
MultiScan: Scalable RGBD scanning for
3D environments with articulated objects

Supplemental Materials

Yongsen Mao, Yiming Zhang, Hanxiao Jiang, Angel X. Chang, Manolis Savva
Simon Fraser University

https://3dlg-hcvc.github.io/multiscan/

This supplemental document provides the following additional contents to support the main paper:

A MultiScan pipeline technical details

B Additional MultiScan dataset statistics

C Additional experiments and results

A MultiScan pipeline details

In this section we describe in more detail the different phases of the MultiScan pipeline: acquisition,
reconstruction, and annotation.

A.1 Acquisition details

We developed scanning apps for both iOS and Android mobile devices. The scanning app captures
RGB, depth, confidence streams, camera poses, and provides UI for the user to specify metadata
(scene type, location, etc) and upload the scans for a server for reconstruction. Users move freely
through indoor scenes with the devices in hand, and record RGBD scans of the environment.

Owners of non-public spaces that were scanned provided their consent by reading and agreeing to the
terms below:

I agree to allow Simon Fraser University to use data of my space for academic and/or non-
commercial research purposes as described by the Creative Commons Attribution-NonCommercial
4.0 (CC BY-NC 4.0) license (https://creativecommons.org/licenses/by-nc/4.0/).

How will the data be used?
The data will be used for academic research, such as 3D computer vision and artificial
intelligence. With your permission the data from your space will become part of a collection
of spaces around the world.

Is it anonymous? Is any of my information distributed in the data?
Yes, it is anonymous. We will not distribute any information about your name, address, or
other personal information. However, please make sure that there is no personal information
that is visible when we collect the data (for example pieces of paper with personal
information, or photos). If there is such information and it cannot be hidden, please let us
know so that we avoid taking pictures of it.

The iOS app uses Apples’s ARKit library and the Android app uses Google’s ARCore library. Active
sensors such as time-of-flight (ToF) and LiDAR sensors are detected and used. If unavailable, less
accurate estimated depth frames are acquired. Recorded data streams are compressed with the H.264
codec for RGB video, and zlib compression for other data streams such as depth and depth confidence.
Associated 6 DoF camera poses and timestamps for each frame are also stored in json line format.
See Figure 1 for screenshots showing different parts of the acquisition app UI from both iOS and
Android devices.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://3dlg-hcvc.github.io/multiscan/


Figure 1: Screenshots from the iOS and Android acquisition apps showing parts of the interface
allowing the user to specify scene metadata and description text, list acquired scans and upload to a
processing server.

Figure 2: Depth map filtering. From left: raw acquired depth map, filtered depth map, reconstruction
result with raw depth maps, reconstruction result with filtered depth maps. Filtering of low-confidence
and rapidly changing depth values leads to fewer floating point artifacts.

A.2 Reconstruction and processing details

A web interface is available for users to browse the scanned data and to initiate the reconstruction
process. Users can first preview the geometry of the untextured mesh in an early stage to confirm
the quality of reconstruction based on a scan. After the mesh is textured, users can start annotating
scenes with our semantic annotation framework.

The reconstruction process consists of a pre-processing step where depth filter is applied to filter
out noise and outliers in the depth maps. Then, a dense surface reconstruction is performed using
Open3D [20] to obtain 3D mesh geometry which is subsequently decimated, cleaned, and aligned to
a global coordinate frame. The cleaned mesh is then textured using and the mesh is textured using
the multi-view stereo texturing approach of Waechter et al. [14]. Finally, we apply an unsupervised
segmentation based on normals and colors to provide an initial set of coarse and fine segmentations
for our annotation interface.

Depth map filtering. Depth maps from mobile devices tends to be low resolution and noisy. The
raw acquired depth maps contains noise and outliers, especially in edge boundaries with big depth
difference, which will introduce artifacts in the reconstruction results as shown in Figure 2. We
compute pixel-wise depth differences between pairs of frames to filter out depth values with depth
difference greater than 5 cm. In addition, we only use depth pixels with high confidence: confidence
of 2 (high) in ARKit for all the data reported in the main paper.

Reconstruction parameters. For reconstruction, we use a CUDA-accelerated implementation of
volumetric fusion [4] from Open3D [20]. For our dataset, we use the device provided camera poses,
and integrate the depth maps during the first pass for reconstruction. In our experiments, we found
that a voxel size of 0.01m , and truncation value of 0.08m can produce good results across different
scenes. We set the block resolution to 24, and block count to 30000.

2



(a) (b) (c)

Figure 3: Comparison of reconstruction at different stages: (a) final textured mesh used in annotation
pipeline; (b) initial reconstruction with vertex colors (used for quick visualization); and (c) simplified
initial mesh (used as input to texturing step). Note that high-frequency color detail is preserved in the
final textured mesh relative to the more lightweight initial reconstruction with vertex colors.

(a) (b) (c)

Figure 4: Comparison of our graph-based unsupervised segmentation method with the method used by
ScanNet [5]. From left: (a) input textured mesh; (b) segmentation using only vertex normal differences
(i.e. method used by ScanNet); and (c) our two-stage vertex normal and color segmentation. Note
that geometrically similar but visually distinct objects such as the closed door aligned with the wall
in the top right are segmented correctly with our approach.

Mesh decimation. We use Instant meshes [7] to simplify the reconstructed meshes. Instant meshes
produces simplified triangle meshes by optimizing both edge orientations and vertex positions, and
giving high isotropy while preserving sharp features. The simplified mesh helps to reduce the
computing complexity of post-processing steps. We use the default settings from Instant meshes, i.e.
the simplified mesh has around 1/16 number of vertices of the input mesh.

Mesh cleaning. We then use MeshLab [3] to remove duplicated faces, faces with zero area, non-
manifold edges, and isolated pieces with small number of faces (< 50).

Mesh texturing. The earlier reconstruction stages only produce vertex colors for the triangle mesh
extracted from marching cubes by averaging color values falling in the same voxel. As a result,
the colors are blurry and do not capture high-frequency detail well (e.g., wood floor). In the mesh
texturing step we use the high-resolution RGB frames and camera poses to generate textures for the
reconstructed geometry. We use the MVS texturing approach of Waechter et al. [14] on every 10th
RGB frame from the captured sequence. We empirically set relevant parameters to give good results
for the scans we obtained: ‘area’ based data term, Gauss clamping for photometric outlier removal,
maximum and minimum texture atlas dimensions of 8192 and 256 respectively, padding by 7 texels,
and waste ratio of 1.0. We downscale texture atlases to 2048x2048 resolutions for the purpose of
data loading efficiency. The output of this step is a high quality textured mesh that preserves high
frequency color detail (see Figure 3).

