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Abstract

Graph neural networks (GNNs) offer a new powerful alternative for multivariate
time series forecasting, demonstrating remarkable success in a variety of spatio-
temporal applications, from urban flow monitoring systems to health care informat-
ics to financial analytics. Yet, such GNN models pre-dominantly capture only lower
order interactions, that is, pairwise relations among nodes, and also largely ignore
intrinsic time-conditioned information on the underlying topology of multivariate
time series. To address these limitations, we propose a new time-aware GNN
architecture which amplifies the power of the recently emerged simplicial neural
networks with a time-conditioned topological knowledge representation in a form
of zigzag persistence. That is, our new approach, Zigzag Filtration Curve based
Supra-Hodge Convolution Networks (ZFC-SHCN) is built upon the two main
components: (i) a new highly computationally efficient zigzag persistence curve
which allows us to systematically encode time-conditioned topological information,
and (ii) a new temporal multiplex graph representation module for learning higher-
order network interactions. We discuss theoretical properties of the proposed
time-conditioned topological knowledge representation and extensively validate
the new time-aware ZFC-SHCN model in conjunction with time series forecasting
on a broad range of synthetic and real-world datasets: traffic flows, COVID-19
biosurveillance, Ethereum blockchain, surface air temperature, wind energy, and
vector autoregressions. Our experiments demonstrate that the ZFC-SHCN achieves
the state-of-the-art performance with lower requirements on computational costs.

1 Introduction

Over the last few years, graph neural networks (GNNs) have emerged as a new powerful alternative
to traditional statistical and machine learning models in conjunction with univariate and multivariate
time series forecasting tasks [27, 4, 40, 40, 28]. Such successful applications of GNNs range from
urban traffic analytics to forecasting COVID-19 hospitalizations to electrocardiogram monitoring [3,
36, 56, 10, 20]. However, most GNNs remain inherently static and do not explicitly incorporate the
inherent time characteristics of the encoded knowledge [59, 42]. In turn, limitations in capturing the
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time dimension in the knowledge representation and learning mechanisms for time-evolving data
results in GNNs becoming less relevant over time and, hence, requiring frequent updates.

Furthermore, GNNs tend to pre-dominantly focus only on information propagation among nodes
and also be limited in their ability to describe polyadic relationships among multiple substructures
of multivariate time series or multi-node interactions in dynamics graphs. However, as recently
shown by [6, 21], such higher-order interactions might be the key toward better understanding of the
underlying mechanisms of many real-world graph-structured phenomena. This challenge on polyadic
graph interactions has been recently addressed by [24, 8, 7] who propose to model higher order
substructures as simplices. Then, by borrowing the concepts of the Hodge theory, these approaches
allow for generalization of the ideas of the combinatorial graph Laplacian which describes a diffusion
from node to node via edges to a case of diffusion over simplices. Such Hodge Laplacian construction
allows for extending the notion of convolution operation to simplicial convolution, and the resulting
simplicial neural networks (SNNs) are arguably one of the frontlines in graph learning today. However,
these ideas have never been yet applied in conjunction with knowledge representation and learning of
time-evolving objects.

Our goal here is to bridge the emerging concept of time-aware learning with the recent notions of
simplicial convolution, with a particular focus on explicitly integrating the core time-conditioned
topological characteristics. In particular, we amplify the power of SNNs with a time-conditioned
topological knowledge representation in a form of zigzag persistence for time-indexed data and,
more specifically, its new highly computationally efficient summary, Zigzag Filtration Curve. As
a result, our new approach, Zigzag Filtration Curve based Supra-Hodge Convolution Networks
(ZFC-SHCN) enables us to systematically learn the most intrinsic time-conditioned information both
on the underlying topology of the time-evolving data and higher-order interactions among various
substructures.

Significance of our contributions can be summarized as follows:

• ZFC-SHCN is the first approach bringing the concepts of simplicial convolution and SNNs
to time-aware learning.

• We propose a new highly computationally efficient summary of persistence for time-indexed
data, Zigzag Filtration Curve, and derive its theoretical stability guarantees.

• We validate the utility of ZFC-SHCN in conjunction with forecasting multivariate time
series from diverse application domains such as traffic networks, COVID-19 biosurveillance,
surface air temperature, token prices on Ethereum blockchain, wind energy, and vector au-
toregressions. Our findings indicate that ZFC-SHCN delivers the state-of-the-art forecasting
performance, with a significant margin and demonstrates higher computational efficiency.

