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Abstract

Human-AI shared control allows human to interact and collaborate with au-
tonomous agents to accomplish control tasks in complex environments. Previ-
ous Reinforcement Learning (RL) methods attempted goal-conditioned designs
to achieve human-controllable policies at the cost of redesigning the reward func-
tion and training paradigm. Inspired by the neuroscience approach to investigate
the motor cortex in primates, we develop a simple yet effective frequency-based
approach called Policy Dissection to align the intermediate representation of the
learned neural controller with the kinematic attributes of the agent behavior. With-
out modifying the neural controller or retraining the model, the proposed approach
can convert a given RL-trained policy into a human-controllable policy. We eval-
uate the proposed approach on many RL tasks such as autonomous driving and
locomotion. The experiments show that human-AI shared control system achieved
by Policy Dissection in driving task can substantially improve the performance
and safety in unseen traffic scenes. With human in the inference loop, the loco-
motion robots also exhibit versatile controllable motion skills even though they
are only trained to move forward. Our results suggest the promising direction
of implementing human-AI shared autonomy through interpreting the learned
representation of the autonomous agents. Code and demo videos are available at
https://metadriverse.github.io/policydissect.

1 Introduction

In recent years, autonomous agents trained from deep Reinforcement Learning (RL) have achieved
huge success in a range of applications from robot control [68, 56, 37, 41, 72], autonomous driving [25,
7, 29], to the power system in smart building [44]. Despite the capability of discovering feasible
policy under unknown system dynamics in a model-free setting [66], the learning-based agents lack
sufficient generalizability [14] in unseen environments, which hinders their real-world deployments.
Furthermore, it remains difficult to understand the internal mechanism and the decision-making of the
neural network [30, 78], especially when abnormal behaviors happen [10, 77, 49]. Thus the absence
of generalizability, transparency and controllability limits the application of the end-to-end neural
controllers in safety-critical systems.

One potential direction to make the neural controller safer and more trustworthy is incorporating
human into the inference loop, which we refer to as human-AI shared control. With human involve-
ment, the shared autonomy systems can achieve substantial improvement over the performance and
safety [54, 15, 55], even on new tasks and unseen environments. Human-AI shared control has
been implemented in various forms, such as enforcing intervention [28, 51] or providing high-level
commands [15] to the AI models. Previous works mainly explore goal-conditioned reinforcement
learning (GCRL) as a form of human-AI shared control, where a high-level goal is fed as an input
to the policy during training [60, 2, 15, 25, 57]. Thus the behavior of the learned agent can be
controlled by varying the input goal [47, 38, 79, 37]. However, training goal-conditioned policy
requires additional modifications to the observation design, the reward function and the training
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Figure 1: Examples of human-AI shared control enabled by Policy Dissection. Each autonomous
agent is trained to solve its primal task without changing the environment like the reward function
and observation. After training, the stimulation-evoked map is then generated by Policy Dissection
as the interface for human to steer the agent. In various environments, behaviors such as jumping,
spinning, redirection, backflipping can be triggered by human subject. These examples demonstrate
that Policy Dissection is a general method for making a pretrained neural policy controllable.

process. In the case of bipedal robot for example, it is difficult to design reward functions for each
behavior like crouching, backflipping, forward jumping. Also, initial state distribution and goal
selection criteria should be meticulously designed for a successful GCRL training [50, 57]. On the
other hand, the human control only happens at the goal level, still lacking in the interpretability of
low-level neural policy.

In this work, we develop a minimalist approach called Policy Dissection, to enable human-AI shared
control on autonomous agents trained on a wide range of tasks. Policy Dissection does not impose
assumptions on the agent’s training scheme like specially-designed reward function, and it requires
neither retraining the controller’s network nor modifying the environment. Policy Dissection achieves
human-AI shared control by firstly dissecting the internal representations of the learned policy and
aligning them with specific kinematic attributes, and then modulating the activation of the internal
representations to elicit the desired motor skills.

