhuang and Hadfield-Menell (2020) examine what happens when the proxy reward function
depends on a strict subset of features relevant for the true reward. They show that optimizing the
proxy reward can lead to arbitrarily low true reward under suitable assumptions. This can be seen as
a seemingly valid simplification of the true reward that turns out to be (highly) hackable. While their
result only applies to environments with decreasing marginal utility and increasing opportunity cost,
we demonstrate hackability is an issue in arbitrary MDPs.
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Hackability is particularly concerning given arguments that reward optimizing behavior tends to
be power-seeking (Turner et al., 2021). But Leike et al. (2018) establish that any desired behavior
(power-seeking or not) can in principle be specified as optimal via a reward function.3 However,
unlike us, they do not consider the entire policy preference ordering. Meanwhile, Abel et al. (2021)
note that Markov reward functions cannot specify arbitrary orderings over policies or trajectories,
although they do not consider hackability. Previous works consider reward functions to be equivalent
if they preserve the ordering over policies (Ng et al., 1999, 2000). Unhackability relaxes this, allowing
equalities to be refined to inequalities, and vice versa. Unhackability provides a notion of what it
means to be “aligned enough”; Brown et al. (2020b) provide an alternative. They say a policy is
ε-value aligned if its value at every state is close enough to optimal (according to the true reward
function). Neither notion implies the other.

Reward tampering (Everitt et al., 2017; Kumar et al., 2020; Uesato et al., 2020; Everitt et al., 2021)
can be viewed as a special case of reward hacking, and refers to an agent corrupting the process
generating reward signals, e.g. by tampering with sensors, memory registers storing the reward signal,
or other hardware. Everitt et al. (2017) introduce the Corrupt Reward MDP (CRMDP), to model this
possibility. A CRMDP distinguishes corrupted and uncorrupted rewards; these are exactly analogous
to the proxy and true reward discussed in our work and others. Leike et al. (2018) distinguish
reward tampering from reward gaming, where an agent achieves inappropriately high reward without
tampering. However, in principle, a reward function could prohibit all forms of tampering if the
effects of tampering are captured in the state. So this distinction is somewhat imprecise, and the
CRMDP framework is general enough to cover both forms of hacking.

Our notion of simplification bears a close resemblance to quantilization (Taylor, 2016). Quantilization
returns a random policy from the top n% best policies. This is similar to equating the values of
those policies, but a simplification may also equate the values of the bottom/middle n%, etc. Thus
simplification may achieve a similar effect to quantilization without assuming that we are free to
choose from among the best policies.

4 Preliminaries

We begin with an overview of reinforcement learning (RL) to establish our notation and terminology.
Section 4.2 introduces our novel definitions of hackability and simplification.

4.1 Reinforcement Learning

We expect readers to be familiar with the basics of RL, which can be found in Sutton and Barto
(2018). RL methods attempt to solve a sequential decision problem, typically formalised as a Markov
decision process (MDP) , which is a tuple (S,A, T, I,R, γ) where S is a set of states, A is a set
of actions, T : S × A → ∆(S) is a transition function, I ∈ ∆(S) is an initial state distribution, R
is a reward function, the most general form of which is R : S × A × S → ∆(R), and γ ∈ [0, 1]
is the discount factor. Here ∆(X) is the set of all distributions over X . A stationary policy is a
function π : S → ∆(A) that specifies a distribution over actions in each state, and a non-stationary
policy is a function π : (S ×A)∗ × S → ∆(A), where ∗ is the Kleene star. A trajectory τ is a path
s0, a0, r0, ... through the MDP that is possible according to T , I , and R. The return of a trajectory
is the discounted sum of rewards G(τ)

.
=

∑∞
t=0 γ

trt, and the value of a policy is the expected return
J(π)

.
= Eτ∼π[G(τ)]. We derive policy (preference) orderings from reward functions by ordering

policies according to their value. In this paper, we assume that S and A are finite, that |A| > 1, that
all states are reachable, and that R(s, a, s′) has finite mean for all s, a, s′.