2 Related Work

Time-series Forecasting and Spatio-temporal Graph Convolutional Networks Time-series fore-
casting is one of the core subfields in statistical sciences [15, 9]. Most recently, there have appeared
a number of unconventional machine learning approaches to time-series forecasting. In particular,
graph convolutional network (GCN)-based models for spatio-temporal network data have emerged
as a promising forecasting tool. For instance, DCRNN [42] introduces spectral graph convolu-
tion into spatio-temporal network data prediction, which can capture spatio-temporal dependencies.
STGCN [59] uses convolutional neural networks (CNNs) to model temporal correlations. Moreover,
to infer hidden inter-dependencies between different traffic variables, [57, 3, 10] conduct a convolu-
tion operation in spatial dimension through adaptive adjacency matrices. Recent Z-GCNETs [20]
develops a zigzag topological layer equipped with a zigzag persistence image into a GCN framework
to model temporal correlations. Another promising recent direction for time series forecasting beyond
GCN is a fractional-order dynamical model proposed by [27]. This approach offers an alternating
scheme to determine the best estimate of the model parameters and unknown stimuli. In turn, [28]
proposes a Padé approximation based exponential neural operator (Padé Exp), aiming to improve
time-series forecasting with exponential operators in neural operator learning schemes. However, all
of the above methods only focus on node-level representations. In contrast, in this paper, we focus on
both higher-order structure representation and topological information learning.
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Topological Data Analysis for Graph Learning Persistent homology [25, 62] is a suite of tools
within topological data analysis (TDA) that provides a way for measuring topological features of
shapes and functions. The extracted topological features have been recently shown to provide
invaluable insights into hidden mechanisms behind the organization and functionality of graph
structured data. In particular, topological features have been actively used for node classification [61,
17], link prediction [58], and graph classification [31, 32, 14, 30]. For instance, [31] is one of the first
approaches to integrate topological features into neural networks for graph classification, while [14]
proposes a versatile framework for learning multiple vectorizations of persistent diagrams on graphs.
In turn, [61, 17, 58] apply topological features to GNNs to understand and improve the message
passing between nodes. Finally, [33] proposes a topological graph layer with learnable filtration
functions for graph and node classification tasks, while [13] advances the ideas of multipersistence to
graph learning.

Zigzag Persistent Homology Despite its promise, regular persistent homology does not explicitly
model the geometric and topological information from a sequence of topological spaces. To address
this limitation, a generalization of ordinary persistence, i.e., zigzag persistent homology, based on
the theory of quiver representation, has been proposed by [12]. Zigzag persistence allows us to
systematically describe how the homology changes over a sequence of spaces. Despite its high
potential, especially in conjunction with analysis of time-evolving data, zigzag persistence still
remains largely a theoretical concept, and its applications are yet scarce. The recent results for
time-dependent data studies include, for example, zigzag-based clustering [37], bifurcation analysis
of dynamic systems [55], and time series forecasting [20]. The memory and computational efficiency
of zigzag persistence is one of the daunting challenges. Inspired by [44], we propose a novel highly
computationally efficient representation of zigzag persistence for learning time-evolving data, that is,
zigzag filtration curve.

Simplicial Neural Networks Modeling higher-order interactions on graphs is an emerging direction
in graph representation learning. While the role of higher-order structures for graph learning has
been documented for a number of years [1, 34] and involves such diverse applications as graph signal
processing in image recognition [23], dynamics of disease transmission and biological networks,
integration of higher-order graph substructures into deep learning on graphs has emerged only
in 2020. As shown by [6, 50], higher-order network structures can be leveraged to boost graph
learning performance. Indeed, several recent approaches [24, 49, 8, 18] propose to leverage simplicial
information to perform neural networks on graphs. However, neither of these Simplicial Neural
Networks (SNNs) are integrated with a topology-based graph convolution layer allowing us to learn
both time-aware persistent topological features and simplicial geometry of graphs. In this paper, we
propose ZFC-SHCN to address this limitation.

3 Time-Aware Topological Learning with Zigzag Curves

Spatio-temporal Graph Construction A spatio-temporal graph is a collection of snapshots at
different time steps, denoted by G = {G1,G2, · · · ,GT }, where T is the maximum timestamp. Here
Gt = (Vt, Et,At,Xt) is the graph observed at time step t ∈ [1, T ], where Vt is a finite set of |V| = N
nodes, Et is a set of edges, At ∈ RN×N is the adjacency matrix, and Xt ∈ RN×d is the node feature
matrix. Specifically, each row of Xt is a d-dimensional feature vector of the corresponding node. For
sake of notations, wherever applicable below, we omit the subscript t and denote graph Gt at time t
as G.

Background on Ordinary Persistence Tools of ordinary persistence, or persistent homology (PH),
allow us to study salient data shape patterns along various dimensions. By shape here we broadly
understand data properties that are invariant under continuous transformations, that is, transformations
that do not alter “holes” in the data, for example, bending, twisting, and stretching. The key idea is to
choose some suitable scale parameter ν and then to study a graph G not as a single object but as a
nested sequence of graphs, or graph filtration G1 ⊆ . . . ⊆ Gn = G, which is induced by monotonic
changes of scale ν. For example, if G is an edge-weighted graph (V, E , w) with weight function
w : E 7! R, then for each νj , j = 1, . . . , n, we set G≤νj = (V, E , w−1(−∞, νj ]), yielding the
induced edge-weighted filtration. We can also consider only induced subgraphs of G with maximal
degree of νj for each j = 1, . . . , n, resulting in the degree sublevel set filtration. (For more discussion
on graph filtrations see [30].) Armed with this construction, we can track which shape patterns, for
example, independent components, loops, and voids, emerge as the scale ν varies. To make the

3



process of pattern counting more systematic and efficient, we build an abstract simplicial complex
K (Gj) on each Gj . We also record complex indices jb (birth) and jd (death) at which we first or last
observe each shape feature. Topological features with longer lifespans are said to persist and are
likelier to yield important information on the structural organization of G.

