
Appendix

A Proof of Proposition 3.2

Let η0 : DgmZZν∗ 7! DgmZZ′
ν∗

be the bijective map that yields the Wasserstein-1 distance between
DgmZZν∗ and its perturbed copy DgmZZ′

ν∗
. That is, Wasserstein-1 distance is defined as

W1(DgmZZν∗ ,DgmZZ′
ν∗) = inf

η

( ∑
x∈DgmZZν∗∪L

||x− η(x)||1∞
)
,

where || · ||∞ is a norm in L∞, i.e., ||z||∞ = maxi |zi|, Γ = {(t, t)|t ∈ R} and ν ranges over all
bijections between DgmZZν∗ ∪ Γ and DgmZZ′

ν∗ ∪ Γ. Inclusion of the diagonal Γ ensures that the
set of bijections is non-empty even under different cardinalities of DgmZZν∗ and DgmZZ′

ν∗
.

Let ZFCν∗(∆t−i ) and ZFC′
ν∗(∆t−i ) be Zigzag Filtration Curves corresponding to the zigzag persis-

tence diagrams DgmZZν∗ and DgmZZ′
ν∗

, respectively, and evaluated at ∆t−i .

Then, similarly to [39], for each i = {1, 2, . . . ,N}, we have∣∣∣∣ZFCν∗(∆t−i )− ZFC′
ν∗(∆t−i )

∣∣∣∣ = [ M∑
j=1

ξi(tbj , tdj )ωi −
M∑
j=1

ξi(η0(tbj , tdj ))ωi

]

≤ ωi

M∑
j=1

[
ξi(tbj , tdj )− ξi(η0(tbj , tdj ))

]
≤ ωiLi

M∑
j=1

[
(tbj , tdj )− η0(tbj , tdj )

]
= ωiLiW1

(
DgmZZν∗ ,DgmZZ′

ν∗
) < ωiLiϵ.

Here in the second inequality, we take into account that ξi is a Lipschitz continuous function with
constant Li. A similar result holds for ZFCν∗(∆t+i ) and ZFC′

ν∗(∆t+i ), i = {1, 2, . . . ,N}.

Hence,

||ZFCν∗ − ZFC′
ν∗ ||∞ ≤ CW1

(
DgmZZν∗ ,DgmZZ′

ν∗
),

where C = max{i=1,2,...,N} ωiLi and ZFCν∗ and ZFC′
ν∗ are viewed as (2n−1)-dimensional vectors

(i.e., ZFC is evaluated at each interval ∆t+i and ∆t−i , i = 1, 2, . . . ,N ), which concludes the proof.

B Background on the Hodge Theory and Hodge-Laplacians

Let Ck be a real-valued vector space which is endowed with basis from the oriented k-simplices. (By
orientation of simplices, we mean selecting some (arbitrary) order for its nodes, where two orderings
are said to be equivalent if they differ by an even permutation.) A linear map ∂k : Ck ! Ck−1

is called a boundary operator. The adjoint of the boundary map induces the co-boundary operator
∂Tk : Ck ! Ck+1. We define matrix representations of ∂k and ∂⊤

k as Bk and B⊤
k , respectively.

Definition B.1. An operator over oriented k-simplices Lk : Ck ! Ck is called the k-Hodge
Laplacian, and its matrix representation is given by

Lk = B⊤
k Bk +Bk+1B

⊤
k+1, (7)

where B⊤
k Bk and Bk+1B

⊤
k+1 are often referred to Ldown

k and Lup
k , respectively.

That is, the standard graph Laplacian L0 = B1B
⊤
1 ∈ RN×N is a special case of the above k-th

combinatorial Hodge Laplacian and the matrix L1 ∈ RM×M is the Hodge 1-Laplacian.

C Additional Experiments and Running Time

C.1 Datasets

Detailed data description is as follows:
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Figure 1: Illustration of 0- and 1- dimensional ZFCs for COVID-19 dataset on Texas (TX). For
COVID-19 hospitalization forecasting on TX, we set the sliding window size to be 5 and thus N = 8

over the time period [t1, t5].