Unsupervised pre-segmentation. As input to our semantic segmentation interface we use a unsu-
pervised method to extract triangle clusters into a two-tier segment hierarchy. We adapt and extend
the approach used by ScanNet [5]. The original method only uses vertex normals to weight the
vertices. One limitation is it is hard to separate objects with similar normals, e.g., closed doors and the
wall. So we add vertex color properties to the weights, and apply a two-stage segmentation method.
We convert texture color in the textured meshes to vertex colors using MeshLab, then construct an
undirected graph G = (V,E), where the vertices vi ∈ V are the mesh vertices and ei ∈ E are the

3



Object and part segmentation

Motion annotation

Check outliers + 
correspondences

Check motion + 
joint consistency

Annotation

Semantic orientation

Label + manage

Correspond + align

Verification

Check quality

Extract + visualize

Inspect

Extract and visualize

Check up + front

Data preparation1 4

3

2a

2b

Figure 5: Our annotation framework consists of the following phases: 1) data preparation, 2) semantic
annotation of objects and parts, 3) motion annotation, and 4) verification. For 1), we create a
management UI for labeling scans, and inspecting reconstructed scan quality. Scans that pass the
reconstruction quality check are then corresponded and aligned, and continue to the annotation phases.
During annotation, the scan is semantically segmented and objects and parts are labeled (2a). The
objects are then semantically annotated with their up and front directions (2b). Objects and parts are
also annotated with their motion parameters (3). At the end of each annotation phase, verification (4)
is performed, and errors are corrected if necessary.

mesh edges. The weight of the edges is the dot product of the vertex normals wni,j = dot(ni, nj),
or color difference wci,j calculated following Toscana et al. [12]. We first segment the mesh with
weights from vertex normals. Then for each segmented cluster, we apply a second segmentation step
with edge weights from vertex colors. With this two-stage segmentation, we are able to separate
surfaces with both geometric and color differences. Figure 4 shows the effect of this two-stage
segmentation. With vertex colors being added into the weights, we can segment objects with similar
normals but different surface textures, e.g., the right door on the wall in (c).

A.3 Annotation details

Our annotation framework consists of several phases: 1) reconstruction quality check and scan
alignment; 2) semantic annotation of objects and parts; 3) motion annotation; and 4) verification.
During semantic annotation, we densely annotate objects in the scene with object and part labels.
We also annotate a semantic front and up direction for each object to produce semantically-oriented
bounding boxes (OBBs) that give the pose of the object in each scene. Figure 5 illustrates the
annotation flow. We implement our system using a combination of Open3D [20] for alignment,
Vue.js1 for scan management web interface, and three.js2 and WebGL for the interactive 3D
annotation tools.

Reconstruction quality check and scan alignment. We conduct a manual quality check on each
reconstruction. Verifiers check that the reconstruction is relatively complete with reasonably good
geometry (no large holes, significant floating geometry, or misalignments) and with good texturing.
Scans that pass the quality check are marked for annotation, and assigned a scene type. All scans of
the same scene are manually tagged with the same scene ID. The coordinate frames of the scans are
aligned using a semi-automatic approach. A reference scan is first selected for alignment, with the
other scans automatically aligned to the reference scan using the multiscale ICP algorithm [1]. The

1https://vuejs.org/
2https://github.com/mrdoob/three.js

4

https://vuejs.org/
https://github.com/mrdoob/three.js


Annotated labels 
specify object 
instance and part

Label via paint interface adapted from ScanNet

Control over segmentation to use for labeling or 
direct triangle-based labeling at different brush size

Figure 6: We develop an annotation tool adapted from ScanNet [5] for specifying semantic annotation
at the part level by providing a hierarchical fine-grained triangle-based labeling of textured meshes.

Triangle based labeling (different brush sizes) Segment based labeling

Figure 7: Annotators label parts of the scan using either pre-segmented clusters of triangles or by
using triangle-based labeling at different brush sizes to label patches of connected triangles within a
given radius.

alignment is then checked and potentially refined by manually selecting corresponding points from
the two scans to estimate an alignment with the Umeyama algorithm [13]. This alignment between
scans can be leveraged during semantic annotation to propagate annotations from the reference scan
to another scan. Of the 369 scans we captured, we kept 273 for our dataset and filtered out 96 scans
due to low quality geometry or textures.

Object and part instances. To reduce the effort of manual annotation we design a hierarchical
labeling interface that allows the user to paint at the triangle level or use the automatically computed
segmentations. We develop our interface by adapting the ScanNet [5] segment annotation tool so that
labels are accumulated on triangles and the hierachical labeling is supported (see Figure 6).

For painting at the triangle level, the user can select brushes of different sizes that will label patches
of connected triangles within a given radius. The segmentations are at different levels of granularity
(normal-only segmentation vs normal and color-based segmentation) to make it easier for the user to
select larger regions. Figure 7 illustrates the different granularities at which the annotator can label:
using triangle-based brushes or pre-computed segmentations. Annotators are instructed to specify
part level annotations for objects that can be articulated. Annotators provide a label of the form
object_id:part_id = object_category.object_index:part_category.part_index that is used to identify
the object and part category and instance. Corresponding objects and parts between scans are specified
with the same object_id and part_id. During annotation, fine-grained object categories are used
which are later grouped into coarser categories for our tasks.

For each scene, we also annotate semantically aligned oriented bounding boxes (OBBs) for each
object (see Figure 8). Annotators view automatically suggested up (aligned to scene up axis) and front

5



Center panel for 3D viewing of scan.  
Other objects are faded out. 

Fitted bounding box is shown  
in yellow, with up in green
and front in red.

Select how OBB 
should be fitted

Annotation of semantic up and front for oriented bounding box (OBB)

Rotate front about up 
axis and refit OBB

Submit annotations

Select different 
direction for front 
and up

Figure 8: We develop an interface for annotating the semantic up and front of each object. An
semantically oriented bounding box (OBB), is automatically fitted to the object based on the specified
up and front.

Select motion type

Select whether other 
part is “Base”, 
“Attached” or ”None”

Select motion axis (from 
OBB axes or custom) 
and rotation origin

Specify range of motion 
and closed state

Save articulation

Submit annotation

Animate, edit, or 
delete articulation

Information about 
selected articulation

Select part to articulate

Add articulation

Group part/object as: 
moveable/fixed part, 
moveable/fixed object, 
or architecture.

Center panel that allow for 3D viewing of 
the scan and objects and parts.  Parts 
with articulations are highlighted in 
orange, with active part in green.

Help

Figure 9: We develop an interface for annotating part articulations based on Xu et al. [18]. Our
annotation interface allows annotators to specify the motion type, axis, range, and the closed state.
The specification of the closed state allows us to provide semantically meaningful motion state after
postprocessing. It also allows for the editing of the connectivity graph by allowing the annotator to
specify whether a different part is a ‘base’, ’attached’ or ’none’. Parts and objects are also organized
into groups of (moveable) or fixed parts, (moveable) or fixed objects, and architecture elements.

vectors based on an OBB fit for each object, and manually adjust these two directions. The OBBs are
automatically re-fitted to the instance annotation based on the annotated up and front vectors.