Learning Shapes of Time-Conditioned Data with Zigzag Persistence This construction enables us
to extract the key topological descriptors from a single graph G. However, in our case, we observe
not a single graph but a sequence of time-evolving graphs {G1, . . . ,GT }. How can we track shape
signatures which are not just individualistic for each time stamp but characterize intrinsic properties
of the observed object over time? One approach to how we can bring PH tools to analysis of time-
conditioned objects is zigzag persistence. Based on the theory of quiver representations, zigzag
persistence generalizes ordinary persistence to track characteristics of graphs (or other topological
spaces) with inclusions going in different directions [12, 11]. In particular, given a time-indexed
sequence of graphs {G1, . . . ,GT }, we first form a set of graph inclusions over time

G1 ∪ G2 G2 ∪ G3 G3 ∪ G4 . . .

↗ ↖ ↗ ↖ ↗ ↖ ↗

G1 G2 G3 G4

and then assess the compatibility of persistent topological features across unions of graphs. That
is, we record indices at which topological features (dis)appear, for some given scale ν∗. If for a
given ν∗ topological feature ρ (i.e., p-dimensional hole, 0 ≤ p ≤ K, where K is the dimension of the
simplicial complex K(G)) is first recorded in K(Gj), we say that the feature’s birth is j, and if ρ first
appears in K(Gj ∪Gj+1), we record its birth as j +1/2. In turn, if ρ is last seen in K(Gj), we record
its death as j, while if it is last seen in K(Gj ∪ Gj+1), we say that its death is at j + 1/2. Let J be the
set of all observed topological features for a given ν∗. Collecting then births and deaths over J, we
summarize all extracted information as a multiset Dν∗ = {(bρ, dρ) ∈ R2|bρ < dρ, ρ ∈ J}, called a
zigzag persistent diagram (ZPD) (where bρ and dρ are the birth and death of the topological feature ρ
respectively).

This makes zigzag persistence particularly attractive for the analysis of dynamic objects which are
naturally indexed by time. However, the idea of zigzag persistence is applicable far beyond learning
time-evolving objects. Nevertheless, zigzag persistence still remains largely a theoretical concept,
with yet only a handful of applications, and one of the roadblocks hindering a broader proliferation
of zigzag-based methods in practice is their computational costs. Here we take a step toward bringing
a more computationally efficient summary of zigzag persistence to real-world applications.

Time-Aware Zigzag Filtration Curves Consider a sequence of time intervals associated with a
zigzag filtration over a time period [t1, tN ](

t1, t1 +
1

2

)
,

(
t1 +

1

2
, t2

)
,

(
t2, t2 +

1

2

)
, . . . ,

(
tN−1 +

1

2
, tN

)
.

Let DgmZZν∗ be the resulting ZPD for a given ν∗ and M be the number of off-diagonal topological
features in ZPD, i.e., DgmZZν∗ . Inspired by the recent results on stabilized Betti sequences by [35]
and filtration curves by [44] for ordinary persistence, we propose a new simple and computationally
efficient summary of zigzag persistence, called a Zigzag Filtration Curve.
Definition 3.1 (Zigzag Filtration Curve (ZFC)). The zigzag filtration curve evaluated at ∆t−i =
(ti−1 +

1
2 , ti), i = {1, 2, . . . ,N}, for a given ν∗, is defined as

ZFCpν∗(∆t−i ) =

M∑
j=1

ξi(tbj , tdj )ωi,

where (tbj , tdj ) ∈ R2 is a vector containing the birth and death of the j-th off-diagonal p-dimensional
topological feature in DgmZZν∗ (as such, tbj < tdj ), j = {1, 2, . . . ,M}, 0 ≤ p ≤ K; ξi : R2 7! R
is some suitable Lipschitz continuous function with Lipschitz constant Li, for example, a Gaussian
density; and ωi > 0, i = {1, 2, . . . ,N} are weights such that

∑
i ωi = 1. Zigzag filtration curve at

∆t+i = (ti, ti +
1
2 ) is defined analogously. (For the sake of notational simplicity, wherever applicable

in the further exposition we suppress the index p in ZFC.)

Motivated by [35], here as the Lipschitz continuous function ξi for intervals ∆t−i , we use a Gaussian
density f with mean (ti−1 + 1/2, ti), while for intervals ∆t+i , we set the mean of f to (ti, ti + 1/2),
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i = 1, 2, . . .N . For both ∆t−i and ∆t+i , we choose the 2 × 2-variance-covariance matrix Σ to be
the identity matrix. (See Appendix ?? for more discussion on sensitivity analysis.) Another suitable
choice of ξ is the arctan function.

As we show below, the proposed ZPC also enjoys important theoretical stability guarantees in terms
of Wasserstein-1 distance.
Proposition 3.2 (Stability of Zigzag Filtration Curve). Let DgmZZν∗ be a zigzag persistence dia-
gram and DgmZZ′

c∗
be its perturbed copy such that W1

(
DgmZZν∗ ,DgmZZ′

ν∗
) < ϵ, where W1 is

Wasserstein-1 distance. Then, ZFC is stable with respect to Wasserstein-1 distance.

In practice topological features of various dimensions p, p = 0, 1, . . . ,K, may play different roles
in the learning task performance, and these roles are not known a-priori. Hence, to harness time-
conditioned information encoded in ZFC corresponding to different dimensions p, we propose Multi-
Zigzag Filtration Curves (M-ZFCs) M-ZFCsν∗ ∈ RK×N−1

2 by stacking ZFC0,ZFC1, . . . ,ZFCK.
Figure ?? in Appendix ?? shows the both 0- and 1-dimensional ZFCs obtained from the proposed
ZFC. In the following section, we demonstrate how ZFC can be integrated into neural network
architectures for graph learning tasks.

