A Proof of Lemma 1

Proof(Lemma 1).

$$
\begin{align*}
\hat{L}(q ; \mathcal{S})-\hat{L}\left(q^{\prime} ; \mathcal{S}\right) & =\hat{\mathrm{E}}_{\mathcal{S}}\left[\log q^{\prime}(x)-\log q(x)\right] \\
& =\hat{\mathrm{E}}_{\mathcal{S}}\left[-a f(x)-\log Z_{q^{\prime}}\right] \\
& =a\left(\mathrm{E}_{q}[f(x)]-\hat{\mathrm{E}}_{\mathcal{S}}[f(x)]\right)-a \mathrm{E}_{q}[f(x)]-\log Z_{q^{\prime}} \\
& =a \hat{\alpha}(f)-a \mathrm{E}_{q}[f(x)]-\log Z_{q^{\prime}} \tag{4}
\end{align*}
$$

Since $\hat{\alpha}(f) \geq a$ by assumption, it remains to show $a \mathrm{E}_{q}[f(x)]+\log Z_{q^{\prime}} \leq a^{2} / 2$. Using the bound $\log r \leq r-1$ for any $r>0$, we get that,

$$
\begin{aligned}
a \mathrm{E}_{q}[f(x)]+\log Z_{q^{\prime}} & \leq a \mathrm{E}_{q}[f(x)]+Z_{q^{\prime}}-1 \\
& =a \mathrm{E}_{q}[f(x)]+\mathrm{E}_{q}\left[e^{-a f(x)}\right]-1 \\
& =\mathrm{E}_{q}\left[a f(x)+e^{-a f(x)}-1\right] \\
& \leq \mathrm{E}_{q}\left[(a f(x))^{2} / 2\right],
\end{aligned}
$$

where we have used the fact that $Z_{q^{\prime}}=\mathrm{E}_{q}\left[e^{-a f(x)}\right]$ and, to get to the last line we use $e^{-r}+r-1 \leq$ $r^{2} / 2$ for $r \geq 0$ by Taylor expansion. Since $f(x) \in[0,1]$, the last quantity is at most $a^{2} / 2$, which together with (4), gives $\hat{L}(q ; \mathcal{S})-\hat{L}\left(q^{\prime} ; \mathcal{S}\right) \geq a^{2} / 2$.

B Proof of Lemma 2

Proof(Lemma 2). Let $g(x)=\log q(x)-\log q^{\prime}(x)$. By Jensen's inequality,

$$
\begin{aligned}
\mathrm{E}_{q}[g(x)]-\hat{\mathrm{E}}_{\mathcal{S}}[g(x)] & =-\mathrm{E}_{q}\left[\log \frac{q^{\prime}(x)}{q(x)}\right]-\hat{\mathrm{E}}_{\mathcal{S}}[g(x)] \\
& \geq-\log \mathrm{E}_{q}\left[\frac{q^{\prime}(x)}{q(x)}\right]-\hat{\mathrm{E}}_{\mathcal{S}}[g(x)] \\
& =-\log (1)-\hat{\mathrm{E}}_{\mathcal{S}}[g(x)] \\
& =\mathrm{E}_{\mathcal{S}}\left[\log q^{\prime}(x)\right]-\hat{\mathrm{E}}_{\mathcal{S}}[\log q(x)] \\
& =\hat{L}(q ; S)-\hat{L}\left(q^{\prime} ; S\right)
\end{aligned}
$$

Since $f(x)=\frac{1}{2 \log C}(g(x)+\log C)$, the training advantage of f is that of g scaled by a factor of $\frac{1}{2 \log C}$. Finally, it is straightforward to verify that $f(x) \in[0,1]$ by our assumptions on the ratio between q and q^{\prime}.

C Proof of Lemma 3

Proof. We proceed analogously as in the proof of Lemma 1. We first note that

$$
\hat{L}(q ; \mathcal{S})=-\hat{\mathrm{E}}_{\mathcal{S}}\left[\log \prod_{i=1}^{N} q\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)\right]=-\sum_{i=1}^{N} \hat{\mathrm{E}}_{\mathcal{S}} \log q\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)
$$

and

$$
\begin{aligned}
\hat{L}\left(q^{\prime} ; \mathcal{S}\right) & =-\hat{\mathrm{E}}_{\mathcal{S}}\left[\log \prod_{i=1}^{N} q^{\prime}\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)\right] \\
& =\sum_{i=1}^{N}-\hat{\mathrm{E}}_{\mathcal{S}} \log q\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)+b g\left(x_{1}, \ldots, x_{i}\right)+\log Z_{q^{\prime}}\left(x_{1}, \ldots, x_{i-1}\right)
\end{aligned}
$$

