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Abstract

The many successes of deep neural networks (DNNs) over the past decade have
largely been driven by computational scale rather than insights from biological
intelligence. Here, we explore if these trends have also carried concomitant im-
provements in explaining the visual strategies humans rely on for object recognition.
We do this by comparing two related but distinct properties of visual strategies in
humans and DNNs: where they believe important visual features are in images and
how they use those features to categorize objects. Across 84 different DNNs trained
on ImageNet and three independent datasets measuring the where and the how of
human visual strategies for object recognition on those images, we find a systematic
trade-off between DNN categorization accuracy and alignment with human visual
strategies for object recognition. State-of-the-art DNNs are progressively becoming
less aligned with humans as their accuracy improves. We rectify this growing issue
with our neural harmonizer: a general-purpose training routine that both aligns
DNN and human visual strategies and improves categorization accuracy. Our work
represents the first demonstration that the scaling laws [1–3] that are guiding the
design of DNNs today have also produced worse models of human vision. We
release our code and data at https://serre-lab.github.io/Harmonization
to help the field build more human-like DNNs.

1 Introduction

Rich Sutton stated [4] that the bitter lesson “from 70 years of AI research is that general methods
that leverage computation are ultimately the most effective, and by a large margin.” Deep learning
has been the standard approach to object categorization problems ever since the paradigm shifting
success of AlexNet [5] on the ImageNet [6] benchmark a decade ago. As deep neural network (DNN)
performance has continued to improve in the intervening years, Sutton’s lesson has become more
fitting than ever, with recent networks rivaling and likely outperforming humans on the benchmark [7]
through brute-force computational scale: increasing the number of network parameters and number of
images used for training orders-of-magnitude beyond AlexNet [1–3]. While the successes of so-called
“scaling laws” are undeniable, this singular focus on performance in the field has side-stepped an
equally important question that will govern the utility of object recognition models for the brain
sciences and industry applications alike: are the visual strategies learned by DNNs aligned with those
used by humans?

The visual strategies that mediate object recognition in humans can be decomposed into two related
but distinct processes: identifying where the important features for object recognition are in a scene,
and determining how to integrate the selected features into a categorical decision [8, 9]. It has been
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known for nearly a century [10–13] that different humans attend to similar locations when asked
to find and recognize objects. After selecting these important features, human observers are also
consistent in how they use those features to categorize objects – the inclusion of a few pixels in an
image can be the difference between recognizing an object or not [9, 14].

Has the past decade of DNN development produced any models that are aligned with these human
visual strategies for object recognition? Such a model could transform cognitive science by support-
ing a better mechanistic understanding of how vision works. More human-like models of object
recognition would also resolve the problems with predictablity and interpretablity of DNNs [15–18],
and control their alarming tendency to rely on “shortcuts” and dataset biases to perform well on
tasks [19]. In this work, we perform the first large-scale and systematic comparison of the visual
strategies of DNNs and humans for object recognition on ImageNet.

Contributions. In order to compare human and DNN visual strategies, we first turn to the human
feature importance maps collected by Linsley et al. [20,21]. Their datasets, ClickMe and Clicktionary,
contain maps of nearly 200,000 unique images in ImageNet that highlight the visual features humans
believe are important for recognizing them. These datasets amount to a reverse inference on where
important visual features are in ImageNet images (Fig. 1). We complement these datasets with
new psychophysics experiments that directly test how important visual features are used for object
recognition (Fig. 1). As DNN performance has increased on ImageNet, their alignment with
human visual strategies captured in these datasets has worsened. This trade-off is found over 84
different DNNs representing all popular model classes – from those trained for adversarial robustness
to those pushing the scaling laws in network capacity and training data. To summarize our findings:

• The trade-off between DNN object recognition accuracy and alignment with human visual strategies
replicates across three unique datasets: ClickMe [20], Clicktionary [21], and our psychophysics
experiments.

• We shift this trade-off with our neural harmonizer, a novel drop-in module for co-training any DNN
to align with human visual strategies while also achieving high task accuracy. Harmonized DNNs
learn visual strategies that are significantly more aligned with humans than any other DNN we
tested.

• We release our data and code at https://serre-lab.github.io/Harmonization/ to help the
field tackle the growing misalignment between DNNs and humans.