Policy Dissection is inspired by the neuroscience studies on motor cortex of primates, where exerting
electrical stimulation on different areas of motor cortex can elicit meaningful body movements [21].
Thus, a stimulation-evoked map can be built to reveal the relationship between the evoked body
movements and the motor neurons located in different areas of motor cortex [21, 20, 34]. In order to
replicate such a stimulation-evoked map inside a controller powered by artificial neural network, the
proposed Policy Dissection conducts a frequency analysis and matching strategy for associating the
kinematic attribute and the unit activation. The procedure of building a stimulation-evoked map by
Policy Dissection is illustrated in Fig. 2. Concretely, we first roll out the given well-trained policy
for many episodes and collect a set of time series of the activities of all units, and the variation
in kinematics and dynamics. Afterwards, for each kinematic attribute we identify one unit whose
activity align best with the variation of this kinematic attribute following the principle that there is
the lowest frequency discrepancy between both the time series. After finishing the alignment for
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Figure 2: Overview of Policy Dissection. Taking the Ant robot as an example, our method first
identifies the connection between motor primitives and kinematic attributes (painted in the same
colors). After that, human can activate units to evoke desired behaviors by stimulating one or more
motor primitives. For example, stimulating motor primitive related to yaw rate makes the Ant
spin, while activating motor primitive related to velocities in different axes brings moving-up or
deceleration.

all kinematic attributes, the identified units are then called motor primitives1whose activation can
change corresponding kinematic attributes. Since a behavior can be described by the change of one
or more kinematic attributes, the stimulation-evoked map can be built for recording the relationship
of motor-primitives’ activation and evoked behaviors. For example, the moving up behavior of
the Gym-Ant shown in Fig. 2 can be described by turning upward (increasing yaw) and increasing
upward speed (vy), and thus we can activate corresponding two motor primitives to elicit the desired
movement. In conclusion, Policy Dissection constructs an interpretable control interface on top of
the trained agent for human to interact with and evoke certain behaviors of the agent, thus achieving
human-AI shared control.

We evaluate the proposed method on several RL agents ranging from locomotion robots to autonomous
driving agents in simulation environments. Experimental results suggest that meaningful motor
primitives emerge in the internal representation. As shown in Fig. 1, novel behaviors can be
deliberately evoked by activating units related to certain kinematic attributes, even though they are
not the necessary behaviors to solve the primal task. In the quantitative evaluation, we use the human-
AI shared control system enabled by Policy Dissection to improve the generalization in test-time
unseen environment and achieve zero-shot task transfer. In an autonomous driving task, we first train
baseline agents under mild traffic conditions and evaluate the driving policy on new test environments
containing unseen near-accidental scenes. Different from the poor performance of the baseline agent
in these new environments, the human-AI shared control system achieves superior performance and
safety guarantee, with 95% success rate and almost zero cost. In the quadrupedal locomotion task, a
robot with only proprioceptive state input can avoid obstacles with shared control, even though its
primal task is moving forward. These results show that the proposed Policy Dissection not only helps
understand the learned representations of the neural controller, but also brings the intriguing potential
application of human-AI shared control.

2 Related Work

Human-AI Shared Control. Existing methods of human-AI shared control can be roughly divided
into two categories. The first category is to have human in the training loop and then the well-
trained policy can be executed without human in test time [80]. By incorporating human into the
training, previous works successfully improve the performance on visual control tasks such as Atari
game [1, 58, 70]. Robotic control tasks also benefit from human feedback [28, 43, 64, 51, 71]. The
other category is to have human in both training and test time to accurately accomplish human-
assistive tasks. A series of works study this problem based on the Atari Game [54, 59, 8, 31]. In
addition, the human-AI shared control system is built on autonomous vehicle [19], robotic arms [27]
and in multi-agent setting [31]. The reported results on various tasks indicate the effectiveness and
efficiency of training and coordination with human-assistive AI. Unlike prior works, our method

1Motor primitive is used by researchers in biological motor control to indicate “building blocks of movement
generation” [52, 32]
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Figure 3: We first roll out the trained policy and record the neural activities and track kinematic
attributes, like yaw and velocity. After frequency matching, kinematic attributes are associated with
certain units, which are further called motor primitives. The curves of kinematic attributes and the
aligned motor primitive are painted in the same colors. For clarity, we only show the result of one
recorded episode and a proportion of units, and the curves of units are sorted by their amplitude.

allows human to collaborate with AI in test-time, while eschewing the need for any training-time
human involvement. In experiments, shared control systems are implemented on several robotic
control tasks to show the effectiveness of our method.