In our work, we consider various reward functions for a given environment, which is then formally
a Markov decision process without reward MDP \ R .

= (S,A, T, I, , γ). Having fixed an
MDP \ R, any reward function can be viewed as a function of only the current state and action by
marginalizing over transitions: R(s, a)

.
=

∑
s′∼T (s′|s,a) R(s, a, s′), we adopt this view from here on.

We define the (discounted) visit counts of a policy as Fπ(s, a)
.
= Eτ∼π[

∑∞
i=0 γ

i
1(si = s, ai = a)].

Note that J(π) =
∑

s,a R(s, a)Fπ(s, a), which we also write as ⟨R,Fπ⟩. When considering
multiple reward functions in an MDP \ R, we define JR(π)

.
= ⟨R,Fπ⟩ and sometimes use

3Their result concerns non-stationary policies and use non-Markovian reward functions, but in Appendix C,
we show how an analogous construction can be used with stationary policies and Markovian rewards.

4



Ji(π)
.
= ⟨Ri,Fπ⟩ as shorthand. We also use F : Π → R|S||A| to denote the embedding of policies

into Euclidean space via their visit counts, and define F(Π̇)
.
= {F(π : π ∈ Π̇)} for any Π̇. Moreover,

we also use a second way to embed policies into Euclidean space; let G(π) be the |S||A|-dimensional
vector where G(π)[s, a] = π(a | s), and let G(Π̇)

.
= {G(π : π ∈ Π̇)}.

4.2 Definitions and Basic Properties of Hackability and Simplification

Here, we formally define hackability as a binary relation between reward functions.
Definition 1. A pair of reward functions R1, R2 are hackable relative to policy set Π and an
environment (S,A, T, I, , γ) if there exist π, π′ ∈ Π such that

J1(π) < J1(π
′) & J2(π) > J2(π

′),

else they are unhackable.

Note that an unhackable reward pair can have J1(π) < J1(π
′) & J2(π) = J2(π

′) or vice versa.
Unhackability is symmetric; this can be seen be swapping π and π′ in Definition 1. It is not transitive,
however. In particular, the constant reward function is unhackable with respect to any other reward
function, so if it were transitive, any pair of policies would be unhackable. Additionally, we say that
R1 and R2 are equivalent on a set of policies Π if J1 and J2 induce the same ordering of Π, and
that R is trivial on Π if J(π) = J(π′) for all π, π′ ∈ Π. It is clear that R1 and R2 are unhackable
whenever they are equivalent, or one of them is trivial, but this is relatively uninteresting. Our central
question is if and when there are other unhackable reward pairs.

The symmetric nature of this definition is counter-intuitive, given that our motivation distinguishes
the proxy and true reward functions. We might break this symmetry by only considering policy
sequences that monotonically increase the proxy, however, this is equivalent to our original definition
of hackability: think of R1 as the proxy, and consider the sequence π, π′. We could also restrict
ourselves to policies that are approximately optimal according to the proxy; Corollary 2 shows that
Theorem 1 applies regardless of this restriction. Finally, we define simplification as an asymmetric
special-case of unhackability; Theorem 3 shows this is in fact a more demanding condition.
Definition 2. R2 is a simplification of R1 relative to policy set Π if for all π, π′ ∈ Π,

J1(π) < J1(π
′) =⇒ J2(π) ≤ J2(π

′) & J1(π) = J1(π
′) =⇒ J2(π) = J2(π

′)

and there exist π, π′ ∈ Π such that J2(π) = J2(π
′) but J1(π) ̸= J1(π

′). Moreover, if R2 is trivial
then we say that this is a trivial simplification.