Motion parameters. We develop an interface for annotating part articulations based on Xu et al.
[18]’s approach (see Figure 9). Using the part instance annotations, we segment each object mesh into
parts to create a part connectivity graph. The connectivity graph indicates the kinematic chain of the
articulated parts, and can be adjusted during annotation. The annotator then indicates movable parts,
fixed parts, movable objects, fixed objects, and architecture elements (e.g., walls). For each movable
part, the annotator specifies articulation parameters: the base part (selected from the connected parts),

6



Figure 10: Left and middle left: two scans of a kitchen in different states. Middle right: part-level
semantic instance annotation of objects and their parts. Right: articulated parts highlighted in color.

Table 1: Comparison of MultiScan dataset to prior work scene datasets that contain multiple object
states. MultiScan provides more scans of more real-world scenes, totaling a significantly larger floor
area and navigable area in meters squared. The navigation complexity and scene clutter metrics
as defined by Ramakrishnan et al. [11] are also high, indicating many large furniture-sized objects
and many smaller table-top objects, respectively. Finally, MultiScan provides significantly more
corresponded object observations of objects in different states (reported in the Object corrs. column),
and is the only dataset that also provides corresponded observations of object parts in different states
(Part corrs. column).
Dataset Scenes Scans Floor area Nav. area Nav. complexity Scene clutter Object corrs. Part corrs.

Rescan [6] 13 45 668.9 169.7 2.33 2.84 691 ✗
RIO10 [15] 10 74 1955.7 503.2 4.41 3.82 2739 ✗
MultiScan 117 273 8566.1 3177.3 4.20 4.15 9977 4667

motion type (translation or rotation), axis of motion, motion origin (for rotation), and motion range.
For consistent and meaningful motion states, we define positive rotation to be counter-clockwise
about the motion axis, and positive translation to be in the direction of the motion axis. We also
define the closed state to have motion value of 0. Prior datasets either lack specification of the
motion range [8, 16] or do not have a semantically meaningful motion range [17, 19]. The annotation
interface allows the annotator to check the movement of the articulated part by viewing the animation
of the part in motion.

Verification. After each phase of annotation is complete, we conduct a verification pass to iden-
tify and fix annotation issues. For the segmentation and labeling of object and parts, we run the
pyenchant3 spelling checker followed by manual correction to ensure category labels are correctly
spelled. We also take the OBBs and compute statistics over the grouped labels to compute the average
and standard deviation of the OBB volume. We manually check outlier objects (volume is outside 2
standard deviations of the mean). We also check floors, walls, and ceilings to ensure that that are
mostly vertical or horizontal surfaces. Finally, we extract and render individual objects, as well as
their parts in different states, and visually inspect them.

B Additional dataset statistics

Figure 10 shows first-person views of two scans of a scene and associated annotations for the objects
and their parts. Figure 11 provides several more examples visualized from external viewpoints to
show the entirety of each scene. To quantify the value of the MultiScan dataset relative to datasets
from prior work that include multiple observations of real scenes, we compute a number of statistics
that summarize the scale, structural complexity, and volume of corresponded object and part instance
observations. To measure scale and structural complexity we use floor and navigable area numbers as
well as the navigation complexity and scene clutter metrics reported by Ramakrishnan et al. [11]. See
Table 1 for these comparative statistics. The MultiScan dataset has considerably more scenes and
scans, resulting in higher total areas. The scenes themselves have higher navigational complexity
(indicating many furniture pieces and other large objects), and fairly high scene clutter (indicating
many smaller and table-top objects). Moreover, MultiScan has far more corresponded observations

3https://pyenchant.github.io/pyenchant/

7

https://pyenchant.github.io/pyenchant/


Textured mesh
reconstruction

Semantic
instances Semantic OBBs Part articulations

Figure 11: Examples of annotated scans from the MultiScan dataset. Each scan is reconstructed as a
textured mesh, which is then annotated with object and part semantic instances, semantic oriented
bounding boxes (OBBs), and part articulations.

8



0 10 20 30 40 50

Laundry

Dining

Balcony

Living

Office

Misc

Hallway

Lobby

Bks/Lib

Kitchen

Bedroom

Bathroom

 5

 7

 13

 13

 14

 18

 24

 24

 29

 34

 44

 48 101 102 103 104

#Objects (log scale)

(20, above]

(10, 20]

(5, 10]

1

(1, 5]

no part

#P
ar

ts
 p

er
 o

bj
ec

t

 4

 36

 114

 595

 622

 9586

Figure 12: Top: i) distribution over object supercategory (inner ring), object category (middle ring),
and part category (outer ring), only object categories with more than 30 instances are shown; ii)
Bottom left: distribution of scans over room categories. Bottom right: distribution for number of
articulated parts per object (rigid objects are indicated as having no parts).

9



Table 2: Number of scenes, scans, objects, and parts used across splits for the MultiScan segmentation
tasks. The part mobility prediction task uses the same set of objects as the part segmentation task.

Scenes Scans Objects Parts

Task Train Val Test Total Train Val Test Total Train Val Test Total Train Val Test Total
Obj. Seg. 61 20 20 101 174 42 41 257 2234 411 389 3034 – – – –
Part Seg. 44 19 18 81 140 40 37 217 666 148 131 945 2447 589 460 3496

0 10 20 30 40 50

Laundry

Dining

Living

Balcony

Office

Misc

Hallway

Lobby

Bks/Lib

Kitchen

Bedroom

Bathroom

test
val
train

0 100 200 300 400

microwave
bed

backpack
toilet

refrigerator
sink

curtain
suitcase

trash_can
tv_monitor

sofa
window

door
pillow
table

cabinet
chair

test
val
train

0 250 500 750 1000 1250 1500 1750

lid

window

drawer

static

door

test
val
train

0 250 500 750 1000 1250 1500 1750

Translation

Rigid

Rotation

test
val
train

Figure 13: Plots providing the distribution over room types (top left), over object categories (top
right), over part categories (bottom left), and over articulation motion types (bottom right). The colors
indicate train, val and test split membership. All these statistics are for the segmentation task datasets
we use for our experiments.

of objects, and is unique in that it has corresponded observations of object parts in different states as
well.

As our interface allows for more fine-grained labeling than what is possible purely with the pre-
computed segmentations, we check how many of our annotations leverage fine-grained labeling. We
find that over 90% of annotations (93% ignoring noisy reconstruction patches marked for removal)
required cutting of the coarse segmentation, and 83% (88% ignoring removals) required cutting of
the finer segmentation utilizing color. At the segment level, 34% of coarse segments were cut and
28% of the finer segments were cut. This shows that the segmentation was helpful in providing larger
patches that can be labeled as a unit, but that more precise cutting is required to get more accurate
object and part boundaries.

In Figure 12 we plot distributions over object categories and part categories, as well as distributions
over scene categories and the number of parts per object instance. The object and part category
distributions in particular show a breadth of objects and associated parts acquired in the MultiScan
dataset. A more detailed breakdown showing the distributions over scene categories, object categories,
part categories, and articulation types is provided in Figure 13.