Neural Network Interpretability. There is a growing interest in the AI community to understand
what is learned inside the neural network. Previous interpretability methods mostly focus on explain-
ing the networks trained for visual tasks [81, 62, 11, 82, 40]. Various empirical studies have found
that meaningful and interpretable structures emerge in the internal representation when trained for
the primal tasks. For example, object detectors emerge in scene classifier [6], and disentangled layout
and attribute controllers emerge from image generation model [74]. Varying the disentangled hidden
features of the deep generative model can edit the content of the generated images. [5, 63, 73]. On the
other hand, visuomotor control tasks can also acquire visual understanding to explain the behavior
chosen by agent with visual input through saliency map [65, 3, 53, 12, 26, 22].

Neuroscience Inspired Control. The complex behaviors shown by recent autonomous agents prompt
researchers to develop new analysis methods. As a source of inspiration, neuroscience provides
useful tools [48, 34], and effective procedures [24, 18, 46] for understanding animal brains which are
also like black-box systems. Recent works try to develop neural network-based policies from the
perspective of neuroscience [17, 4, 76, 13]. In a closely related work on understanding learned agent,
Merel et al. [46] use RSA [35] with CKA [33] similarity index to reveal that behaviors spanning
multiple timescales are encoded in distinct neural layers. Apart from providing the neuroscientific
tools, many concepts from neuroscience, such as motor primitive also inspire researchers to design
generalizable controllers [69, 67, 45].

3 Policy Dissection Method

Policy Dissection aims at deriving a human-controllable policy from a well-trained RL agent. It
has two unique features to enable human-AI shared control: First, it operates on a well-trained RL
agent without re-training or modifying the original reward/environment and the policy architecture.
We only need to roll out the agent for several episodes and log its neural activity and the change of
kinematic attributes. Based on the collected data, kinematic attributes are aligned with certain units
which are further termed as motor primitives. Thus our method is non-intrusive to the primal task
and trained model, and applicable to a wide range of environments. Second, activating certain motor
primitives can elicit generalizable motor skills that even the agent is not trained to perform. As shown
in Fig. 1, the bipedal Cassie robot can be steered to tip toe, crouch and back flip even if it is only
trained to move forward in the primal task. In the following subsections, we will introduce the four
essential steps of the Policy Dissection method in detail.
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3.1 Monitoring Neural Activity and Kinematics

Since multi-layer perceptron (MLP) is the most common network architecture used in many RL
tasks, we assume the neural controller is an MLP with Z units, which has L hidden layers and all
layers have the same number of I hidden units2. We denote a neuron by l, i as zl,i ∈ Z , where
l = 1, ..., L is the index of layer and i = 1, ..., I is the neuron index in each layer, and its output at
time step t is zl,it . Let J be the total number of kinematic attributes. The agent’s kinematic attributes
are represented by S = {sj}, j = 1, ..., J , and the measurement of each kinematic attribute sj at
time step t is sjt . We define the motor primitive as the unit mj ∈ Z that can steer the agent and cause
a change of the corresponding kinematic attribute. We assume that each kinematic attribute sj has a
corresponding motor primitive mj to drive the attribute to a desired state, and thus there are also J
motor primitives, denoted by M = {mj}, j = 1, ..., J . Our goal is to discover the motor primitive
mj by associating the units with certain kinematic attribute sj .

As shown in Fig. 3, we take the Ant robot as an example. Policy Dissection starts by rolling out the
pretrained agent for several episodes and tracking the activation of all units as well as the kinematics,
such as yaw rate and velocity. We record the I · L time series {zl,i = [zl,i1 , zl,i2 , ...]}I·L measuring
the neural activities and J time series of kinematic attributes {sj = [sj1, s

j
2, ...]}J for further analysis.

3.2 Associating Units with Kinematic Attributes

Observing the neural activity and kinematic measurement recorded in Fig. 3, we can find that
several repeated kinematic patterns appear in different frequencies when executing the policy, which
is reminiscent of animal behavioral research [21, 20, 34]. It suggests that the motor skills has its
predominant frequency component [46], controlling fast kinematics and slow kinematics. Since neural
activation signals also encode distinct frequency information as shown in Fig. 3, this resemblance
inspires us to make the following hypothesize:

For one kinematic attribute, the unit with minimal frequency discrepancy is the motor primitive.