4 Zigzag Filtration Curve Based Supra-Hodge Convolution Networks

Given a graph G and its historical ω step graph signals Xω = {Xt−ω+1, . . . ,Xt} ∈ Rω×N×F (F is
the node feature dimensionality), the time-series forecasting problem is to learn a mapping function f
that maps the historical data {Xt−ω+1, . . . ,Xt} into the next h step data {Xt+1, . . . ,Xt+h}. The

mapping relation is represented as follows: {Xt−ω+1, . . . ,Xt}
f
−! {Xt+1, . . . ,Xt+h}.

4.1 Graph convolution in the spatial dimension

Given the node embedding dictionary W ϕ = (wϕ1 , w
ϕ
2 , . . . , w

ϕ
N ) ∈ RN×dc (where xϕu ∈ Rdc and dc

is the dimension of node embedding), we aim to seek a non-negative function Su,v = G (wϕu , w
ϕ
v )

which represents the pairwise similarity between any two nodes u and v. Concretely, the multiplication
between W ϕ and (W ϕ)⊤ can (i) give a sum pooling of second-order features from the outer product
of all the embedding vector pairs (wϕu , w

ϕ
v ) and (ii) infer the hidden spatial dependencies of nodes

Suv = G (wϕu , w
ϕ
v ) =

exp (ReLU(wϕu(w
ϕ
v )

⊤)∑N
u=1 exp (ReLU(wϕu(w

ϕ
v )⊤)

,

where ReLU(·) = max (0, ·) is a nonlinear activation function, which is used to eliminate weak
connections proactively, and the role of the softmax function is applied to normalize the learned graph
S. Inspired by the recent advancements in random walk-based graph embedding learning [47, 26],
we make a graph convolution in spatial dimension, feeding a power series of the learned graph S
with varying random walk steps {1, 2, · · · , r} (r ∈ Z+), as follows:

H
(ℓ+1)
t,GC = σ(Stack(I,S, · · · ,Sr)H(ℓ)

t,GCΘ
(ℓ)
GC), (1)

where σ(·) stands for a nonlinear activation function, Stack(·) is the function which stacks r powered
learned graphs, H(ℓ)

t,GC and H
(ℓ+1)
t,GC are the input and output activations for layer ℓ (where H

(0)
t,GC =

Xt ∈ RN×F ), and Θ
(ℓ)
GC ∈ Rd

GC
ℓ ×dGC

ℓ+1 is the ℓ-th layer’s trainable weights. Next, we introduce
representation learning of the higher-order graph (sub)structures using the supra-Hodge Laplacian
which allows us to systematically leverage the underlying topological information.

4.2 Supra-Hodge convolution in temporal dimension

Time-evolving data such as multivariate time series, spatio-temporal processes, and dynamic networks,
often exhibit a highly complex dependency among its substructures that goes far beyond what
can be described by dyadic (or pairwise) interactions among nodes. Instead, such higher-order
polyadic interactions can be systematically addressed using the Hodge theory. In particular, the
discrete Hodge theory allows us to generalize the notion of a standard combinatorial graph Laplacian
which describes diffusion on graph G from node to node via edges to diffusion over higher-order
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substructures of G [43, 6]. In turn, higher-order substructures can be modeled as k-simplices of G.
(See Appendix ?? for background information on Hodge Laplacians.) Convolutional architectures on
simplicial complexes based on the associated concepts of the Hodge theory have emerged as a recent
direction in graph neural networks but have not yet been applied to learning time-evolving data. Our
goal here is to introduce the notion of simplicial convolution and the ideas of Hodge-Laplacians to
time-aware learning.

In particular, to capture time-conditioned higher-order interactions on G and to describe diffusion
of information over simplices along the temporal dimension, we build a supra-Hodge convolution
operation, based on the multiplex network representation learning. (In the following for simplicity,
notation without sub/superscript k stands for node-level quantities and in our experiments we
always consider k ∈ Z+). First, given the historical spatio-temporal network series Gt−ω+1:t =
{Gt−ω+1,Gt−ω+2, . . . ,Gt}, we consider a directed connected node-aligned multiplex network, which
is made up of ω layers with N nodes on each layer. That is, the adjacency matrix Aα = {aαuv}N×N
(where α ∈ {t− ω + 1, . . . , t}) defines the intra-connection between nodes u and v in layer α and a
distance matrix Dαβ = {dαβuu}N×N quantifies the transition probability of moving from node u of
layer α to node u of layer β. (Here β > α, since we consider information diffusion procedures only
along the temporal dimension). Next, based on the discrete Hodge theory, we propose a new Hodge
k-Laplacian for multiplex graphs, called the supra-Hodge k-Laplacian LSup

k ∈ Rϕkω×ϕkω

LSup
k =


(L11

k )r D12
k+1 ··· D1ω

k+1

0 (L22
k )r ··· D2ω

k+1

...
...

. . .
...

0 0 ··· (Lωω
k )r

, (2)

where Lαα
k is the Hodge k-Laplacian in layer α, Dk+1 is the diagonal matrix of degrees of each

k-simplex, i.e., Dk+1 = max (diag(|Bk+1|1, I)) and Bk+1 is the k-simplex-to-(k + 1)-simplex
incidence matrix, and the r-th power of Lαα

k represents r-step random walk on the Hodge k-Laplacian
of layer α which will allow every k-simplex to accumulate information from its neighbors. Hence,
when k = 1, we can infer the spatial dependencies between each pair of edges and capture meaningful
edge information in both spatial and temporal dimensions – through the lens of the supra-Hodge
1-Laplacian. For instance, in molecule networks, each node represents an atom and each edge is
a bond connecting two atoms; the bond (i.e., edge) features include bond type, ring status, and
molecular charge which are closely related to atom (i.e., node) features (such as atomic total and
partial charges).