10



Table 3: Object instance segmentation results on MultiScan val set. Values are the AP , AP50 and
AP25 metrics (higher is better). We also report the standard error.
metric method all door table chair cab win sofa pillow tv curt bin sink bpk bed fridge toilet

AP
PG [9] 26.2±0.7 35.9±1.1 22.0±3.2 65.8±1.9 16.0±2.9 10.3±2.8 29.2±7.8 10.8±1.4 24.7±3.9 2.6±1.4 32.8±3.5 43.9±3.9 1.4±0.7 60.5±5.0 16.8±4.6 64.3±5.6
SSTNet [10] 32.6±1.0 30.2±2.0 28.5±1.0 69.5±2.6 18.8±1.3 8.6±1.2 50.6±4.6 18.8±3.1 38.4±3.3 0.7±0.4 42.9±8.4 44.5±2.4 15.8±8.0 66.4±2.3 11.7±1.7 83.1±4.1
HAIS [2] 30.1±0.6 32.3±1.1 27.9±1.9 67.3±1.0 20.6±0.3 7.5±1.6 37.1±2.9 13.4±3.7 40.7±4.3 0.4±0.3 32.5±7.8 52.7±6.1 8.1±3.9 59.4±3.2 13.9±2.4 72.9±7.2

AP50

PG [9] 43.3±1.1 68.0±3.2 32.3±3.1 83.1±1.0 32.1±3.9 26.9±7.9 56.9±17.9 27.7±6.9 43.2±3.9 7.1±2.9 50.4±6.2 82.8±3.0 4.9±1.9 100.0±0.0 35.4±7.5 76.2±4.8
SSTNet [10] 46.0±1.8 51.8±0.5 38.7±2.4 81.6±2.4 34.1±1.5 22.9±5.5 70.5±8.7 34.4±5.6 52.9±3.4 3.9±2.2 53.8±11.4 72.5±6.1 23.3±11.8 99.4±0.6 15.9±1.9 90.5±4.8
HAIS [2] 49.2±0.8 59.1±2.5 38.3±2.4 82.7±2.0 38.2±1.7 19.8±3.8 73.2±5.3 36.2±6.8 58.8±5.9 1.6±0.7 57.9±9.3 88.1±0.1 21.6±6.6 98.6±1.4 32.7±5.7 88.9±5.7

AP25

PG [9] 54.7±1.6 83.6±2.3 50.8±3.8 87.1±1.2 58.1±2.3 50.5±5.4 78.8±8.5 33.3±5.5 50.8±3.7 24.3±8.6 57.5±7.4 88.5±2.4 18.5±11.0 100.0±0.0 42.5±6.3 85.1±7.7
SSTNet [10] 55.0±1.2 71.8±2.3 54.0±2.6 86.6±1.6 53.3±0.6 43.1±7.3 87.0±0.3 43.7±4.5 54.9±5.2 15.3±4.0 55.3±10.2 84.7±1.8 26.1±13.0 99.4±0.6 17.0±1.1 99.4±0.6
HAIS [2] 57.9±0.6 79.1±1.0 54.7±3.6 84.4±1.9 61.5±1.9 43.4±5.0 83.2±4.1 39.7±6.2 64.5±0.2 14.5±4.7 63.9±15.1 88.1±0.1 32.4±10.8 98.6±1.4 43.5±3.4 92.5±4.1

Table 4: Object instance segmentation results on MultiScan test set. Values are the AP , AP50 and
AP25 metrics (higher is better). The standard error is also reported.
metric method all door table chair cab win sofa pillow tv curt bin sink bpk bed fridge toilet

AP
PG [9] 20.8±0.7 34.8±4.0 27.6±1.6 68.8±1.7 8.3±2.8 5.1±2.89 1.7±0.98 17.1±2.88 25.4±3.23 3.8±1.31 19.5±2.53 29.0±5.21 0.0±0.0 33.0±6.45 3.1±2.54 76.0±9.3
SSTNet [10] 27.7±0.4 25.6±1.5 32.0±2.3 80.5±1.5 9.4±2.1 2.8±0.4 9.3±1.2 29.4±3.6 59.4±3.8 6.8±2.9 19.1±5.9 38.5±5.0 0.0±0.0 55.2±6.1 8.6±6.0 93.7±3.0
HAIS [2] 22.9±0.8 33.0±2.3 31.3±1.3 72.2±0.5 12.7±0.3 3.0±0.9 1.4±0.8 17.3±0.5 43.5±2.5 4.9±2.1 21.2±2.0 34.5±1.7 0.0±0.0 30.8±5.5 2.9±2.5 79.6±6.7

AP50

PG [9] 35.8±1.5 53.9±3.7 41.1±2.7 81.6±0.9 20.3±4.1 11.3±4.2 5.4±2.0 42.2±5.2 45.1±7.9 6.6±1.0 33.5±5.9 71.4±6.4 0.0±0.0 91.7±8.3 8.6±4.6 95.2±4.8
SSTNet [10] 41.9±0.7 50.3±1.5 43.6±2.6 85.3±1.6 19.9±4.6 9.0±1.4 30.1±1.3 54.4±5.0 77.8±3.5 13.9±4.6 30.7±4.2 80.8±8.1 0.0±0.0 98.1±1.9 15.7±8.1 99.4±0.6
HAIS [2] 35.3±1.0 57.8±0.1 45.0±1.4 80.1±2.1 25.5±1.5 11.6±0.9 7.8±3.8 35.1±3.5 62.2±3.6 6.8±2.2 33.7±3.2 73.3±5.1 0.0±0.0 58.3±8.3 7.5±6.3 95.2±4.8

AP25

PG [9] 46.9±0.3 72.4±2.9 56.9±2.1 83.9±1.7 40.8±1.5 31.6±8.6 29.6±1.6 58.9±1.2 56.5±6.8 9.5±2.4 39.6±6.5 87.6±3.6 0.0±0.0 100.0±0.0 26.9±3.5 100.0±0.0
SSTNet [10] 50.2±1.3 69.1±3.8 56.2±3.3 87.2±1.5 39.2±3.7 26.8±1.7 47.6±3.8 64.2±5.5 81.6±4.5 19.5±4.5 34.9±3.4 89.0±2.6 18.1±8.4 98.1±1.9 20.0±11.6 99.4±0.6
HAIS [2] 47.1±1.2 73.0±1.4 60.4±1.0 87.2±2.0 45.8±2.7 24.7±3.5 30.9±1.7 44.0±0.8 78.4±5.8 9.2±1.9 39.5±4.8 90.2±2.0 0.0±0.0 100.0±0.0 16.2±10.9 95.2±4.8

C Additional experiments and results

In the main paper we reported results on the validation set. In this supplement we provide more
details on the data split, additional ablations on the validation set, and experimental results on the test
set.

Data splits. The split by scene allows us to evaluate the consistency of instance segmentation across
scans, and to ensure that the val and test splits do not have scenes from the training split. See Table 2
for the number of scenes, scans, labeled objects and parts across splits and Figure 13 for distribution
over categories. Note that the part segmentation task discards scans with zero parts in the part-level
semantic label set.