Intuitively, while unhackability allows replacing inequality with equality – or vice versa – a simplifi-
cation can only replace inequalities with equality, collapsing distinctions between policies. When
R1 is a simplification of R2, we also say that R2 is a refinement of R1. We denote this relation-
ship as R1 ⊴ R2 or R2 ⊵ R1 ; the narrowing of the triangle at R1 represents the collapsing of
distinctions between policies. If R1 ⊴ R2 ⊵ R3, then we have that R1,R3 are unhackable,4 but if
R1 ⊵ R2 ⊴ R3, then this is not necessarily the case.5

Note that these definitions are given relative to some MDP \ R, although we often assume the
environment in question is clear from context and suppress this dependence. The dependence on the
policy set Π, on the other hand, plays a critical role in our results.

5 Results

Our results are aimed at understanding when it is possible to have an unhackable proxy reward
function. We first establish (in Section 5.1) that (non-trivial) unhackability is impossible when
considering the set of all policies. We might imagine that restricting ourselves to a set of sufficiently
good (according to the proxy) policies would remove this limitation, but we show that this is not the
case. We then analyze finite policy sets (with deterministic policies as a special case), and establish
necessary and sufficient conditions for unhackability and simplification. Finally, we demonstrate via
example that non-trivial simplifications are also possible for some infinite policy sets in Section 5.3.

4If J3(π) > J3(π
′) then J2(π) > J2(π

′), since R2 ⊵ R3, and if J2(π) > J2(π
′) then J1(π) ≥ J1(π

′),
since R1 ⊴ R2. It is therefore not possible that J3(π) > J3(π

′) but J1(π) < J1(π
′).

5Consider the case where R2 is trivial – then R1 ⊵ R2 ⊴ R3 for any R1,R3.
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5.1 Non-trivial Unhackability Requires Restricting the Policy Set

State
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Figure 3: Two reward
functions. While the step
function may seem like
a simplification of the
Gaussian, these reward
functions are hackable.

We start with a motivating example. Consider the setting shown in
Figure 3, where the agent can move left/stay-still/right and gets a reward
depending on its state. Let the Gaussian (blue) be the true reward R1

and the step function (orange) be the proxy R2. These are hackable. To
see this, consider being at state B. Let π(B) travel to A or C with 50/50
chance, and compare with the policy π′ that stays at B. Then we have
that J1(π) > J1(π

′) and J2(π) < J2(π
′).

Generally, we might hope that some environments allow for unhackable
reward pairs that are not equivalent or trivial. Here we show that this is
not the case, unless we impose restrictions on the set of policies we
consider.

First note that if we consider non-stationary policies, this result is relatively straightforward. Suppose
R1 and R2 are unhackable and non-trivial on the set ΠN of all non-stationary policies, and let π⋆

be a policy that maximises (R1 and R2) reward, and π⊥ be a policy that minimises (R1 and R2)
reward. Then the policy πλ that plays π⋆ with probability λ and π⊥ with probability 1 − λ is a
policy in ΠN . Moreover, for any π there are two unique α, β ∈ [0, 1] such that J1(π) = J1(πα) and
J2(π) = J2(πβ). Now, if α ̸= β, then either J1(π) < J1(πδ) and J2(π) > J2(πδ), or vice versa,
for δ = (α+ β)/2. If R1 and R2 are unhackable then this cannot happen, so it must be that α = β.
This, in turn, implies that J1(π) = J1(π

′) iff J2(π) = J2(π
′), and so R1 and R2 are equivalent.

This means that no interesting unhackability can occur on the set of all non-stationary policies.

The same argument cannot be applied to the set of stationary policies, because πλ is typically not
stationary, and mixing stationary policies’ action probabilities does not have the same effect. For
instance, consider a hallway environment where an agent can either move left or right. Mixing the
“always go left” and “always go right” policies corresponds to picking a direction and sticking with it,
whereas mixing their action probabilities corresponds to choosing to go left or right independently
at every time-step. However, we will see that there still cannot be any interesting unhackability on
this policy set, and, more generally, that there cannot be any interesting unhackability on any set of
policies which contains an open subset. Formally, a set of (stationary) policies Π̇ is open if G(Π̇) is
open in the smallest affine space that contains G(Π), for the set of all stationary policies Π. We will
use the following lemma:

Lemma 1. In any MDP \ R, if Π̇ is an open set of policies, then F(Π̇) is open in R|S|(|A|−1), and
F is a homeomorphism between G(Π̇) and F(Π̇).