Since the goal of the forecasting task is to predict node (i.e., 0-simplex) attribute(s) in the next few
time steps, we propose a novel diffusion supra-Hodge convolution on the sliding window Gt−ω+1:t.
We then update nodes’ representations by transforming the multiplex k-simplex embedding to nodes
via incidence matrices

H
(ℓ+1)
t,k,SH = σ(LSup

k H
(ℓ)
t,k,SHΘ

(ℓ)
k,SH), (3)

H
(ℓ+1)
t,SH = (B⊤

1 · · ·B⊤
k )H

(ℓ+1)
t,k,SH, (4)

where (i) in Equation 3: Θ
(ℓ)
k,SH ∈ Rd

SH
k;ℓ×d

SH
k;ℓ+1 is a learnable filter matrix for layer ℓ (here

dSH
k;ℓ and dSH

k;ℓ+1 are the intermediate and output dimensions to the ℓ-th layer), H
(ℓ)
t,k,SH and

H
(ℓ+1)
t,k,SH are the input and output activations for layer ℓ (where H

(0)
t,k,SH = X̄k;t−ω+1:t ∈

Rϕkω×din
k and the historical k-simplex features of the spatio-temporal networks Xk;t−ω+1:t =

{Xk;t−ω+1,Xk;t−ω+2, . . . ,Xk;t} ∈ Rϕk×ω×din
k is reshaped as a matrix X̄k;t−ω+1:t with shape

ϕkω × din
k ) and (ii) in Equation 4: we transform the k-simplex embedding H

(ℓ+1)
t,k,SH to node embed-

ding H
(ℓ+1)
t,SH ∈ RN×dSH

k;ℓ+1 through incidence matrices.

4.3 ZFC convolution: a bridge between spatial and time dimensions

Armed with the representation learning of graph (sub)structures at each timestamp, we now discuss the
ZFC convolution which allows us to preserve and propagate both spatial and time-aware topological
information simultaneously. The intuition behind ZFC convolution is that it learns a strong connec-
tion between two dimensions via two 1D convolution layers, i.e., time-wise and node-wise. ZFC
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convolution consists of three key components: (i) a linear embedding on M-ZFCs, which can learn
the importance of time-aware topological features for each node to form a time-dimension-specific
node embedding; (ii) a time-wise 1D convolution layer, where it gathers time-aware topological
features from the entire space into a compact set; (iii) a node-wise 1D convolution layer, which can
capture relations between different nodes. The resulted ZFC convolution operation over a M-ZFCsω

is defined as

Ht,M-ZFC = Fθ(Fψ(ΘM-ZFCM-ZFCsω)⊤)⊤, (5)

where ω is the size of the window for sequence learning, M-ZFCsω denotes the M-ZFCs feature
extracted from the time window with size ω, ΘM-ZFC ∈ RN×dq is a weight matrix to be learned, Fθ

and Fψ are 1D convolutional layers, and Ht,M-ZFC ∈ RN×dM-ZFC
out is the dM-ZFC

out -dimensional output.
We then combine the embeddings from graph convolution, M-ZFCs convolution, and supra-Hodge
convolution to get the final embedding H

(ℓ+1)
t,out

H
(ℓ+1)
t,out = [H

(ℓ+1)
t,GC ,Ht,M-ZFCs,H

(ℓ+1)
t,SH ], (6)

where [·, ·, ·] denotes the concatenation of the outputs from three convolution operations, and
H

(ℓ+1)
t,out ∈ RN×dout (where dout = dGC

ℓ+1 + dZFC
out + dSH

ℓ+1).

4.4 Gate Recurrent Unit with ZFC-SHCN

To describe the complex spatio-temporal dependencies among time series and assess a hidden state
of nodes at a future timestamp, we feed the final embedding H

(ℓ+1)
t,out into Gated Recurrent Units

(GRUs). Formally, we set the forward propagation equations of the GRUs as

ℜt = η
(
Wℜ

[
Ψt−1,H

(ℓ+1)
t,out

]
+ bℜ

)
, ℑt = η

(
Wℑ

[
Ψt−1,H

(ℓ+1)
t,out

]
+ bℑ

)
,

Ψt = tanh
(
WΨ

[
ℑt ⊙Ψt−1, H

(ℓ+1)
t,out

]
+ bΨ

)
, Ψ̃t = ℜi ⊙Ψt−1 + (1−ℜt)⊙Ψt,

where η(·) is an activation function (e.g., ReLU, LeakyReLU), ⊙ is the elementwise product, ℜt

is the update gate and ℑi is the reset gate. Here bℜ, bℑ, bΨ, Wℜ, Wℑ, and WΨ are learnable
parameters, while

[
Ψt−1,H

(ℓ+1)
t,out

]
and Ψt are the input and output of GRU model, respectively. We

then obtain Ψ̃t which contains both the spatio-temporal and time-aware information.