C.1 Object and part instance segmentation

For object and part instance segmentation, we report the mean Average Precisions (mAP) at different
thresholds of IoU for each category and averaged across the categories. AP25 and AP50 denote the
AP scores at IoU thresholds of 0.25 and 0.5, with AP denoting the average score with IoU thresholds
set from 0.5 to 0.95. In the main paper we reported mean AP results for the validation set over runs
with three different random seeds. Here, we report the mean and standard error of AP , AP50, and
AP25 for both the validation and test sets.

Object segmentation. Object instance segmentation results on the validation set are in Table 3 and
on the test set are in Table 4. As expected, AP25 and AP50 performance is higher than overall AP ,
with performance of chair, sink, bed, and toilet being especially high. We note that on the
validation set, HAIS has higher AP25 and AP50 than SSTNet but lower overall AP when we sweep
the IOU threshold from 0.5 to 0.95, indicating that HAIS has lower performance at higher IOUs.

Table 5: Part instance segmentation results on the MultiScan val set. Values are the AP , AP50

and AP25 metrics (higher is better). We also report the standard error on the mean AP values
across all categories. Results reported using ground-truth (left) and predicted (right) object instance
segmentations. When using predicted objects, we use the same method for both object and part level
segmentation.

GT segmentation predicted segmentation

metric method all static door drwr win lid all static door drwr win lid

AP
PG [9] 24.8±0.5 56.5±1.2 26.5±0.7 4.8±1.1 0.1±0.0 36.0±1.7 8.2±0.3 9.7±0.2 8.8±0.1 0.3±0.2 0.0±0.0 22.2±1.4
SSTNet [10] 29.8±0.1 53.4±1.7 35.0±0.6 12.0±0.8 0.1±0.1 48.4±1.0 9.5±0.5 8.5±0.3 6.6±0.3 0.8±0.3 0.0±0.0 31.6±2.5
HAIS [2] 24.6±1.0 58.2±2.4 23.3±0.9 8.1±0.6 0.0±0.0 33.4±5.4 9.1±0.6 8.3±0.4 9.4±0.6 1.8±0.3 0.0±0.0 26.3±2.7

AP50

PG [9] 42.3±1.0 89.9±1.6 44.1±1.4 11.7±1.9 0.7±0.2 65.1±7.3 16.6±0.2 22.8±0.2 16.3±0.3 1.0±0.4 0.0±0.0 42.7±0.8
SSTNet [10] 46.4±0.7 82.0±1.5 51.4±0.8 24.4±0.6 0.2±0.2 74.1±3.7 15.5±0.3 21.1±0.5 11.4±0.3 1.4±0.7 0.0±0.0 43.6±0.8
HAIS [2] 40.3±1.4 90.6±2.0 38.7±1.5 13.9±0.7 0.3±0.3 58.0±6.9 18.1±0.5 19.0±1.0 17.4±0.6 2.7±0.0 0.0±0.0 51.6±1.9

AP25

PG [9] 52.5±0.9 99.0±1.0 58.1±0.8 18.9±1.3 8.7±2.2 77.8±0.0 25.8±0.3 42.4±0.5 23.3±0.3 5.6±0.8 2.5±1.4 55.6±0.0
SSTNet [10] 51.9±0.3 95.0±0.3 58.9±1.2 27.0±1.2 0.9±0.4 77.8±0.0 22.1±0.3 36.2±0.4 16.4±0.9 2.2±0.5 0.0±0.0 55.6±0.0
HAIS [2] 49.3±0.5 98.9±0.3 46.9±1.4 18.4±0.5 4.6±1.9 77.8±0.0 26.4±0.2 37.3±1.0 21.5±0.4 4.2±0.6 2.2±1.7 66.7±0.0

11



Input GT PG [9] SSTNet [10] HAIS [2]

Figure 14: Additional examples of object instance segmentation results from the MultiScan val set.
Colors match ground truth when instance categories are correctly predicted, and are different from
the ground truth otherwise.

12



Input GT PG [9] SSTNet [10] HAIS [2]

Figure 15: Additional examples of part instance segmentation results from the MultiScan val set.
Colors indicate different parts. Correctly predicted parts match the ground truth colors, and are
different otherwise.

13



Table 6: Part instance segmentation results on the MultiScan test set. Values are the AP , AP50 and
AP25 metrics (higher is better). Results reported using ground-truth (left) and predicted (right) object
instance segmentations. When using predicted objects, we use the same method for both object and
part level segmentation.

GT segmentation predicted segmentation

metric method all static door drwr win lid all static door drwr win lid

AP
PG [9] 30.1±0.8 55.4±1.7 29.4±0.6 3.9±0.6 9.3±0.4 52.7±2.6 9.8±0.4 7.2±0.3 15.3±0.6 0.2±0.1 0.0±0.0 26.4±2.3
SSTNet [10] 32.0±1.3 57.8±0.4 38.6±1.2 3.5±1.1 3.0±2.9 57.0±5.1 14.3±0.7 6.4±0.5 8.9±0.6 0.0±0.0 4.5±1.8 51.8±3.4
HAIS [2] 33.2±0.4 59.6±0.5 31.6±1.1 5.2±0.2 10.3±1.1 59.0±2.4 17.5±0.8 9.2±0.1 13.4±0.7 0.5±0.3 5.9±2.2 58.4±0.9

AP50

PG [9] 50.6±0.2 84.1±1.5 45.9±0.6 9.6±0.7 13.2±0.7 100.0±0.0 19.2±0.3 17.4±0.6 23.2±1.1 1.7±0.4 0.0±0.0 53.6±2.1
SSTNet [10] 49.6±1.2 83.2±1.3 50.7±2.4 6.5±2.2 7.5±6.1 100.0±0.0 27.6±2.3 15.1±1.2 14.2±0.4 0.0±0.0 13.5±6.3 95.2±4.8
HAIS [2] 50.8±0.6 83.0±0.3 46.2±1.8 7.9±0.5 17.0±2.3 100.0±0.0 31.9±1.7 20.8±0.2 21.3±1.4 1.5±0.8 15.6±6.9 100.0±0.0

AP25

PG [9] 57.4±1.0 95.4±0.6 56.9±1.3 14.2±0.9 20.5±4.3 100.0±0.0 30.5±0.5 38.6±0.4 29.4±1.4 4.7±0.2 4.5±1.9 75.4±4.0
SSTNet [10] 58.1±1.0 91.6±1.7 60.7±1.9 10.8±1.4 27.3±5.3 100.0±0.0 34.7±1.6 28.9±0.7 19.9±0.5 0.4±0.4 29.2±4.2 95.2±4.8
HAIS [2] 58.2±0.5 94.2±1.5 54.9±2.3 15.2±1.2 26.7±3.5 100.0±0.0 37.1±0.5 33.2±0.6 26.0±1.9 4.8±0.5 21.5±1.7 100.0±0.0

Table 7: Complete object instance segmentation consistency results on val set, including standard
error on reported mean values. HAIS provides the most consistent object segmentations across scans
of the same scene. Bathroom and office scenes are overall easiest, while bedroom and kitchen scenes
are quite challenging likely due to the prevalence of hard-to-segment cabinetry.

all balc bathroom bed bks/lib dining hall kitchen living lobby misc office

PG [9] 44.43±4.36 29.63±9.80 73.61±4.81 30.97±3.82 32.94±2.78 39.39±8.02 44.44±7.35 39.93±2.57 25.00±0.00 63.33±3.33 40.74±3.70 68.75±1.80
SSTNet [10] 40.91±4.93 18.52±7.41 62.50±6.36 37.45±3.24 40.08±3.46 33.33±8.02 41.67±0.00 29.24±2.91 41.67±5.51 63.33±8.82 25.93±3.70 56.25±4.77
HAIS [2] 44.57±3.52 22.22±0.00 81.94±3.67 36.16±3.11 36.11±1.59 36.36±5.25 33.33±0.00 40.88±4.09 33.33±5.51 66.67±3.33 40.74±7.41 62.50±4.77

This shows the importance of evaluating at higher IoU thresholds as different methods may perform
better. We see similar performance trends on the test set as on the validation set. Figure 14 shows
additional examples comparing predictions obtained using the different methods.