Let us use the short-hand notation $x_{1: i} \triangleq\left(x_{1}, \ldots, x_{i}\right)$. Subtracting the two equalities above we obtain

$$
\hat{L}(q ; \mathcal{S})-\hat{L}\left(q^{\prime} ; \mathcal{S}\right)=\sum_{i=1}^{N} \hat{\mathrm{E}}_{\mathcal{S}}\left[-b g\left(x_{1: i}\right)-\log Z_{q^{\prime}}\left(x_{1: i-1}\right)\right]
$$

which, after adding and subtracting $\hat{\mathrm{E}}_{\mathcal{S}} \mathrm{E}_{w \sim q\left(w \mid x_{1: i-1}\right)} g\left(x_{1: i-1}, w\right)$ and rearranging terms, yields

$$
\begin{align*}
\hat{L}(q ; \mathcal{S})-\hat{L}\left(q^{\prime} ; \mathcal{S}\right)= & b\left[\sum_{i=1}^{N} \hat{\mathrm{E}}_{\mathcal{S}}\left(\mathrm{E}_{w \sim q\left(w \mid x_{1: i}\right)} g\left(x_{1: i-1}, w\right)-g\left(x_{1: i}\right)\right)\right] \tag{5}\\
& -\sum_{i=1}^{N} \hat{\mathrm{E}}_{\mathcal{S}}\left[\log Z_{q^{\prime}}\left(x_{1: i-1}\right)-b \mathrm{E}_{w \sim q\left(w \mid x_{1: i-1}\right)} g\left(x_{1: i-1}, w\right)\right] \tag{6}\\
= & b N \hat{\beta}(g)-\sum_{i=1}^{N} \hat{\mathrm{E}}_{\mathcal{S}}\left[b \mathrm{E}_{w} g\left(x_{1: i-1}, w\right)+\log Z_{q^{\prime}}\left(x_{1: i-1}\right)\right] \tag{7}
\end{align*}
$$

By assumption we have $N b \hat{\beta}(g) \geq N b^{2}$, so it it remains to show that the second term is upper bounded by $N b^{2} / 2$. Using, as before, the bound $\log r \leq r-1$ for every $r=Z_{q^{\prime}}\left(x_{1: i-1}\right) \geq 0$, we get that, for every $i=1, \ldots, N$:

$$
\begin{aligned}
\hat{\mathrm{E}}_{\mathcal{S}}\left[b \mathrm{E}_{w} g\left(x_{1: i-1}, w\right)+\log Z_{q^{\prime}}\left(x_{1: i-1}\right)\right] & \leq \hat{\mathrm{E}}_{\mathcal{S}}\left[b \mathrm{E}_{w} g\left(x_{1: i-1}, w\right)+Z_{q^{\prime}}\left(x_{1: i-1}\right)-1\right] \\
& =\hat{\mathrm{E}}_{\mathcal{S}}\left[b \mathrm{E}_{w} g\left(x_{1: i-1}, w\right)+\mathrm{E}_{w} e^{-b g\left(x_{1: i-1}, w\right)}-1\right] \\
& =\hat{\mathrm{E}}_{\mathcal{S}} \mathrm{E}_{w}\left[b g\left(x_{1: i-1}, w\right)+e^{-b g\left(x_{1: i-1}, w\right)}-1\right] \\
& \leq \hat{\mathrm{E}}_{\mathcal{S}} \mathrm{E}_{w}\left(b g\left(x_{1: i-1}, w\right) / 2\right)^{2} \leq \frac{b^{2}}{2}
\end{aligned}
$$

where the last inequality follows again from the fact that $g(x) \in[0,1]$ for any x. Therefore, the sum over these N terms is upper bounded by $N \frac{b^{2}}{2}$, which combined with (7), yields the desired result.

D Proof of Theorem 1

Proof. The fact that Algorithm 1 terminates with a distribution q which is ϵ-indistinguishable by O_{d} is immediate from the stopping criterion.
Now, for the runtime analysis, note that -by construction- the iterates $g_{t}, t \in\{0, \ldots, T-1\}$ have training advantage $\hat{\beta}\left(g_{t}, \mathcal{S}, q_{t}\right) \geq \epsilon$. Thus, by Lemma 3, the algorithm makes at least $\frac{N \epsilon^{2}}{2}$ improvement in each iteration. Therefore, the total number of iterations T is at most $\frac{2 L_{0}}{N \epsilon^{2}}$, where $L_{0}:=\hat{L}\left(q_{0} ; \mathcal{S}\right)$ is the log-loss of the initial model. Each iteration of Algorithm 1 requires calling O_{d} oracle once, evaluating $\hat{\beta}(\cdot)$ at an $\mathcal{O}\left(N m n T_{g}\right)$ complexity, and updating each of the n next-token probabilities of q for each sequence length $1, \ldots, N$. Each of these updates involves evaluating g plus an $\mathcal{O}(n)$ partition normalization. Putting these together, we conclude that each iteration has $O\left(T_{d}+N n T_{g}(m+n)\right)$ complexity.
Combining the the two arguments above, we conclude that Algorithm 1 has a total runtime of $O\left(\frac{1}{\epsilon^{2}} L_{0}\left(\frac{T_{d}}{N}+n T_{g}(m+n)\right)\right)$.

E Empirical validation

Figure 1: Empirical Validation of Lemma 3. For a simple pre-trained SeqGAN model (generator + discriminator), we show that the boosting scheme proposed in that Lemma results in reduced log-loss (NLL) throughout training. Furthermore, the empirical difference between original and boosted models is indeed lower-bounded by the gap predicted by the Lemma.