5 Experiments

5.1 Datasets

We validate our ZFC-SHCN model on six diverse data types: (i) COVID-19 datasets [51]: CA, PA,
and TX represent the number of COVID-19 hospitalizations in California (CA), Pennsylvania (PA),
and Texas (TX) respectively; (ii) traffic datasets [16]: PeMSD4 and PeMSD8 are two real-time
traffic datasets from California; (iii) synthetic multivariate time-series (MTS) datasets based on
vector autoregression (VAR) [29, 45] (where the VAR model is a generalization of the univariate
AR process with more than one time-evolving component); (iv) daily surface air temperature in
CA, PA, and TX over 02/01/2020–12/31/2020; (v) Bytom token prices of Ethereum blockchain over
07/27/2017–05/07/2018 [41, 53]; and (vi) wind speed data of 57 stations on the East Coast. The
results on (i)–(iii) are presented in the main body, and the analysis of (iv) and (v) is in Appendix ??
and ??. The detailed description of each dataset is in Appendix ??. We also report results on the
wind speed dataset in Appendix ??.

5.2 Baselines

We compare our proposed ZFC-SHCN with 14 types of state-of-the-art baselines (SOAs), including
FC-LSTM [54], SFM [60], N-BEATS [46], DCRNN [42], LSTNet [38], STGCN [59], TCN [4],
DeepState [48], GraphWaveNet [57], DeepGLO [52], LRGCN [39] AGCRN [3], StemGNN [10],
and Z-GCNETs [20].
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5.3 Experimental settings

We implement ZFC-SHCN within a Pytorch framework on NVIDIA GeForce RTX 3090 GPU. We
optimize all the models using an Adam optimizer for a maximum of 200 epochs. The learning
rate is searched in {0.001, 0.003, 0.005, 0.01, 0.05} and the embedding dimension is searched in
{1, 2, 3, 5, 10}. Our ZFC-SHCN is trained with batch sizes of 64 and 8 on PeMSD4 and PeMSD8,
respectively. On both COVID-19 and surface air temperature datasets (i.e., CA, PA, and TX), we
set the batch size to be 8. We train two 1D convolutional layers for ZFC representation learning
with the same hidden layer dimension nhid where nhid ∈ {8, 16, 32, 64, 128}. For PeMSD4 and
PeMSD8, we consider the window size ω = 12 and the horizon h = 3; for both COVID-19 and
surface air temperature datasets, we consider a window size ω = 5 and horizon h = 15; for two
simulated VAR datasets VART1

and VART2
, we set the window size as ω = 10 and horizon as h = 5,

and set the batch size as 8; for Bytom, we consider the window size ω = 7 and horizon h = 7, and
set the batch size as 8; for the wind speed dataset, we consider the window size ω = 12 and horizon
h = 12, and set the batch size as 8. All models are evaluated in terms of Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The best results
are shown in bold font and the results shown with dotted underlines are the second-best results.
We also perform a one-sided two-sample t-test between the best result and the best performance
achieved by the runner-up, where *, **, *** denote p-value < 0.1, 0.05, 0.01 (i.e., denote significant,
statistically significant, and highly statistically significant results, respectively. Code is available
at https://github.com/zfcshcn/ZFC-SHCN.git.

5.4 Experimental results

Real datasets The experimental results on PeMSD4 and PeMSD8 traffic data are reported in
Table 2. As Table 2 shows, ZFC-SHCN achieves the best MAE, RMSE, and MAPE compared
with SOAs on both PeMSD4 and PeMSD8. Compared to the RNN-based methods such as FC-
LSTM, SFM, N-BEATS, LSTNet, and TCN, ZFC-SHCN achieves relative gains in RMSE over the
runner-ups, ranging from 17.68% to 65.41% for both PeMSD4 and PeMSD8. In turn, DCRNN,
STGCN, GraphWaveNet, AGCRN, and StemGNN only focus on learning node-level representa-
tions. Compared to them, ZFC-SHCN captures interactions and encodes higher-order structure
correlations beyond pairwise relations among nodes and yields a relative gain from 2.06% to 5.63%
in RMSE on the traffic datasets. In addition, we compare ZFC-SHCN with the method based on
the zigzag persistence image, i.e., Z-GCNETs, and find that ZFC-SHCN outperforms Z-GCNETs
by 1.75% on PeMSD4 and 5.36% on PeMSD8 in terms of RMSE. Table 3 presents COVID-19
hospitalization prediction results (RMSE) in CA, PA, and TX, and we observe the following findings.

Table 1: Forecasting performance (RMSE) of
ZFC-SHCN and top three baselines on
synthetic time series following vector

autoregressions (VAR).

Model VART1 VART2

AGCRN [3] 0.50±0.03 0.44±0.02
StemGNN [10] 0.51±0.02 . . . . . . . . . . . .0.42±0.02
Z-GCNETs [20] . . . . . . . . . . . .0.49±0.02 0.44±0.01

ZFC-SHCN (ours) ∗∗∗0.45±0.01 ∗∗∗0.38±0.01

First, our proposed ZFC-SHCN achieves state-of-
the-art performance on all three datasets. For in-
stance, ZFC-SHCN yields 3.61%, 1.47%, 65.55% rel-
ative gains in RMSE over the runner-ups (including
both GCN-based and zigzag persistence image-based
methods) on three biosurveillance datasets. These
results indicate that the ZFC mechanism and higher-
order representation learning module play significant
roles in capturing both topological information and
higher-order structures. Second, as shown in Fig-
ure ?? in Appendix ??, we find that, compared to the runner-up (i.e., Z-GCNETs), the predicted value
of COVID-19 hospitalizations is more consistent with the ground-truth. Finally, Tables ?? and ?? in
Appendix ?? present the overall prediction performances of ZFC-SHCN and representative baselines
on surface air temperature and Ethereum blockchain datasets. We find that our proposed ZFC-SHCN
consistently outperforms all baselines with either a significant or (highly) statistically significant
margin across all data, except surface air temperature in TX, where ZFC-SHCN still yields the best
performance across all models.