2 Related work
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Figure 1: Visual strategies of object recognition. We inves-
tigate the alignment of human and DNN visual strategies in
object categorization. We decompose human visual strate-
gies into descriptions of where important features are [20,22],
and how those features are integrated into visual decisions.

Do DNNs explain human visual per-
ception? Despite the continued suc-
cess of DNNs on computer vision
benchmarks, there are conflicting ac-
counts on their ability to explain hu-
man vision. On the one hand, there is
evidence that DNNs are improving as
models of human visual perception on
challenging tasks, such as recognizing
objects obscured by noise [23]. On
the other hand, there is also evidence
that DNNs struggle to explain percep-
tual phenomena in human vision like
contextual illusions [24], perceptual
grouping [19, 25, 26], and categorical
prototypes [27]. Others have found
differences between human attention data and DNN models of visual attention [20, 28]. Moreover,
DNNs have stopped improving as models of the ventral visual system in humans and primates over
recent years. While the original theory was that model explanations of object-evoked neural activity
patterns improved alongside model categorization accuracy [29], recent large-scale DNNs are worse
at explaining neural data than older ones with lower ImageNet accuracy [30].
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What are the visual strategies underlying human object recognition? Ever since its inception, a
goal of vision science has been to characterize the neural processes supporting object recognition in
humans. It has been discovered that object recognition can be decomposed into different processing
stages that emerge over time [8,31–36], where the earliest stage is associated with processing through
feedforward connections in the visual system, and the later stage is associated with processing through
feedback connections. Since the DNNs used today mostly rely on feedforward connections, it is
likely that they are better models for that rapid feedforward phase of processing than the subsequent
feedback phase [33,37]. To maximize the likelihood that the visual strategies learned by DNNs align
with those used by humans, our experiments focus on the visual strategies of rapid feedforward object
recognition in humans.

Most closely related to our work, are studies of “top-down” image saliency andwherecategory
diagnostic visual features are in images. These studies typically involve asking participants to search
for an object in an image, or �nd visual features that are diagnostic for an object's category or
identity [10–13, 20, 22, 38]. In our work, we complement these descriptions ofwhereimportant
features are in images with psychophysics testinghowthose features are used to categorize objects.

Comparing visual strategies of humans and machines.As methods in explainable arti�cial
intelligence have developed over the past decade, they have opened up opportunities for comparing
the visual regions selected by humans and DNNs when solving tasks. Many of these comparisons
have focused on human image saliency measurements captured by eye tracking or mouse clicks
during passive or active viewing [20,22,39–42]. Others have compared categorical representation
distances [40,43] or combined those distances with measures of human attention [28,44]. The most
direct comparisons between human and DNN visual strategies involved analyzing the minimal image
patches needed to recognize objects [9,45,46]. However, these studies were limited and compared
humans with older DNNs on tens of images. To the best of our knowledge, the largest-scale evaluation
of human and DNN visual strategies relied on theClickMedataset to compare visual regions preferred
by humans and attention models trained for object recognition [20]. What is noticeably missing from
each of these studies is an large-scale analysis spanning many images and models of how human and
DNN alignment has changed as a function of model performance.

Improving the correspondence between humans and machines.Inconsistencies between human
and DNN representations can be resolved by directly training models to act more like humans. DNNs
have been trained to have more human-like attention, or human-like representational distances in
their output layers [20,40,43,47,48]. Here, we add to these successes with the neural harmonizer,
a training routine that automatically aligns the visual strategies (Fig. 1) of any two observers by
minimizing the dissimilarity of their decision explanations.