Figure 2: Comparison of forecasting performance at four different prediction horizons for COVID-19
hospitalization in TX.

1. The COVID-19 datasets include the daily number of hospitalizations from February 1, 2020
to December 31, 2021 on a county level in three US states (i.e., CA, PA, and TX), where
each node denotes a county and each edge represents a border connection between two
adjacent counties. In our experiments, we split the COVID-19 datasets into training and test
sets in chronological order with the split ratio 8 : 2 for all three states.

2. The traffic datasets, i.e., PeMSD4 and PeMSD8 consist of the traffic flow data in California
from January 1, 2018 to February 28, 2018 and from January 7, 2016 to August 31, 2016,
respectively. Moreover, both PeMSD4 and PeMSD8 are aggregated to 5 minutes, which
means there are 12 time points in the flow data per hour, and we split the traffic datasets with
ratio 6 : 2 : 2 into training, validation, and test sets by following the same setting of [30].

3. The synthetic MTS datasets include two MTS following vector autoregressions VART1 :
{Ξt}T1

t=1 = {ξ1t, . . . , ξpt}T1
t=1 and VART2

: {Ξt}T2
t=1 = {ξ1t, . . . , ξpt}T2

t=1 with the graph
node size p = 20 for two different time series lengths (T1 = 200 and T2 = 300). Note that
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Table 5: Summary of the time series forecasting datasets. † represents the average number of edges
in simulated VAR datasets under threshold ωVAR = 0.1.

Dataset # Nodes # Edges Time range # Timesteps
CA 55 129 02/01/2020 - 12/31/2020 335
PA 60 139 02/01/2020 - 12/31/2020 335
TX 251 709 02/01/2020 - 12/31/2020 335
PeMSD4 307 340 01/01/2018 - 02/28/2018 16,992
PeMSD8 170 274 01/07/2016 - 08/31/2016 17,856
VART1

20 85† - 100
VART2

20 73† - 200
Bytom 100 10 07/27/2017 - 05/07/2018 285

for two VAR datasets we split into training and test sets with the ratio 8 : 2. We define the
ω-lag vector autoregressive (VAR(ω)) Ξt = {ξ1t, . . . , ξpt}⊤ as follows

Ξt = a+Π1Ξt−1 +Π2Ξt−2 + · · ·+ΠwΞt−w + ϵt,

where Πi ∈ Rq×q is an coefficient matrix and ϵt ∈ Rq×1 denotes an unobservable mean
white noise vector process with time invariant covariance matrix Σ. In our experiments, we
set q = 20 and ω = 10.

4. The surface air temperature datasets include the daily surface air temperature from
February 1, 2020 to December 31, 2021 on a county level in three US states (i.e., CA, PA,
and TX). Besides, we use the same experimental settings as the COVID-19 datasets.

5. The Ethereum blockchain Bytom networks are compound of addresses of users (nodes)
and daily transactions among users (edges) [24, 2]. Since original token networks have an
average of 442788/1192722 nodes/edges, we compute a subgraph via a maximum weight
subgraph approximation [58] using the amount of transactions as weight. The dynamic
networks contain different number of networks since every token was created at different
days. Hence, for each timestamp t (from July 27, 2017 to May 07, 2018), given the dynamic
network Gt = {Vt, Et, W̃t} and its corresponding node feature matrix Xt ∈ RN×F , where
F represents the number of features (e.g., node degree, node betweenness, etc), we test
our algorithm with both node and edge features and use the set of most active nodes, i.e.,
N = 100.

C.2 Surface Temperature Prediction Performance

We further compare our ZFC-SHCN with the 3 strongest SOA baselines for surface temperature
forecasting on CA, PA, and TX in Table 6. The results show that ZFC-SHCN achieves relative gains
of 39.55%, 6.02%, and 15.59% over runner-ups (see the results with dotted underline) on CA, PA,
and TX respectively.

Table 6: Forecasting results (MAPE (%)) on surface temperature in CA, PA, and TX.