Using this lemma, we can show that interesting unhackability is impossible on any set of stationary
policies Π̂ which contains an open subset Π̇. Roughly, if F(Π̇) is open, and R1 and R2 are non-trivial
and unhackable on Π̇, then the fact that J1 and J2 have a linear structure on F(Π̂) implies that R1

and R2 must be equivalent on Π̇. From this, and the fact that F(Π̇) is open, it follows that R1 and
R2 are equivalent everywhere.

Theorem 1. In any MDP \ R, if Π̂ contains an open set, then any pair of reward functions that are
unhackable and non-trivial on Π̂ are equivalent on Π̂.

Since simplification is a special case of unhackability, this also implies that non-trivial simplification
is impossible for any such policy set. Also note that Theorem 1 makes no assumptions about the
transition function, etc. From this result, we can show that interesting unhackability always is
impossible on the set Π of all (stationary) policies. In particular, note that the set Π̃ of all policies
that always take each action with positive probability is an open set, and that Π̃ ⊂ Π.
Corollary 1. In any MDP \ R, any pair of reward functions that are unhackable and non-trivial on
the set of all (stationary) policies Π are equivalent on Π.

Theorem 1 can also be applied to many other policy sets. For example, we might not care about the
hackability resulting from policies with low proxy reward, as we would not expect a sufficiently good
learning algorithm to learn such policies. This leads us to consider the following definition:
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Definition 3. A (stationary) policy π is ε-suboptimal if J(π) ≥ J(π⋆)− ε.

Alternatively, if the learning algorithm always uses a policy that is “nearly” deterministic (but with
some probability of exploration), then we might not care about hackability resulting from very
stochastic policies, leading us to consider the following definition:
Definition 4. A (stationary) policy π is δ-deterministic if ∀s ∈ S ∃a ∈ A : P(π(s) = a) ≥ δ.

Unfortunately, both of these sets contain open subsets, which means they are subject to Theorem 1.
Corollary 2. In any MDP \ R, any pair of reward functions that are unhackable and non-trivial
on the set of all ε-suboptimal policies (ε > 0) Πε are equivalent on Πε, and any pair of reward
functions that are unhackable and non-trivial on the set of all δ-deterministic policies (δ < 1) Πδ are
equivalent on Πδ .

Intuitively, Theorem 1 can be applied to any policy set with “volume” in policy space.

5.2 Finite Policy Sets

Having established that interesting unhackability is impossible relative to the set of all policies,
we now turn our attention to the case of finite policy sets. Note that this includes the set of all
deterministic policies, since we restrict our analysis to finite MDPs. Surprisingly, here we find that
non-trivial non-equivalent unhackable reward pairs always exist.

Theorem 2. For any MDP \ R, any finite set of policies Π̂ containing at least two π, π′ such that
F(π) ̸= F(π′), and any reward function R1, there is a non-trivial reward function R2 such that R1

and R2 are unhackable but not equivalent.

π2

π3

π1

π4
π5

Rotating the reward to make V(π3) equal V(π4) first sets V(π1) equal V(π2) 

π2

π3

π1

π4
π5

π2

π3

π1

π4
π5

Figure 4: An illustration of the state-action oc-
cupancy space with a reward function defined
over it. Points correspond to policies’ state-
action occupancies. Shading intensity indicates
expected reward. Rotating the reward function
to make J(π3) > J(π4) passes through a re-
ward function that sets J(π1) = J(π2). Solid
black lines are contour lines of the original re-
ward function, dotted blue lines are contour
lines of the rotated reward function.