Synthetic datasets The evaluation results on two VAR datasets are summarized in Table 1. Compared
to the three strongest baselines (i.e., AGCRN, StemGNN, and Z-GCNETs), we observe that our pro-
posed ZFC-SHCN consistently yields the best performance for all synthetic datasets. More precisely,
ZFC-SHCN outperforms the runner-ups from 8.89% to 10.52% for VART1 and VART2 . Furthermore,
to assess the time-wise and high network interactions, we use the global clustering coefficient (GCC)
and Euler-Poincaré characteristic (EPC) as measures of higher order substructures [5]. We find that
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Table 2: Performance comparison of all methods on PEMSD4 and PEMSD8 traffic data.

Model PeMSD4 PeMSD8

MAE RMSE MAPE (%) MAE RMSE MAPE (%)

FC-LSTM [54] 27.14 41.59 18.20 22.20 34.06 14.20
SFM [60] 24.36 37.10 17.20 16.01 27.41 10.40
N-BEATS [46] 25.56 39.90 17.18 19.48 28.32 13.50
DCRNN [42] 24.70 38.12 17.12 17.86 27.83 11.45
LSTNet [38] 24.04 37.38 17.01 20.26 31.96 11.30
STGCN [59] 22.70 35.50 14.59 18.02 27.83 11.40
TCN [4] 26.31 36.11 15.62 15.93 25.69 16.50
DeepState [48] 26.50 33.00 15.40 19.34 27.18 16.00
GraphWaveNet [57] 26.85 39.70 17.29 19.13 28.16 12.68
DeepGLO [52] 25.45 35.90 12.20 15.12 25.22 13.20
AGCRN [3] . . . . . . .17.78 29.17 . . . . . .11.79 14.59 23.06 9.29
StemGNN [10] 20.20 31.83 12.00 15.83 24.93 . . . . .9.26
Z-GCNETs [20] 18.05 . . . . . . .29.08 . . . . . .11.79 . . . . . . .14.52 . . . . . . .23.00 9.28

ZFC-SHCN (ours) ∗∗∗17.58 ∗∗∗28.58 ∗∗∗11.68 ∗∗∗13.86 ∗∗∗21.83 ∗∗∗8.92

Table 3: Performance on COVID-19 hospitalizations in CA, PA, and TX.
Model CA PA TX

MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)

FC-LSTM [54] 167.86±3.25 502.29±4.16 90.71±7.17 47.60±2.36 108.74±2.28 69.37±2.38 20.75±0.50 71.66±2.15 89.16±8.96
SFM [60] 103.98±1.46 475.66±3.23 66.91±5.70 45.91±2.42 106.12±1.87 70.15±5.60 17.49±0.58 70.18±1.91 85.85±8.25
N-BEATS [46] 105.99±1.51 476.10±2.89 67.55±5.16 46.91±2.82 105.86±1.95 15.82±4.39 21.25±0.56 69.26±1.61 85.11±8.77
DCRNN [42] 107.20±1.00 492.10±2.96 69.83±5.57 47.49±2.13 107.21±1.63 67.15±3.94 17.15±0.55 70.47±2.28 88.95±8.01
LSTNet [38] 105.63±1.82 480.61±3.91 67.72±2.17 46.01±2.70 105.67±1.76 72.33±4.21 13.06±0.53 72.93±2.20 84.23±9.01
STGCN [59] 102.88±1.11 470.52±3.06 69.73±5.69 52.69±2.40 106.78±1.87 69.36±4.59 12.69±0.49 63.26±2.25 60.47±8.37
TCN [4] 110.82±1.35 492.82±3.54 70.00±6.92 49.80±2.36 105.07±1.90 69.86±4.91 13.70±0.40 67.08±1.89 65.23±8.61
DeepState [48] 100.57±1.58 469.15±3.71 68.24±5.79 48.46±2.70 107.61±2.31 67.69±4.21 13.24±0.46 59.47±1.93 62.38±8.60
GraphWaveNet [57] 89.64±1.80 394.83±3.35 67.61±5.36 48.08±2.18 109.41±1.91 69.39±4.27 12.66±0.56 58.98±1.22 60.33±8.87
DeepGLO [52] 95.58±1.94 455.80±3.18 67.35±5.99 47.66±2.57 103.74±2.07 68.71±4.09 12.02±0.60 53.09±1.97 62.88±8.83
AGCRN [3] 87.24±1.77 448.27±2.78 66.30±5.17 44.69±2.49 103.79±3.08 63.45±4.00 10.93±0.49 52.96±3.92 59.92±8.99
StemGNN [10] 82.36±2.23 377.25±3.91 67.90±5.94 . . . . . . . . . . . . .42.98±2.80 . . . . . . . . . . . . . . .103.15±1.87 . . . . . . . . . . . . .63.47±4.11 9.57±0.80 51.00±2.60 59.60±8.81
Z-GCNETs [20] . . . . . . . . . . . . . .81.22±2.15 . . . . . . . . . . . . . . .356.35±3.20 . . . . . . . . . . . . .62.81±5.75 43.52±2.20 106.22±1.27 65.89±4.66 . . . . . . . . . . . .9.37±0.50 . . . . . . . . . . . . .46.04±1.78 . . . . . . . . . . . . .59.21±8.73