3 Methods

Human feature importance datasets. We focused on the ImageNet dataset to compare the visual
strategies of humans and DNNs for object recognition at scale. We relied on the two signi�cant
efforts for gathering feature importance data from humans on ImageNet: theClicktionary[22] and
ClickMe[20] games, which use slightly different methods to collect their data. Both games begin with
the same basic setup: two players work together to locate features in an object image that they believe
are important for categorizing it. As one of the players selects important image regions, those regions
are �lled into a blank canvas for the other observer to see and categorize the image as quickly as
possible. InClicktionary[22], both players are humans, whereas inClickMe[20], the player selecting
features is a human and the player recognizing images is a DNN (VGG16 [49]). For both games,
feature importance maps depicting the average object category diagnosticity of every pixel was
computed as the probability of it being clicked by a participant. In total,Clicktionary[22] contained
feature importance maps for 200 images from the ImageNet validation set, whereasClickMe[20]
contained feature importance maps for a non-overlapping set of 196,499 images from ImageNet
training and validation sets. Thus,ClickMehas far more data thanClicktionary, butClicktionary
data has more reliable human feature importance data thanClickMe. Our experiments measure
the alignment between human and DNN visual strategies usingClickMeandClicktionaryfeature
importance maps captured on the ImageNet validation set. As we describe in §4,ClickMefeature
importance maps from the ImageNet training set are used to implement our neural harmonizer.
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Psychophysics participants and dataset. We complemented the feature importance maps from
Clicktionary and ClickMe with psychophysics experiments on rapid visual categorization. We
recruited 199 participants from Amazon Mechanical Turk (mturk.com) to complete the experiments.
Participants viewed a psychophysics dataset consisting of the 100 animal and 100 non-animal images
in the Clicktionary game taken from the ImageNet validation set [22]. We used the feature importance
maps for each image as masks for the object images, allowing us to control the proportion of important
features observers were shown when asked to recognize objects (Fig. 5a). We generated versions of
each image that reveal anywhere between 1% to 100% (at log-scale spaced intervals) of the important
object pixels against a phase scrambled noise background (see Appendix §1 for details on mask
generation). The total number of revealed pixels was equal for every image at a given level of image
masking, and the revealed pixels were centered against the noise background. Each participant saw
only one masked version of each object image.

Psychophysics experiment. Participants were instructed to categorize images in the psychophysics
dataset as animals or non-animals as quickly and accurately as possible. Each experimental trial
consisted of the following sequence of events overlaid onto a white background (SI Fig. 1): (i)
a �xation cross displayed for a variable time (1,100–1,600ms); (ii ) an image for 400ms; (iii ) an
additional 150ms of response time. In other words, the experiment forced participants to perform
rapid object categorization. They were given a total of 550ms to view an image and press a button
to indicate its category (feedback was provided on trials in which responses were not provided
within this time limit). Images were sized at 256 x 256 pixel resolution, which is equivalent to a
stimulus size approximately between 5 – 11 degrees of visual angle across a likely range of possible
display and seating setups we expect participants used for the experiment. Similar paradigms and
timing parameters have been shown to capture pre-attentive visual system processing [31,50–52].
Participants provided informed consent electronically and were compensated $3.00 for their time (�
10–15 min; approximately $15.00/hr).

Models. We compared humans with 84 different DNNs representing the variety of approaches
used in the �eld today: 50 CNNs trained on ImageNet [1, 49, 53–64, 64–73], 6 CNNs trained on
other datasets in addition to ImageNet (which we refer to as “CNN extra data”) [1,66,74], 10 vision
transformers [75–79], 6 CNNs trained with self-supervision [80, 81], and 13 models trained for
robustness to noise or adversarial examples [82,83]. We used pretrained weights for each of these
models supplied by their authors, with a variety of licenses (detailed in SI §2), implemented in
Tensor�ow 2.0, Keras, or PyTorch.

4 Results

4.1 Whereare diagnostic object features for humans and DNNs?

To systematically compare the visual strategies of object recognition for humans and DNNs on
ImageNet, we �rst turned to theClickMedataset of feature importance maps [20]. In order to derive
comparable feature importance maps for DNNs, we needed a method that could be ef�ciently and con-
sistently applied to each of the 84 DNNs we tested without any idiosyncratic hyperparameters. This
led us to choose a classic method for explainable arti�cial intelligence, image feature saliency [84].
We prepared human feature importance maps fromClickMeby taking the average importance map
produced by humans for every image that also appeared in ImageNet validation. We then used
Spearman's rank-correlation to measure the similarity between human feature maps and DNN feature
maps for each image [50]. We also computed the inter-rater alignment of human feature importance
maps as the mean split-half correlation across 1000 random splits of the participant pool (� = 0 :66).
We then normalized each human-DNN correlation by this score [20].