This proof proceeds by finding a path from R1 to
another reward function R3 that is hackable with
respect to R1. Along the way to reversing one
of R1’s inequalities, we must encounter a reward
function R2 that instead replaces it with equality.
In the case that dim(Π̂) = 3, we can visualize mov-
ing along this path as rotating the contour lines of
a reward function defined on the space containing
the policies’ discounted state-action occupancies,
see Figure 4. This path can be constructed so as to
avoid any reward functions that produce trivial pol-
icy orderings, thus guaranteeing R2 is non-trivial.
For a simplification to exist, we require some fur-
ther conditions, as established by the following
theorem:
Theorem 3. Let Π̂ be a finite set of policies, and
R1 a reward function. The following procedure de-
termines if there exists a non-trivial simplification
of R1 in a given MDP \ R:

1. Let E1 . . . Em be the partition of Π̂ where π, π′ belong to the same set iff J(π) = J(π′).

2. For each such set Ei, select a policy πi ∈ Ei and let Zi be the set of vectors that is obtained
by subtracting F(πi) from each element of F(Ei).

Then there is a non-trivial simplification of R iff dim(Z1 ∪ · · · ∪ Zm) ≤ dim(F(Π̂)) − 2, where
dim(S) is the number of linearly independent vectors in S.

The proof proceeds similarly to Theorem 2. However, in Theorem 2 it was sufficient to show that
there are no trivial reward functions along the path from R1 to R3, whereas here we additionally
need that if J(π) = J(π′) then J ′(π) = J ′(π′) for all functions R2 on the path — this is what the
extra conditions ensure.

Theorem 3 is opaque, but intuitively, the cases where R1 cannot be simplified are those where R1

imposes many different equality constraints that are difficult to satisfy simultaneously. We can think
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of dim(F(Π)) as measuring how diverse the behaviours of policies in policy set Π are. Having a less
diverse policy set means that a given policy ordering imposes fewer constraints on the reward function,
creating more potential for simplification. The technical conditions of this proof determine when the
diversity of Π is or is not sufficient to prohibit simplification, as measured by dim(Z1 ∪ · · · ∪ Zm).

Projecting Ei to Zi simply moves these spaces to the origin, so that we can compare the directions in
which they vary (i.e. their span). By assumption, Ei∩Ej = {}, but span(Zi)∩span(Zj) will include
the origin, and may also contain linear subspaces of dimension greater than 0. This is the case exactly
when there are a pair of policies in Ei and a pair of policies in Ej that differ by the same visit counts,
for example, when the environment contains an obstacle that could be circumnavigated in several
different ways (with an impact on visit counts, but no impact on reward), and the policies in Ei and Ej

both need to circumnavigate it before doing something else. Roughly speaking, dim(Z1 ∪ · · · ∪ Zm)

is large when either (i) we have very large and diverse sets of policies in Π̂ that get the same reward
according to R, or (ii) we have a large number of different sets of policies that get the same reward
according to R, and where there are different kinds of diversity in the behaviour of the policies in
each set. There are also intuitive special cases of Theorem 3. For example, as noted before, if Ei is a
singleton then Zi has no impact on dim(Z1 ∪ · · · ∪ Zm). This implies the following corollary:

Corollary 3. For any finite set of policies Π̂, any environment, and any reward function R, if |Π̂| ≥ 2

and J(π) ̸= J(π′) for all π, π′ ∈ Π̂ then there is a non-trivial simplification of R.

A natural question is whether any reward function is guaranteed to have a non-trivial simplification
on the set of all deterministic policies. As it turns out, this is not the case. For concreteness, and to
build intuition for this result, we examine the set of deterministic policies in a simple MDP \ R
with S = {0, 1}, A = {0, 1}, T (s, a) = a, I = {0 : 0.5, 1 : 0.5}, γ = 0.5. Denote πij the policy
that takes action i from state 0 and action j from state 1. There are exactly four deterministic policies.
We find that of the 4! = 24 possible policy orderings, 12 are realizable via some reward function. In
each of those 12 orderings, exactly two policies (of the six available pairs of policies in the ordering)
can be set to equal value without resulting in the trivial reward function (which pair can be equated
depends on the ordering in consideration). Attempting to set three policies equal always results in the
trivial reward simplification.