To this end, we process time series of neural activity and kinematic attributes in frequency domain,
where the difference of predominant frequency between two signals can be clearly revealed and the
phase discrepancy of two time series are eliminated. As a consequence, this allows us to analyze the
recorded data and associate kinematic attributes with units whose activity best matches the variation
of target kinematic attributes. Concretely, all time series {x} including the neural activities {zl,i} and
change of kinematic attributes {sj} are transformed into the frequency domain through Discrete-time
Short-time Fourier transform (STFT):

STFT(d, ω|x) ≡
∞∑

t=−∞
xtW(t− d)e−jωt. (1)

STFT splits the time series x = [x1, x2, ...] into a sequence of temporal window and d ∈ [1,+∞]
denotes the time step of the center of the temporal window. STFT then conducts Fourier transform in
each temporal window. ω ∈ [0,+∞] denotes the frequency. To reduce spectral leakage and reserve
the frequency information as much as possible, the window function W(t) used in Policy Dissection
is blackman window. Moreover, the window length is 64 with hop length 16. We apply STFT instead
of naive Fourier transform since it can retain temporal information by breaking the time series into
several overlapping chunks of frames. This feature is important since in the following frequency
matching we focus on the similarity of resulting spectrograms as well as the temporal correlation of
two signals. We use the spectrogram to characterize a measurement:

SG(d, ω|x) ≡ |STFT(d, ω|x)|2. (2)

After obtaining the spectrograms for all kinematic attributes and neural activities, frequency discrep-
ancy can be computed for each neuron-kinematics pair (zl,i, sj):

Dis(zl,i, sj) =
∑
d

∑
ω

∥SG(d, ω|zl,i)− SG(d, ω|sj)∥2. (3)

2To keep the notation concise, we assume all hidden layers of MLP have the same number of units I . MLPs
with a varying number of hidden units per layer still come to the same conclusion.
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For each kinematic attribute, frequency matching is applied to select the unit with minimal average
discrepancy across N collected episodes as the motor primitive responsible for triggering the change
of desired kinematic attributes:

mj = argmin
zl,i

1

N

∑
N

Dis(zl,i, sj), (4)

3.3 Building Stimulation-evoked Map

A behavior bk can be described by changing a subset of kinematic attributes Sk ⊆ S, which can be
achieved by activating a set of corresponding motor primitives Mk ⊆ M. Therefore, these movement
generation building blocks, motor primitives, are associated with certain behaviors, inducing the
stimulation-evoked map {(Mk, bk)}, k = 1, ...,K, where K is the number of discovered behaviors.
Taking Cassie’s back-flip shown in Fig. 1 as an example, this behavior can be described by increasing
1. height 2. pitch and 3. knee force. Therefore, we activate three corresponding motor primitives
selected by Eq. 4 with output calculated by Eq. 8 to make the robot back flip. In practice, it is possible
that more motor primitives are required. Again, taking the back-flip as an example, the force for both
knee may be different after activating corresponding units, and thus giving the robot a rolling velocity,
which can be further eliminated by activating roll related motor primitive.

3.4 Steering Agent via Stimulation-evoked Map

Now the last thing for evoking a behavior bk is to determine the output value for motor primitives Sk.
At time step t, activating the motor primitive mj related to kinematic attribute sj stands for applying
its derivative ṡj to the agent. For example, activating the speed related units equals to applying the
derivative of speed, acceleration, to the agent. Therefore, changing the kinematic attribute sj at time
step t0 by activating the motor primitive mj with a unit output vj can be formulated as:

sjt1 = sjt0 +

∫ t1

t0

f(vj)dt, (5)

where T = t1− t0 is the activation period of the motor primitive mj , constant vj is the time-invariant
output of mj and f(v) is a mapping from motor primitive output value vj to ṡj .

For steering the agent, our goal is to understand some properties of f(v), especially the correlation
between f(v) and v, so that we can amplify or reduce the sj by choosing a v or −v. Taking the Ant
robot of Fig. 1 as an example, activating the unit controlling y-axis movement with positive value
can drive the Ant move left, and a negative value makes the Ant move right. We will illustrate the
approach to probe the correlation in the following subsection.