Part segmentation. Part instance segmentation performance is reported on the validation set in
Table 5, and on the test set in Table 6. We see that again part segmentation based on predicted
object segmentations is incredibly challenging for all methods, with low overall AP scores across
the board. Using ground truth segmentations results in higher scores, but there is still a large gap for
potential improvements, especially for challenging part categories such as windows, drawers, and
doors. Figure 15 shows additional qualitative comparison examples for part instance predictions on
the MultiScan val set.

C.2 Segmentation consistency

In Table 8 we report the object instance segmentation consistency measure we defined in the main
paper across scans for the test set (compare to results on the val set from the main paper). The
segmentation consistency is also computed over runs with three different random seeds, and we report
the standard error in addition to the mean for the val set in Table 7. We again see the overall trend
that all approaches struggle to provide consistent segmentations across scans of the same scene.

In addition to these quantitative results, we also provide a variety of qualitative examples visualizing
the consistency of segmentations in Figure 16. In this figure, colors matching the ground truth indicate
consistently segmented object instances, while incorrect predictions have other colors.

C.3 Mobility prediction

Summary of Shape2Motion architecture. Shape2Motion [16] consists of three stages: 1) mobility
proposal, 2) proposal matching, and 3) mobility optimization. The Mobility Proposal Network (MPN,
stage 1) proposes a set of masks for the movable parts and a set of motion joints. In stage 1, there is

Table 8: Object instance segmentation consistency on the test set (corresponding to val set results in
the main paper). The trends observed here are similar. SSTNet provides the most consistent object
segmentations across scans of the same scene.

all balc bath bed bks/lib din hall kitchen laundry living lobby misc office

PG [9] 52.11±3.61 66.67±6.67 55.56±5.23 33.17±1.71 30.05±2.41 87.50±0.00 83.33±0.00 28.09±3.25 66.67±9.62 33.33±1.67 22.22±2.78 66.67±6.42 52.11±3.61
SSTNet [10] 59.06±3.92 66.67±6.67 63.92±6.43 34.13±3.09 67.42±1.16 95.83±4.17 83.33±0.00 33.86±2.86 61.11±5.56 38.33±4.41 34.72±1.39 70.37±7.41 59.06±3.92
HAIS [2] 54.42±3.97 66.67±6.67 56.72±2.84 29.60±2.70 51.77±4.04 83.33±4.17 83.33±0.00 25.23±1.85 83.33±9.62 36.67±1.67 15.28±3.67 66.67±6.42 54.42±3.97

14



Input GT PG [9] SSTNet [10] HAIS [2]

58.33 50.00 75.00

40.00 20.00 30.00

Figure 16: Object instance segmentations for two scenes from the val set. Colors show corresponding
instances, indicating prediction consistency across scans of the same scene. Correct predictions (label
matches ground truth) have the same color, and incorrect predictions are colored differently. The
numbers below each pair of scans segmented by a given method report the overall consistency score
for the given method’s segmentations of the scans of the same room.

no part-to-joint associations. To find the correct part and joint association, the Proposal Matching
Module (PMM, stage 2) assigns scores for the part and joint combinations proposed in stage 1. The
scorer for the PMM is trained to score the part and joint combinations by measuring the amount
of alignment between the moved part points when simulating movement of the points based on the
mobility parameters. The Mobility Optimization Network (MON, stage 3) is used to refine high
scoring part segmentation and joint parameter combinations by further simulating the movement of
the part. Finally, an extraction step similar to Non-Maximum Suppression (NMS) is used to find
non-overlapping motion parts and part parameters to obtain the final set of part segmentations and
motion joints.

Shape2Motion re-implementation. In the original Shape2Motion architecture’s stage 1, the MPN
predicts the motion axis and origin by first predicting an anchor and then regressing the residual. The
motion origin is regressed from an anchor point that is selected/predicted from the input point cloud.
During stage 3, the MON performs a binary segmentation of the movable part of interest and predicts
the residual vectors (from the anchor point) for the motion origins and axes. In our re-implementation
of Shape2Motion stage 3 (MON) we use the optimized binary mask but discard the predicted residual
vectors for the joint origins and axes (we don’t add them to the the joint parameters predicted in stage
1), as we found these make the joints prediction results worse.

Our re-implementation of Shape2Motion in PyTorch is significantly faster and easier to run than the
original implementation. On the original Shape2Motion dataset, the original implementation training
takes 66 hours: 31 hours for MPN (stage 1) and 35 hours for MON (stage 3) for 50 epochs each on

15



Table 9: We developed a PyTorch re-implementation of Shape2Motion [16]. We compare our re-
implementation against the original numbers reported in the paper on the original Shape2Motion
dataset. We use a joint score ≥ 0.8 for determining matched parts for the original Shape2Motion
implementation. Also, the original implementation uses position (xyz) and normal (n) features at
each point.

method IoU↑ EPE↓ MD↓ OE↓ TA↑
Original Shape2Motion [16] 84.70 0.025 0.010 6.875 98.00

Shape2Motion re-implementation (ours) 80.07 0.062 0.030 1.604 99.70

Table 10: Ablations using different combinations of per-point features for the input point clouds
given to the Shape2Motion architecture. Results on the MultiScan val set, using ground truth object
instance segmentations. We evaluate whether incorporating color (+rgb), and normal (+n) features,
and using data augmentation (aug) help to improve mobility prediction. We report both the mean and
standard error across three random seeds.