For example, given the ordering π00 ≤ π01 ≤ π11 ≤ π10, the simplification π00 = π01 < π11 < π10

is represented by R = [ 0 3
2 1 ], where R(s, a) = R[s, a]: for example, here taking action 1 from state 0

gives reward R(0, 1) = 3. But there is no reward function representing a non-trivial simplification
of this ordering with π01 = π11. We develop and release a software suite to compute these results.
Given an environment and a set of policies, it can calculate all policy orderings represented by some
reward function. Also, for a given policy ordering, it can calculate all nontrivial simplifications and
reward functions that represent them. For a link to the repository, as well as a full exploration of these
policies, orderings, and simplifications, see Appendix D.3.

5.3 Unhackability in Infinite Policy Sets

The results in Section 5.1 do not characterize unhackability for infinite policy sets that do not contain
open sets. Here, we provide two examples of such policy sets; one of them admits unhackable
reward pairs and the other does not. Consider policies A,B,C, and reward functions R1 with
J1(C) < J1(B) < J1(A) and R2 with J2(C) = J2(B) < J2(A). Policy sets Πa = {A} ∪ {λB +
(1− λ)C : λ ∈ [0, 1]} and Πb = {A} ∪ {λB + (1− λ)C : λ ∈ [0, 1]} are depicted in Figure 5; the
vertical axis represents policies’ values according to R1 and R2. For Πa, R2 is a simplification of
R1, but for Πb, it is not, since J1(X) < J1(Y ) and J2(X) > J2(Y ).

6 Discussion

We reflect on our results and identify limitations in Section 6.1. In Section 6.2, we discuss how our
work can inform discussions about the appropriateness, potential risks, and limitations of using of
reward functions as specifications of desired behavior.
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(a) (b)

Figure 5: Infinite policy sets that do not contain open sets sometimes allow simplification (a), but
not always (b). Points A, B, C represent deterministic policies, while the bold lines between them
represent stochastic policies. The y-axis gives the values of the policies according to reward functions
R1 and R2. We attempt to simplify R1 by rotating the reward function such that J2(B) = J2(C); in
the figure, we instead (equivalently) rotate the triangle along the AB axis, leading to the red triangle.
In (a), R2 simplifies R1, setting all policies along the BC segment equal in value (but still lower than
A). In (b), R2 swaps the relative value of policies X and Y (J1(X) < J1(Y ) = J2(Y ) < J2(X))
and so does not simplify R1.

6.1 Limitations

Our work has a number of limitations. We have only considered finite MDPs and Markov reward
functions, leaving more general environments for future work. While we characterized hackability
and simplification for finite policy sets, the conditions for simplification are somewhat opaque, and
our characterization of infinite policy sets remains incomplete.

As previously discussed, our definition of hackability is strict, arguably too strict. Nonetheless, we
believe that understanding the consequences of this strict definition is an important starting point for
further theoretical work in this area.

The main issue with the strictness of our definition has to do with the symmetric nature of hackability.
The existence of complex behaviors that yield low proxy reward and high true reward is much less
concerning than the reverse, as these behaviors are unlikely to be discovered while optimizing the
proxy. For example, it is very unlikely that our agent would solve climate change in the course of
learning how to wash dishes. Note that the existence of simple behaviors with low proxy reward
and high true reward is concerning; these could arise early in training, leading us to trust the proxy,
only to later see the true reward decrease as the proxy is further optimized. To account for this
issue, future work should explore more realistic assumptions about the probability of encountering a
given sequence of policies when optimizing the proxy, and measure hackability in proportion to this
probability.