Identifying Correlation Coefficient. We compute the correlation coefficient through spectral phase
discrepancy. we first find the predominant frequency component for each signal:

ω∗ = argmax
ω

∑
d

∥SG(d, ω|mj)− SG(d, ω|sj)∥2. (6)

At each window of STFT, we can compute the phase discrepancy of the transforms of mj and sj at
the predominant frequency ω∗. The average phase discrepancy at all temporal windows is computed
across N collected episodes:

pj =
1

D ·N
∑
d

∑
N

[Φ(STFT(d, ω∗|mj))− Φ(STFT(d, ω∗|sj))], (7)

where D is the number of temporal windows and Φ is the function retrieving the phase. We then
normalize pj to get correlation coefficient ρ between mj and sj as ρj = 1− |2pj |/π. ρj tells us the
most important thing that whether the sj will be amplified or reduced by overwriting the output of
mj with a positive or negative value. After that, vj is finally determined by

vj = cjρj , (8)
where cj is a magnitude coefficient determining the scale of vj and thus ṡj . We usually determine
the cj by observing the performance after trying evoking the desired behavior with different cj , while
it can also be determined by an external PID controller, which takes the error ŝ− sjt between target
state ŝ and current state sjt as input and outputs cj automatically.
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Figure 4: Examples of training and test scenes used in the generalization experiment. In MetaDrive
SafetyEnv, the held-out 20 test scenes are more complex compared to 50 training scenarios. For
quadrupedal robot locomotion task, the robot is trained to traverse open but bumpy terrains and tested
on the terrain full of obstacles where obstacle avoidance ability is needed to reach the destination.
In the Cassie environment, the agent is trained to move forward. However, crouching, jumping and
sidestepping are required to reach the destination in the test environment.

4 Experiments

We first apply Policy Dissection to an autonomous driving task to study the learning dynamics in
Sec. 4.2. We demonstrate that the emergent pivotal motor primitives are highly correlated with the
success of policy learning. With the trained driving policy, we show a novel application of the shared
autonomy in Sec. 4.3: improving test-time generalization, where Human-AI shared control can be an
alternative to overcoming the generalization gap between training and unseen test-time environment.
The experiment demonstrates that our method finds not only the correlation but causality between unit
output and kinematics. In Sec. 4.4, we conduct experiments on quadrupedal robot and demonstrate
that a quadrupedal robot trained to traverse complex terrain with only proprioceptive states can
transfer to accomplish the obstacle avoidance task with a bit human effort, even if it does not have any
information of the surrounding. For qualitatively evaluating our method, we provide a demonstration
in Sec. 4.5, where a bipedal Cassie robot trained for moving forward can solve a challenging parkour
environment with the help of human subject. In Sec. 4.6, we investigate the coarseness of the
goal-conditioned control enabled by Policy Dissection through a command tracking experiment , and
compare it with the state-of-the-art goal-conditioned controller in IsaacGym [42, 57].

4.1 Experimental Setting

The experiments conducted on Cassie and ANYmal in IsaacGym [57], Ant and Walker in Mu-
JoCo [68] and the BipedalWalker [9] follow the general setting. Other experiments conducted on
MetaDrive and Pybullet-A1 environments are introduced as follows:

MetaDrive. We train agents to accomplish autonomous driving task in the safety environment of
MetaDrive [39]. In this task, the goal is to maneuver the target vehicle to its destination with low-level
continuous control actions. An episode terminates only when the vehicle arrives at the destination,
drives out of road, or collides with the sidewalk. The observation of autonomous vehicle consists of
map, navigation, lidar, and state information such as speed, heading and side distance. More training
environment details can be found in appendix.

Pybullet-A1. The legged robots locomotion experiments are conducted on the Pybullet-Unitree-
A1 [16] robot. We follow the same environment setting used by Locotransformer robot [75], including
terrain shape, obstacle distributions, sensors, reward definition, and termination condition. Two agents
are trained. One “insensible” agent with only proprioceptive state is trained to walk on uneven terrain,
while the other agent with Locotransformer is directly trained to avoid obstacles. The shared control
system will be built on the “insensible” agent, where human subjects help the agent sidestep obstacles.