Model CA PA TX
AGCRN 4.21±1.05 7.07±1.21 12.97±1.39
StemGNN 4.59±1.21 6.61±1.10 . . . . . . . . . . . . .11.94±1.60
Z-GCNETs . . . . . . . . . . . .4.34±0.87 . . . . . . . . . . .6.52±1.05 12.00±1.65

ZFC-SHCN (ours) ∗∗3.11±0.65 6.15±1.15 ∗10.33±1.57

C.3 Wind Speed Prediction Performance

To assess the utility of our approach for other tasks, we now also conducted spatio-temporal fore-
casting for graph values (i.e., on graph-level) on the wind speed dataset [28]. In this experiment, we
use hourly wind speed data to predict the total wind speed from 57 stations in East Coast including
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Massachusetts, Connecticut, New York, and New Hampshire. The evaluation results are summarized
in Table 3. We find that our ZFC-SHCN outperforms the next best competitor, with up to 39.20% of
improvement, and the results are highly statistically significant.

Table 7: Forecasting results of ZFC-SHCH and baselines on wind speed dataset.
Model RMSE

Wind Speed

ZFC-SHCN ∗∗∗1.07±0.02
ZPI-SHCN 1.30±0.02
Z-GCNETs 1.68±0.05
AGCRN 1.52±0.03
StemGNN 1.76±0.03

C.4 Additional Ablation Studies

We conduct the additional experiments by (i) replacing ZFC with zigzag persistence image (ZPI),
i.e., ZPI-SHCN and (ii) replacing Supra-Hodge convolution with GCN (which is temporal graph
convolution in temporal domain), i.e., ZFC-GCN, on both PeMDS4 and TX-COVID-19 (in Texas
state) datasets. First, Table 8 demonstrates that for both datasets, the ZFC representation (i.e.,
ZFC-SHCN) significantly outperforms zigzag persistence image (i.e., ZPI-SHCN). These findings
might be explained by the fact that, especially for small- and medium-size datasets, ZFC tends to
better capture the topological signal than ZPI which, being a 2-d representation, might be more noisy.
Second, Table 8 indicates that compared to ZFC-GCN, ZFC-SHCN always achieves better forecasting
performance. We attribute these findings to the fact that supra-Hodge convolution operation integrates
knowledge on important interactions among higher-order structures (i.e., edges, filled triangles -
beyond the node-space) into graph learning. For TX-COVID-19 dataset, the relative gain of ZFC-
SHCN over the runner-up (i.e., ZFC-GCN) in RMSE is 3.13%; for PeMSD4 dataset, the relative gain
of ZFC-SHCN over the runner-up (i.e., ZFC-GCN) in RMSE is 1.11%.

Table 8: Additional ablation study of ZFC convolution and Supra-Hodge convolution on PeMSD4
and COVID-19 hospitalizations in TX.

Architecture RMSE

PeMSD4
ZFC-SHCN ∗∗∗28.58±0.15
ZPI-SHCN 29.00±0.17
ZFC-GCN 28.90±0.26

TX-COVID-19
ZFC-SHCN ∗∗27.81±1.72
ZPI-SHCN 29.26±1.86
ZFC-GCN 28.71±1.90

Regarding the choice of simplicial complexes, we have also conducted additional experiments between
(i) ZFC-SH1CN based on Supra-Hodge 1-Laplacian (i.e., utilizing information of 0-simplices, 1-
simplices, and 2-simplices) and (ii) ZFC-SH2CN based on Supra-Hodge 2-Laplacian (i.e., utilizing
information of 1-simplices, 2-simplices, and 3-simplices) on PeMSD4 and COVID-19 in TX dataset.
The evaluation results are summarized in Table 9. Experimental results show that ZFC-SH1CN
consistently outperforms ZFC-SH2CN. We tend to attribute such findings to the fact that we observe
a very low number of 3-simplices. For instance, in PeMSD4 at each timestamp we observe around 29
2-simplices (filled triangles) but we observe only around 2 3-simplices (tetrahedron). Furthermore, it
is worth to mention that: for PeMSD4 dataset, ZFC-SH2CN is still very competitive compared to
other baselines (i.e., slightly worse than the runner-up, i.e., Z-GCNETs); for COVID-19 in TX, the
performance of ZFC-SH2CN is much better the runner-up. Nevertheless, we believe that higher-order
simplices, if observed in the targeted network, has a potential to boost the model performance.
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Table 9: Additional ablation study of simplices on PeMSD4 and COVID-19 hospitalizations in TX.
Architecture RMSE