We could allow for approximate unhackability by only considering pairs of policies ranked differently
by the true and proxy reward functions as evidence of hacking iff their value according to the true
reward function differs by more than some ε. Probabilistic unhackability could be defined by looking
at the number of misordered policies; this would seem to require making assumptions about the
probability of encountering a given policy when optimizing the proxy.

Finally, while unhackability is a guarantee that no hacking will occur, hackability is far from a
guarantee of hacking. Extensive empirical work is necessary to better understand the factors that
influence the occurrence and severity of reward hacking in practice.

6.2 Implications

How should we specify our preferences for AI systems’ behavior? And how detailed a specification
is required to achieve a good outcome? In reinforcement learning, the goal of maximizing (some)
reward function is often taken for granted, but a number of authors have expressed reservations about
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this approach (Gabriel, 2020; Dobbe et al., 2021; Hadfield-Menell et al., 2016b, 2017; Bostrom,
2014). Our work has several implications for this discussion, although we caution against drawing
any strong conclusions due to the limitations mentioned in Section 6.1.

One source of confusion and disagreement is the role of the reward function; it is variously considered
as a means of specifying a task (Leike et al., 2018) or encoding broad human values (Dewey, 2011);
such distinctions are discussed by Christiano (2019) and Gabriel (2020). We might hope to use
Markov reward functions to specify narrow tasks without risking behavior that goes against our broad
values. However, if we consider the “narrow task” reward function as a proxy for the true “broad
values” reward function, our results indicate that this is not possible: these two reward functions will
invariably be hackable. Such reasoning suggests that reward functions must instead encode broad
human values, or risk being hacked. This seems challenging, perhaps intractably so, indicating that
alternatives to reward optimization may be more promising. Potential alternatives include imitation
learning (Ross et al., 2011), constrained RL (Szepesvári, 2020), quantilizers (Taylor, 2016), and
incentive management (Everitt et al., 2019).

Scholars have also criticized the assumption that human values can be encoded as rewards (Dobbe
et al., 2021), and challenged the use of metrics more broadly (O’Neil, 2016; Thomas and Uminsky,
2022), citing Goodhart’s Law (Manheim and Garrabrant, 2018; Goodhart, 1975). A concern more
specific to the optimization of reward functions is power-seeking (Turner et al., 2021; Bostrom, 2012;
Omohundro, 2008). Turner et al. (2021) prove that optimal policies tend to seek power in most
MDPs and for most reward functions. Such behavior could lead to human disempowerment; for
instance, an AI system might disable its off-switch (Hadfield-Menell et al., 2016a). Bostrom (2014)
and others have argued that power-seeking makes even slight misspecification of rewards potentially
catastrophic, although this has yet to be rigorously established.

Despite such concerns, approaches to specification based on learning reward functions remain popular
(Fu et al., 2017; Stiennon et al., 2020; Nakano et al., 2021). So far, reward hacking has usually been
avoidable in practice, although some care must be taken (Stiennon et al., 2020). Proponents of such
approaches have emphasized the importance of learning a reward model in order to exceed human
performance and generalize to new settings (Brown et al., 2020a; Leike et al., 2018). But our work
indicates that such learned rewards are almost certainly hackable, and so cannot be safely optimized.
Thus we recommend viewing such approaches as a means of learning a policy in a safe and controlled
setting, which should then be validated before being deployed.

7 Conclusion

Our work begins the formal study of reward hacking in reinforcement learning. We formally define
hackability and simplification of reward functions, and show conditions for the (non-)existence of
non-trivial examples of each. We find that unhackability is quite a strict condition, as the set of all
policies never contains non-trivial unhackable pairs of reward functions. Thus in practice, reward
hacking must be prevented by limiting the set of possible policies, or controlling (e.g. limiting)
optimization. Alternatively, we could pursue approaches not based on optimizing reward functions.
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