Training Set and Test Set. As shown in Fig. 4, for both autonomous driving and robot locomotion
tasks, we prepare a training set and a held-out test set. For driving task, the test set is used to
benchmark the test-time generalizability of human-AI shared control system and AI-only control
system. We train autonomous driving policies in 50 different environments where the traffic condition
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Figure 5: Learning Dynamics

Method
Human

Involvement
Episodic
Return

Episodic
Cost

Success
Rate

Human 405.57 ± 94.79 357.21 ± 38.3 0.47 ± 0.24 0.95 ± 0.03

SACw/oH - 263.85 ± 34.74 5.75 ± 0.25 0.75 ± 0.12

SACHn
26.52± 1.58 342.0± 6.25 0.42± 0.32 0.9± 0.0

SACH∗
2.85 ± 0.22 353.19 ± 13.62 0.80 ± 0.14 0.95 ± 0.03

PPOw/oH - 234.81 ± 23.45 3.37 ± 2.01 0.75 ± 0.03

PPOHn
30.58± 0.18 352.99± 6.59 0.32± 0.12 0.92± 0.02

PPOH∗
2.55 ± 0.35 359.67 ± 11.20 0.05 ± 0.08 0.95 ± 0.02

Relu-PPOH∗
4.65 ± 0.3 352.98 ± 7.35 0.35 ± 0.1 0.88 ± 0.07

Deep-PPOH∗
4.88 ± 1.17 334.09 ± 2.91 0.48 ± 0.02 0.9 ± 0.02

Table 1: Improvements on the performance and the safety on test
environments with human-AI shared control. H indicates “human”.
Hn and H∗ indicates two takeover methods. Hn requires human
to provide steering and throttle in the whole takeover period, while
H∗ only asks to activate motor primitives at the start of takeover.
We also do ablation study on the activation function and number of
hidden layers of MLP. These results show our method is general
and robust to the policy architecture and RL methods.

is mild (averagely 2 cars per map) and all traffic vehicles and the target vehicle can drive smoothly
towards their destinations. No obstacles are in these environments. In testing time, the trained agents
will be evaluated in the other 20 unseen maps with higher traffic density (averagely 6 cars per map).
Besides, obstacles like traffic cones and breakdown vehicles will scatter randomly on the road. In this
case, the target vehicle needs to be maneuvered delicately.We compare the performance and safety of
the trained policy in two scenarios: runs in the test set solely, and runs with the human-AI shared
control system built from Policy Dissection.

The primal task for the legged robot is to move toward one direction as fast as possible. We design
the test environment to be a forest-like environment where tree obstacles are randomly scattered.
Therefore, though the overall goal is still to move forward, the agent needs extra effort to sidestep
obstacles in the test environment.

Evaluation Metrics. For driving task, we evaluate agents on all the 20 test environments, and report
the ratio of episodes where the agent arrives at the destination as the success rate. Also, Out of Road
rate can be calculated if the termination is caused by driving out of road. For benchmarking the safety
of agents, the collision to vehicles, obstacles, sidewalk and buildings raises a cost +1. In addition,
human attention cost is a huge concern of human-AI shared control system. We quantify this using
human involvement, which is measured by the number of environment steps when the human subject
presses keys for activating units, or controls throttle, brake, and steering wheel. We average the sum
of reward, cost and human involvement on 20 environments as episodic return, episodic cost and
human involvement. The above evaluation process will be repeated 5 times for each agent, and we
report the average value and std for all metrics.

For the locomotion task, we use moving distance to measure the performance besides reward, since it
directly reflects the goal. Moving distance is the displacement of robot on a specific direction, i.e.
x-axis. The evaluation is also repeated for 5 times on the exclusive test environment.

Human Interface. We use keyboard as interface in all human-AI shared control experiments. When
a specific key is pressed for evoking a behavior, related motor primitives will be activated and output
vj . The behavior termination can be triggered by ways: 1. Press another key and change to another
behavior 2. The length of activation period T = t1 − t0 reaches a predefined length. Once a behavior
is terminated, the related motor primitives’ output will not be overwritten. In addition, there is one
key mapping to the default behavior that no motor primitives are activated.

All experiments without human are repeated 5 times with different random seeds. N = 5 episodes
are used for applying Policy Dissection. For experiments involving human subject, we repeat each
experiment with 5 human subjects. For driving task, all human subjects have driving license. Human
subject can pause the experiments if any discomfort happens. No human subjects were harmed in the
experiments. Human subjects have signed the experiment agreement and get compensation.
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4.2 Policy Dissection for Understanding Learning Dynamics

In this section, we verify the correlation between motor primitives and relevant kinematic attributes.
We first train PPO [61] agent on the MetaDrive’s training environments and then conduct Policy
Dissection on the trained policy and find two motor primitives in which Primitive 1 is associated
with Speed and Primitive 2 associated with Side Distance. We then plot the evolution of the
frequency discrepancy between the identified motor primitives and the kinematics alongside with
the macroscopic measure of the learning progress in Fig. 5. Note that the frequency discrepancies
d = [d1, ..., dT ] is normalized to [0, 1] by d̃ = d−min(d)

max(d)−min(d) .