There were dramatic qualitative differences between the features selected by humans and DNNs on
ImageNet. In general, humans selected less context and focused more on object parts: for animals,
parts of their faces; for non-animals, parts that enable their usage, like the spade of a shovel (see
Fig. 2 and SI Fig. 5. The DNN that was most aligned with humans, the DenseNet121, was still only
38% aligned with humans (Fig. 3).

Plotting the relationship between DNNs' top-1 accuracy on ImageNet with their human alignment
revealed a striking trade-off: as the accuracy of DNNs has improved beyond DenseNet121, their
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Figure 2:Human and DNNs rely on different features to recognize objects.In contrast, our neural
harmonizer aligns DNN feature importance with humans. We smooth feature importance maps from
humans (ClickMe) and DNNs with a Gaussian kernel for visualization.

alignment with humans has worsened (Fig. 3). For example, consider the ConvNext [1], which
achieved the best top-1 accuracy in our experiments (85.8%), was only 22% aligned with humans –
equivalent to the alignment of the BagNet33 [69] (63% top-1 accuracy). As an additional control, we
computed the similarity between the averageClickMemap, which exhibits a center bias [85,86] (SI
Fig. 5), and each individualClickMemap. This center-bias control was only outperformed by 42/84
CNNs we tested (y in Fig. 3). Overall, we observe that human and DNN alignment has considerably
worsened since the introduction of these two models.

The neural harmonizer. While scaling DNNs has immensely helped performance on popular
benchmark tasks, there are still fundamental differences in the architectures of DNNs and the
human visual system [37] which could part of the reason to blame for poor alignment. While
introducing biological constraints into DNNs could help this problem, there is plenty of evidence that
doing so would hurt benchmark performance and require bespoke development for every different
architecture [87–89]. Is it possible to align a DNN's visual strategies with humans without hurting its
performance?

Such a general-purpose method for aligning human and DNN visual strategies should satisfy the
following criteria: (i) The method should work with any fully-differentiable network architecture.
(ii ) It should not present optimization issues that interfere with learning to solve a task, and the
task-accuracy of a model trained with the method should not be worse than a model trained without
the method. We created the neural harmonizer to satisfy these criteria.

Let us consider a supervised categorization problem with an input space,X an output spaceY � Rc

and a predictor functionf � : X ! Y parameterized by� , which maps an input vectorx 2 X to an
outputf � (x ). We denoteg : F � X ! X an explanation functional that, given a predictorf � 2 F
and an input, returns a feature importance map� = g(f � ; x ). Here, we focus on DNN saliency
g(f � ; x ) , r x f � (x ) as our method for computing feature importance in DNNs, but the method can
in principle work with any differentiable network explanation method.

To satisfy criterion (i), the neural harmonizer introduces a differentiable loss that will enforce
alignment across feature importance map scales from any neural network. LetPi (:) be the function
mapping a feature importance map� to it is representation in theN levels of a Gaussian pyramid,
with i 2 f 1; :::; N g. The functionPi (� ) is computed by downsamplingPi � 1(� ) using a Gaussian
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Figure 3:The trade-off between DNN performance and alignment with human feature impor-
tance from ClickMe [20]. Human feature alignment is the mean Spearman correlation between
human and DNN feature importance maps, normalized by the average inter-rater alignment of hu-
mans. The shaded region denotes the pareto frontier of the trade-offs between ImageNet accuracy
and human feature alignment for unharmonized models. Harmonized models (VGG16, ResNet50,
ViT, and Ef�cientNetB0) are more accurate and aligned than versions of those models trained only
for categorization. Error bars are bootstrapped standard deviations over feature alignment. Arrows
show a shift in performance after training with the neural harmonizer. The feature alignment of an
average ofClickMemaps with held-out maps is denoted byy.

kernel, withP1(� ) = � . We then seek to minimize
P N

i jjP i (g(f � ; x )) � P i (� )jj2, which will align
feature importance maps between humans and DNNs at every scale of the pyramid.