ZFC-SHCN (ours) 79.33±1.70 ∗∗343.92±3.66 61.25±5.80 42.74±2.24 101.65±1.53 61.90±4.07 ∗∗9.20±0.39 ∗∗∗27.81±1.72 55.34±8.60

for GCC for VART1
and VART2

are 4.96 and 5.87, respectively; while the average EPC for VART1

and VART2
are 7.47 and 6.91, respectively. Interestingly (although it could be expected), higher GCC

and lower EPC tend to be associated with higher relative gains delivered by ZFC-SHCN. Finally, in
Appendix ??, we present the sensitivity analysis for ZFC as a function of the covariance matrix in
VAR models.

5.5 Ablation studies

To evaluate the performance of different components in our ZFC-SHCN model, we per-
form an expansive ablation study. The ablation study is conducted with three se-
tups: (i) ZFC-SHCN without graph convolution in spatial dimension (W/o Graph convo-
lution in spatial dimension), (ii) ZFC-SHCN without ZFC convolution (W/o ZFC convolu-
tion), and (iii) ZFC-SHCN without supra-Hodge convolution (W/o Supra-Hodge convolution).

Table 4: Ablation study on PeMSD4
and COVID-19 hospitalizations in TX.

Architecture RMSE

PeMSD4

ZFC-SHCN ∗∗∗28.58±0.15
W/o Graph convolution in spatial dimension 28.82±0.28
W/o ZFC convolution . . . . . . . . . . . . . .28.66±0.20
W/o Supra-Hodge convolution 28.69±0.19

TX-COVID-19

ZFC-SHCN ∗∗27.81±1.72
W/o Graph convolution in spatial dimension . . . . . . . . . . . . . .29.17±1.73
W/o ZFC convolution 29.75±1.96
W/o Supra-Hodge convolution 30.11±1.77

The experimental results are shown in
Table 4 and prove the validity of each
component. As Table 4 indicates, com-
pared to ZFC-SHCN w/o ZFC convolu-
tion, the zigzag homological feature is vital
for capturing the topological structure of
spatio-temporal graph and our proposed
graph convolution operation on ZFC signif-
icantly improves forecasting performance.
By comparing to ZFC-SHCN w/o supra-
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Hodge convolution, we illustrate the significance of higher-order structure representation learning for
guiding the model to how to capture information on higher-order interactions. Also, ZFC-SHCN w/o
graph convolution in spatial dimension demonstrates that the learned graph obtained from trainable
weights can learn hidden information and enhance (multivariate) time-series representation learning.

5.6 Computational complexity

For higher-order simplices, the incidence matrices B1 and B2 can be calculated efficiently with
complexity O(N +M) and O(M + Q) respectively, where N is the number of 0-simplices (i.e.,
nodes), M is the number of 1-simplices (i.e., edges), and Q is the number of 2-simplices (i.e., filled
triangles). The computational complexity of ZFC is O(Υδ) [2, 22], where Υ represents the number
of points in time interval and δ ∈ [2, 2.373). The computational complexity of the overall approach
is O(N2 +Υδ + ΞkωFkdout + Ξkω

2dout/2 + dout
∑t−1
ℓ=t−w Ξ

(ℓ)
k+1 +WGRU ), including (i) graph

convolution in spatial dimension: O(N2), (ii) zigzag filtration curve: O(Υδ), (iii) supra-Hodge
convolution in temporal dimension: O(ΞkωFkdout + Ξkω

2dout/2 + dout
∑t−1
ℓ=t−w Ξ

(ℓ)
k+1) (where

Fk is the number of k-simplex attribute features, ω is the sliding window size, dout is the output
dimension of the supra-Hodge convolution layer, and Ξ

(ℓ)
k+1 is the number of (k+1)-simplex Ξk+1 at

the ℓ-th layer), and (iv) GRU: O(WGRU ). We also compare our ZFC-SHCN with the most recent
approach based on multipersistence-GNN [19] (i.e., TAMP-S2GCNets). We find that ZFC-SHCN
yields either on-par or more competitive performance than TAMP-S2GCNets, while our proposed
ZFC-SHCN significantly improves the computational efficiency (see Appendix ?? for more details).
More details about running time comparison can be found in Appendix ??.

6 Conclusion

We have proposed a novel framework for time-aware deep learning of time-evolving objects which
takes advantages of both the higher-order interactions among the data substructures, described as
simplices, and the most intrinsic time-conditioned topological information exhibited by the object,
characterized via zigzag persistent homology. By leveraging the power of simplicial convolution
operation and zigzag persistence for time-indexed data, ZFC-SHCN has been shown to demonstrate
capabilities to yield the most competitive forecasting performance, while requiring fewer computa-
tional resources than its closest competitors. Still, computational complexity and limited theoretical
results on statistical inference for zigzag persistence remain one of the major existing limitations of
ZFC and, more generally, all topological methods for time dependent processes. In the future, we
plan to investigate these theoretical and methodological challenges and will extend the ZFC-SHCN
idea to anomaly detection in streaming time-dependent processes.
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