Input IoU↑ EPE↓ MD↓ OE↓ TA↑
xyz+n 68.83±0.95 0.7449±0.03 0.3749±0.02 2.6844±0.94 95.86±1.49
xyz+n, aug 71.06±0.65 0.7136±0.00 0.3820±0.01 1.1490±0.36 95.57±1.08
xyz+rgb 71.56±0.41 0.7299±0.07 0.3666±0.04 1.3957±0.46 95.08±1.97
xyz+rgb, aug 69.35±0.95 1.0939±0.08 0.5678±0.05 1.7734±1.20 94.92±0.69
xyz+rgb+n 70.09±0.94 0.6192±0.06 0.3078±0.03 1.0330±0.47 94.31±1.99
xyz+rgb+n, aug 67.69±0.59 0.9274±0.06 0.4926±0.03 0.7215±0.10 96.47±1.94

Movable part Motion type Motion+Axis Motion+Axis+Origin

Input R P F1 R P F1 R P F1 R P F1

xyz+n 18.82±1.25 12.73±1.31 15.13±1.18 17.84±1.32 6.00±0.74 8.95±0.92 17.46±1.48 5.87±0.77 8.76±0.97 12.47±0.82 4.19±0.44 6.24±0.54
xyz+n, aug 16.63±1.07 16.45±1.88 16.50±1.39 12.24±1.46 10.25±2.11 11.11±1.86 12.17±1.40 10.18±2.05 11.04±1.80 8.99±1.24 7.56±1.71 8.18±1.53
xyz+rgb 15.95±1.66 12.57±2.07 13.96±1.85 14.82±1.49 6.62±1.46 9.02±1.66 14.66±1.47 6.54±1.43 8.92±1.62 10.20±0.80 4.58±0.98 6.23±1.10
xyz+rgb, aug 15.27±1.18 15.80±1.86 15.47±1.40 11.34±0.23 10.06±0.66 10.63±0.29 11.19±0.33 9.91±0.57 10.48±0.21 5.97±0.20 5.33±0.54 5.61±0.37
xyz+rgb+n 15.50±0.53 12.37±0.36 13.76±0.43 14.06±0.73 7.53±0.36 9.79±0.38 13.98±0.66 7.49±0.34 9.74±0.33 10.28±0.53 5.50±0.18 7.15±0.19
xyz+rgb+n, aug 13.45±0.67 13.80±1.56 13.58±1.10 9.14±1.26 8.65±0.78 8.88±1.01 9.14±1.26 8.65±0.78 8.88±1.01 5.97±0.66 5.66±0.35 5.81±0.50

an NVIDIA TITAN X GPU. For our re-implementation, the MPN (stage 1) trains in about 3.5 hours
for 100 epochs, and stage 2 and stage 3 training takes around 35 hours for 50 epochs.

We compare our re-implementation of Shape2Motion against the results reported in the original paper
on the Shape2Motion dataset and show that our re-implementation gives comparable results (see
Table 9.

Ablation of inputs. In addition to the position (xyz) point features, we experiment with using color
(+rgb) and normal (+n) point features for the input point clouds. See Table 10 for a summary of
comparisons between combinations of these different features for the input, as well as the use of data
augmentation (aug).

Detailed mobility estimation evaluation. We compare mobility estimation performance of our
Shape2Motion re-implementation and OPDPN using both ground truth object instance segmentations

Table 11: Mobility estimation on the val set comparing OPDPN [8] and Shape2Motion [16] on
objects extracted using ground-truth (GT) and predicted segmentations from SSTNet [10]. We report
both the mean and standard error across three random seeds.

seg method IoU↑ EPE↓ MD↓ OE↓ TA↑
GT OPDPN 54.80±2.67 0.96±0.25 0.48±0.12 3.99±3.02 92.59±7.41
GT S2M 70.09±0.94 0.62±0.06 0.31±0.03 1.03±0.47 94.31±1.99
GT S2M (aug) 67.69±0.59 0.92±0.06 0.49±0.03 0.72±0.10 96.47±1.94

SSTNet S2M 70.50±1.62 0.59±0.02 0.29±0.01 1.41±0.80 94.85±1.80
SSTNet S2M (aug) 69.22±0.52 1.04±0.23 0.52±0.12 0.57±0.07 95.95±2.53

Movable part Motion type Motion+Axis Motion+Axis+Origin

seg method R P F1 R P F1 R P F1 R P F1

GT OPDPN 1.59±1.25 3.09±2.06 2.08±1.57 1.28±0.95 2.56±1.53 1.69±1.18 1.21±0.98 2.33±1.64 1.58±1.24 0.83±0.83 1.47±1.47 1.06±1.06
GT S2M 15.50±0.53 12.37±0.36 13.76±0.43 14.06±0.73 7.53±0.36 9.79±0.38 13.98±0.66 7.49±0.34 9.74±0.33 10.28±0.53 5.50±0.18 7.15±0.19
GT S2M (aug) 13.45±0.67 13.80±1.56 13.58±1.10 9.14±1.26 8.65±0.78 8.88±1.01 9.14±1.26 8.65±0.78 8.88±1.01 5.97±0.66 5.66±0.35 5.81±0.50

SSTNet S2M 9.37±0.72 17.02±1.02 12.09±0.85 8.69±0.74 11.03±0.14 9.68±0.43 8.62±0.73 10.94±0.17 9.59±0.41 6.05±0.65 7.64±0.18 6.72±0.46
SSTNet S2M (aug) 6.73±0.89 15.68±2.89 9.40±1.39 4.53±1.12 10.35±1.85 6.29±1.43 4.53±1.12 10.35±1.85 6.29±1.43 2.87±0.89 6.47±1.68 3.97±1.18

16



Table 12: Mobility estimation on the test set comparing OPDPN [8] and Shape2Motion [16] on
objects extracted using ground-truth (GT) and predicted segmentations from SSTNet [10]. We report
both the mean and standard error across three random seeds.

seg method IoU↑ EPE↓ MD↓ OE↓ TA↑
GT OPDPN 42.83±21.51 0.43±0.22 0.22±0.11 2.85±2.22 66.67±33.33
GT S2M 75.15±2.64 0.60±0.09 0.31±0.04 0.77±0.04 99.12±0.88
GT S2M (aug) 72.96±2.38 0.50±0.10 0.27±0.05 1.58±0.90 96.55±1.75

SSTNet S2M 75.08±3.27 0.49±0.12 0.25±0.06 0.96±0.04 100.00±0.00
SSTNet S2M (aug) 70.19±1.90 0.52±0.14 0.27±0.07 0.85±0.08 98.33±1.67

Movable part Motion type Motion+Axis Motion+Axis+Origin

seg method R P F1 R P F1 R P F1 R P F1

GT OPDPN 1.52±0.98 3.14±1.79 2.04±1.26 1.52±0.98 3.14±1.79 2.04±1.26 1.42±0.88 2.95±1.64 1.90±1.14 0.91±0.63 1.85±1.15 1.22±0.82
GT S2M 12.06±0.10 10.13±0.30 11.00±0.15 11.15±0.10 6.81±0.55 8.44±0.43 11.15±0.10 6.81±0.55 8.44±0.43 8.41±0.27 5.15±0.46 6.37±0.39
GT S2M (aug) 12.06±2.84 12.56±3.18 12.29±3.00 8.81±2.53 8.06±2.27 8.36±2.30 8.71±2.51 7.95±2.20 8.25±2.25 6.28±1.67 5.68±1.32 5.93±1.42

SSTNet S2M 6.08±0.46 13.36±1.55 8.34±0.71 5.57±0.51 9.78±2.44 6.97±0.91 5.57±0.51 9.78±2.44 6.97±0.91 4.26±0.18 7.46±1.75 5.33±0.56
SSTNet S2M (aug) 7.40±0.97 20.21±3.40 10.82±1.53 5.37±1.24 15.57±2.94 7.97±1.75 5.37±1.24 15.57±2.94 7.97±1.75 3.55±0.54 10.34±0.89 5.27±0.70

Table 13: Complete results including standard error for comparison of Shape2Motion [16] perfor-
mance on open vs closed parts, evaluated on the val set with ground truth object instances.