To satisfy criterion (ii ), the neural harmonizer should work well with training routines designed
for large-scale computer vision challenges like ImageNet. This means that the neural harmonizer
loss must avoid optimization issues at scale. To do this, we need a way of comparing feature
importance maps between humans and DNNs that is invariant to the norm of either map. We therefore
standardize feature importance maps from humans and DNNs before comparing them, and only
measure alignment on the most important areas of the image for each observer. Formally, letz(:) be
a standardization function over feature importance maps that takes the mean and standard deviation
computed for each map� such thatz(� ) has 0 activation on average and unit standard deviation.
To focus alignment on important regions, letz(� )+ denote the positive part of the standardized
explanationz(� ). Finally, we include a task loss, the familiar cross entropy objective, to yield the
complete neural harmonization loss and train models that are at least as accurate as those trained
without harmonization:

L Harmonization= � 1

NX

i

jj (z � P i � g(f � ; x ))+ � (z � P i (� ))+ jj2 (1)

+ L CCE (f � ; x ; y ) + � 2

X

i

� 2
i (2)
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Figure 4:The trade-off between DNN performance and alignment with human feature impor-
tance from Clicktionary [22]. Human feature alignment is the mean Spearman correlation between
human and DNN feature importance maps, normalized by the average inter-rater alignment of humans.
The shaded region denotes the pareto frontier of the trade-offs between ImageNet accuracy and human
feature alignment for unharmonized models. Harmonized models (VGG16, ResNet50, MobileNetV1,
and Ef�cientNetB0) are more accurate and aligned than versions of those models trained only for
categorization. Error bars are bootstrapped standard deviations over feature alignment. Arrows denote
a shift in performance after training with the neural harmonizer.

Training. We trained four different DNNs with the neural harmonizer: VGG16, ViT, ResNet50, and
Ef�cientNetB0. These models were selected because they are popular convolutional and transformer
networks with open-source architectures that are straightforward to train and also sit near the boundary
of the trade-off between DNN performance and alignment with humans. Models were trained using
the neural harmonizer to optimize categorization performance on ImageNet and feature importance
map alignment with human data fromClickMe. We trained models on all images in the ImageNet
training set, but becauseClickMeonly contains human feature importance maps for a portion of those
images, we computed the categorization loss but not the neural harmonizer loss for images without
importance maps. Models were trained using 8 cores V4 TPUs on the Google Cloud Platform, and
training lasted approximately one day. Models were trained with an augmented ResNet training
recipe (built fromhttps://github.com/tensorflow/tpu/ ). Models were optimized with SGD
and momentum over batches of 512 images, a learning rate of0:3, and label smoothing [90]. Images
were augmented with random left-right �ips and mixup [91]. The learning rate was adjusted over
the course of training with a schedule that began with an initial warm-up period of 5 epochs and
then decaying according to a cosine function over 90 epochs, with decay at step 30, 50 and 80.
We validated that a ResNet50 and VGG16 trained with these hyperparameters and schedule using
standard cross-entropy (but not the neural harmonizer) matched published performance.

The neural harmonizer aligns human and DNN visual strategies. We found that harmonized
models broke the trade-off between ImageNet accuracy and model alignment withClickMehuman
feature importance maps (Fig. 3). Harmonized models were signi�cantly more aligned with feature
importance maps and also performed better on ImageNet. The changes inwhereharmonized models
�nd important features in images were dramatic: a harmonized ViT had feature importance maps that
are far less reliant on context (Fig. 2) and approximately 150% more aligned with humans (Fig. 3;
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Figure 5:Comparing how humans and DNNs use visual features during object recognition.
(a) Humans and DNNs categorized ImageNet validation images as animals or non-animals. The
images revealed only a portion of the most important visual features according to theClicktionary
game [92].(b) There was a trade-off between DNN top-1 accuracy on ImageNet and alignment with
human visual decision making. The shaded region denotes the pareto frontier of the trade-off between
ImageNet accuracy and human feature alignment for unharmonized models. Arrows denote a shift in
performance after training with the neural harmonizer. Error bars are bootstrapped standard deviations
over decision-making alignment.(c) A state-of-the-art DNN like the ViT learned a different strategy
for integrating visual features into decisions than humans or a harmonized ViT.

ViT goes from 28.7% to 72.6% alignment after harmonization). The same model also performed 4%
better in top-1 accuracy without any changes to its architecture. Similar improvements were found for
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