PeMSD4 ZFC-SH1CN ∗∗∗28.58±0.15
ZFC-SH2CN 29.15±0.30

TX-COVID-19 ZFC-SH1CN ∗∗27.81±1.72
ZFC-SH2CN 29.39±1.93

C.5 Comparison to Multiparameter Persistence

The development of multiparameter persistence (MP) has recently witnessed a rapid progress (such
as [14, 20]) due to in many applications, particularly, involving spatio-temporal processes, the
data exhibit richer structures which cannot be well encoded with a single parameter persistence.
Although there exist some studies in the literature that have shown promising performances for spatial
temporal prediction tasks [20], the computation of MP is labor-intensive and very time-consuming.
To better demonstrate the power of our proposed ZFC-SHCN, here we compare our method with one
representative MP-based GNNs, i.e., TAMP-S2GCNets [20] from both prediction performance and
running time perspectives. We conduct comparison experiments on PeMSD4, CA, and Bytom, and we
find that ZFC-SHCN yields highly competitive performance against TAMP-S2GCNets (see Figures 3a
and 4a); that is, for PeMSD4, ZFC-SHCN: {MAE: 17.58±0.17, RMSE: 28.58±0.15, MAPE (%):
11.68±0.07} vs. TAMP-S2GCNets: {MAE: 17.58±0.20 RMSE: 28.56±0.28, MAPE (%) 11.01};
for CA: ZFC-SHCN: {MAE: 79.33±1.70, RMSE: 343.92±3.66, MAPE (%): 61.25±5.80} vs.
TAMP-S2GCNets: {MAE: 82.75±1.93, RMSE: 371.60±2.68, MAPE (%): 62.43±5.61}; for Bytom,
ZFC-SHCN: {MAPE: 29.51±0.77} vs. TAMP-S2GCNets: {MAPE: 29.26±1.06}). Furthermore,
Figures 3b and 4b present visual comparison of running time of ZFC-SHCN and TAMP-S2GCNets
(per epoch in seconds). We find that training time consumed by ZFC-SHCN is substantially lower
than that of TAMP-S2GCNets on all datasets. These findings suggest that ZFC-SHCN may be the
preferred forecasting choice, in terms of the balance between accuracy and computational efficiency.

(a) Prediction performance comparison. (b) Training time comparison.

Figure 3: Prediction performance (RMSE) and training time comparisons on PeMSD4 and CA.

C.6 Overall Comparison with Runner-ups

We present comparison of computational time of our ZFC-SHCN with the 3 strongest SOA baselines
on PeMSD4, CA, and Bytom in Table 10. The results show the superior computational efficiency
of ZFC-SHCN. Note, that while AGCRN is faster than ZFC-SHCN, ZFC-SHCN significantly
outperforms AGCRN in terms of forecasting accuracy, e.g., with a relative gain of up to 48.81% on
MAPE for CA. Furthermore, from Tables 11 and 12, we find both the running times on zigzag-based
topological feature generation and per-epoch training time of ZFC-SHCN are less than the runner-up
model (i.e., Z-GCNETs).

Furthermore, we have conducted comparison experiments between our ZFC-SHCN and two baselines,
i.e., fractional-order dynamical model [31] and Padé Exp [32] on COVID-19 (TX) dataset. Table 13
shows that ZFC-SHCN outperforms both fractional-order dynamical model and Padé Exp.
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(a) Prediction performance comparison. (b) Training time comparison.

Figure 4: Prediction performance (MAPE) and training time comparisons on Bytom.

Table 10: Comparisons of prediction performance and computation time (in ( )) on PeMSD4, CA,
and Bytom datasets.