State IoU↑ EPE↓ MD↓ OE↓ TA↑
Closed 67.76±0.74 1.00±0.08 0.56±0.07 0.81±0.15 95.73±2.26
Opened 66.52±0.59 0.72±0.00 0.36±0.00 0.45±0.09 100.00±0.00

Movable part Motion type Motion+Axis Motion+Axis+Origin

State R P F1 R P F1 R P F1 R P F1

Closed 14.16±0.72 14.58±1.34 14.34±1.01 8.18±1.54 7.77±0.78 7.93±1.17 8.18±1.54 7.77±0.78 7.93±1.17 5.07±0.92 4.82±0.46 4.92±0.70
Opened 12.51±1.19 9.57±1.77 10.77±1.59 6.26±1.19 3.74±0.56 4.67±0.78 6.26±1.19 3.74±0.56 4.67±0.78 4.75±1.08 2.83±0.56 3.54±0.74

and predicted segmentations from SSTNet. Tables 11 and 12 report the results on the val and test
sets respectively. The val set table is repeated from the main paper, but here we provide standard
error intervals on each mean reported for the metrics. We see that OPDPN is competitive in terms of
performance as measured by the EPE, MD and TA metrics when ground truth object segmentations
are used. In Table 13 we also analyze the performance difference between objects with open part
state and objects with closed part state.

Qualitative examples. In Figure 17 we provide several examples comparing mobility estimation
predictions using Shape2Motion (S2M) and OPDPN on inputs from the MultiScan val set. Simpler
cases of objects with a single relatively large part (e.g., toilet lid in examples 1 and 2, and door in
examples 3 and 4) are relatively easy. Overall, S2M provides more accurate motion axis and origin
predictions. However, cases such as cabinet with drawers (example 5 and 6) and cabinetry with
multiple doors opening in different directions (example 7 and 8) are quite challenging with missed
part mobility predictions and high motion axis and origin errors.

17



Input GT S2M OPDPN

1 miss

2 miss

3

4 miss

5

6 miss

7 miss

8 miss

Figure 17: Examples of mobility estimation predictions on the val set using Shape2Motion (with aug)
and OPDPN (no aug), both taking input point clouds with xyz+rgb+n features. For the ground truth
(GT), the motion direction is shown with a green arrow and a circle around it indicating the rotation
axis for rotations. For the predictions, predicted motion direction is shown in green if within 5◦ of
GT, in orange if within 15◦ and in red if more than 15◦ off the GT direction. Shape2Motion (S2M)
gives good predictions but sometimes the direction is 90 or 180 degrees off and the origin error is
large (see examples 7, 8). OPDPN has low recall and often fails to predict any moving parts with IoU
≥ 0.5.

18



References
[1] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor fusion IV: control

paradigms and data structures, volume 1611, pages 586–606. SPIE, 1992.
[2] Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, and Xinggang Wang. Hierarchical aggregation for

3D instance segmentation. In Proc. of the International Conference on Computer Vision (ICCV), 2021.
[3] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganovelli, and Guido

Ranzuglia. MeshLab: an open-source mesh processing tool. In Eurographics Italian Chapter Conference.
The Eurographics Association, 2008.

[4] Brian Curless and Marc Levoy. A volumetric method for building complex models from range images. In
Proc. of the Conference on Computer Graphics and Interactive Techniques, pages 303–312, 1996.

[5] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner.
ScanNet: Richly-annotated 3D reconstructions of indoor scenes. In Proc. of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[6] Maciej Halber, Yifei Shi, Kai Xu, and Thomas Funkhouser. Rescan: Inductive instance segmentation for
indoor RGBD scans. In Proc. of the International Conference on Computer Vision (ICCV), 2019.

[7] Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. Instant field-aligned meshes.
ACM Transactions on Graphics (TOG), Proc. SIGGRAPH Asia, 34(6), 2015.

[8] Hanxiao Jiang, Yongsen Mao, Manolis Savva, and Angel X Chang. OPD: Single-view 3D openable part
detection. In Proc. of the European Conference on Computer Vision (ECCV), 2022.

[9] Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, and Jiaya Jia. PointGroup: Dual-set
point grouping for 3D instance segmentation. In Proc. of the Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

[10] Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, and Kui Jia. Instance segmentation in 3D scenes
using semantic superpoint tree networks. In Proc. of the International Conference on Computer Vision
(ICCV), 2021.

[11] Santhosh Kumar Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alexander Clegg,
John M Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X Chang, Manolis Savva,
Yili Zhao, and Dhruv Batra. Habitat-Matterport 3D Dataset: 1000 large-scale 3D environments for
embodied AI. In NeurIPS Datasets and Benchmarks, 2021.

[12] Giorgio Toscana, Stefano Rosa, and Basilio Bona. Fast graph-based object segmentation for RGB-D
images. In Proceedings of SAI Intelligent Systems Conference, pages 42–58, 2016.

[13] Shinji Umeyama. Least-squares estimation of transformation parameters between two point patterns. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(04):376–380, 1991.

[14] Michael Waechter, Nils Moehrle, and Michael Goesele. Let there be color! — Large-scale texturing of 3D
reconstructions. In Proc. of the European Conference on Computer Vision (ECCV), 2014.

[15] Johanna Wald, Armen Avetisyan, Nassir Navab, Federico Tombari, and Matthias Nießner. RIO: 3D object
instance re-localization in changing indoor environments. In Proc. of the International Conference on
Computer Vision (ICCV), 2019.

[16] Xiaogang Wang, Bin Zhou, Yahao Shi, Xiaowu Chen, Qinping Zhao, and Kai Xu. Shape2Motion: Joint
analysis of motion parts and attributes from 3D shapes. In Proc. of the Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

[17] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang,
Yifu Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and Hao Su. SAPIEN: A simulated
part-based interactive environment. In Proc. of the Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[18] Xianghao Xu, David Charatan, Sonia Raychaudhuri, Hanxiao Jiang, Mae Heitmann, Vladimir Kim,
Siddhartha Chaudhuri, Manolis Savva, Angel X Chang, and Daniel Ritchie. Motion annotation programs:
A scalable approach to annotating kinematic articulations in large 3D shape collections. In Proc. of the
International Conference on 3D Vision (3DV), 2020.

[19] Zihao Yan, Ruizhen Hu, Xingguang Yan, Luanmin Chen, Oliver Van Kaick, Hao Zhang, and Hui Huang.
RPM-Net: recurrent prediction of motion and parts from point cloud. ACM Transactions on Graphics
(TOG), Proc. SIGGRAPH Asia, 38(6):240, 2019.

[20] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library for 3D data processing.
arXiv:1801.09847, 2018.

19