Dataset RMSE/MAPE (Average Training Time per Epoch (sec))
PeMSD4 (RMSE) CA (RMSE) Bytom (MAPE)

AGCRN 29.17±0.09 (25.74 s) 448.27±2.78 (3.01 s) 34.46±1.37 (2.47 s)
StemGNN 31.83±0.11 (33.86 s) 377.25±3.91 (6.63 s) 34.50±1.53 (3.05 s)
Z-GCNETs . . . . . . . . . . . . .29.08±0.19 (30.12 s) . . . . . . . . . . . . . . .356.35±3.20 (6.56 s) . . . . . . . . . . . . .31.04±0.78 (2.83 s)

ZFC-SHCN (ours) ∗∗∗28.58±0.15 (27.53 s) ∗∗343.92±3.66 (3.15 s) ∗∗∗29.51±0.77 (2.82 s)

C.7 Sensitivity analysis of the covariance matrix

To further investigate the effect of covariance matrix in ZFC’s representational power, we perform
the sensitivity analysis of covariance matrix Σ of ZFC, which specifies the patterns of variability
as well as the shape of the multivariate Gaussian distribution. We show that the variation of RMSE
for COVID-19 hospitalization prediction task with Σ (note that, we assume Σ is the same for every
persistent point (tbj , tdj )). Table 14 shows variations of RMSE with different diagonal and off-
diagonal elements in Σ. As demonstrated in Table 14, (i) RMSE increases with increasing the
off-diagonal element (i.e., the correlation coefficient) when fixing diagonal element; (ii) RMSE first
decreases and then increases via increasing diagonal element when setting the correlation coefficient
to be 0 (i.e., there is no linear relationship between the tbj and tdj ). In addition, we find evidence of a
non-monotonic relationship between prediction performance (in RMSE) and diagonal element of Σ.

D Broader Impact

The key positive impact of this project constitutes in the simultaneous enhancement of both predictive
performance and computational efficiency in forecasting tasks associated with complex multivariate
time series, including but not limited to spatio-temporal processes. Such tasks are widely met in a
diverse range of applications, from finance to atmospheric sciences to biosurveillance. Furthermore,
topological methods and graph representations of multivariate time series and spatio-temporal
processes, in conjunction with forecasting, remains yet nascent in both machine learning and statistics,
and has a high potential, especially for analysis of multivariate time series with a complex dependence
structure, such as disease surveillance, wildfire monitoring, and cryptomarket analytics. However, the
current lack of proper statistical inferential methods for topological characteristics of multivariate

Table 11: Computational costs for generation of zigzag persistence images (ZPI) and a single training
epoch of Z-GCNETs.

Dataset Average Time Taken (sec)
ZPI Z-GCNETs (epoch)

CA 0.23 s 6.56 s
PeMSD4 0.86 s 30.12 s
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Table 12: Computational costs for generation of zigzag filtration curve (ZFC) and a single training
epoch of ZFC-SHCN.

Dataset Average Time Taken (sec)
ZFC ZFC-SHCN (epoch)

CA 0.10 s 3.15 s
PeMSD4 0.52 s 27.53 s

Table 13: Comparison of RMSE of ZFC-SHCN and fractional-order dynamical model on COVID-19
in TX.

Architecture RMSE

TX-COVID-19
ZFC-SHCN 27.81±1.72
Fractional-order dynamical model 28.60±1.88
Padé Exp 28.21±1.69

Table 14: Sensitivity analysis of the covariance matrix Σ of ZFC on COVID-19 hospitalizations in
CA and TX.

Covariance Matrix CA TX

Σ = [ 1 0
0 1 ] 346.66±2.78 30.16±3.61

Σ = [ 1 0.1
0.1 1 ] 349.88±2.67 30.22±3.02

Σ = [ 1 0.5
0.5 1 ] 350.94±1.95 32.50±3.47

Σ = [ 1 0.8
0.8 1 ] 352.76±2.95 32.83±2.83

Σ = [ 10 0
0 10 ] 347.88±2.89 31.32±2.55

Σ = [ 5 0
0 5 ] 343.92±3.66 27.81±1.72

time series makes it questionable how robust these methods and the conclusions derived from them
are, especially under adverse scenarios. This negative impact of the developed predictive analytics
shall be necessarily accounted in the proper risk management, particularly, when targeted attacks are
expected, and shall be further investigated with rigours inferential tools of mathematical statistics.
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