The upper plot in Fig. 5 shows Primitive 1 gradually emerges to control speed, indicated by the
decreasing discrepancy. With strong negative correlation, the success rate rapidly increases when
the discrepancy of speed primitive also rapidly decreases between epoch 20-30. Similarly, in the
lower plot in Fig. 5, the decreasing discrepancy between Primitive 2 and side distance implies that
the internal unit of the agent is gradually specialized to control side distance. There exists a strong
correlation between the discrepancy and the out-of-road rate, which can only be reduced by improving
the ability to keep side distance. We thus conclude that the pivotal primitives emerge during training.

4.3 Human-AI Shared Control for Test-time Generalization

Using the motor primitives identified above, we can determine the activation value of motor primitive
for steering associated kinematics according to Eq. 8. We apply the same process to dissect the
policy trained from SAC [23] with the same network structure and build a stimulation-evoked map for
shared control. We then invite human subject to collaborate with the SAC and PPO agents on the test
environments with different takeover methods. As shown in Tab. 1, the average human involvement,
episodic cost, and success rate in the test environments are reported across policies with or without
human involvement. Human involvement greatly improves performance and safety when deploying
the policy in unseen environments where delicate maneuvers such as side-passing and yielding are
evoked by human, if necessary, to help finish the task.

Different from the original PPO policy which is an MLP with 2 hidden layers, 256 units per layer
and “tanh” activation function, we also repeat the same experiment for Deep-PPO agent which has 6
hidden layers, and Relu-PPO which has “Relu” as activation function. The results reported in 1 show
our method is invariant to the network architectures and RL algorithms.

4.4 Human-AI Shared Control for Task Transfer

Method Reward Moving Distance

Statew/oH 18.23 ± 10.55 6.55 ± 0.04

StateH
∗

413.93 ± 93.33 16.94 ± 3.08

State+Vision 445.47± 190.85 18.64 ± 6.45

Table 2: Test on Obstacle Avoidance Task.

In addition to the improved test-time generalization,
the stimulation-evoked map enables RL agent to ac-
complish new tasks with the help of human. Recent
quadrupedal robots trained by RL exhibit promis-
ing ability to walk on bumpy terrain via end-to-end
control [36]. However, the agent only takes propri-
oceptive states as input without the observation of
surroundings, and thus it can not avoid obstacles on
its own. As shown in Fig. 4, we train the agent only to walk on uneven terrain but test it in a new
environment full of obstacles. By applying our method, motor primitives related to yaw rate and speed
control can be found and serve as the interface for human to steer the “insensible” quadrupedal robot
to avoid obstacles. This forms the “Statew/oH” method. We also include “State+Vision” method [75],
which trains a visuomotor policy for legged robot directly in the test environment, enabling it to
sidestep obstacles. As shown in Table 2, with human involvement, Policy Dissection successfully
transforms the “insensible” policy that is not fit to this task and greatly improves the performance,
achieving comparable performance to the agent specially designed for this task.

4.5 Qualitative Result: Parkour Demo

As shown in the Fig. 4, the training objective of the bipedal Cassie robot is to move forward. After
training, Policy Dissection can discover several skills in the learned representation, as shown in Fig. 6.
Furthermore, these skills can be triggered and controlled by human subject for solving the challenging
parkour environment. See the demo video for detail.
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Figure 6: Policy Dissection can discover several skills such as crouching, jumping, backflipping in
the learned representation of the bipedal Cassie robot, which is originally trained to move forward.
These skills can be combined by human subjects and overcome a challenging parkour environment.

4.6 Experiment on the Control Precision

Figure 7: Heading tracking error
from the goal-condition control and
the primitive activation control.

We conduct an experiment to evaluate the control precision
enabled by our method. We train a goal-conditioned policy
for ANYmal-C robot in IsaacGym [57]. The trained robot
taking raw rate as input can track a target yaw with a PID con-
troller, and thus serves as the baseline. For a fair comparison,
we directly dissect this policy and identify the yaw primitive.
Likewise, a PID controller that takes the yaw error as input is
used to automatically determine the output vj for yaw primi-
tive, enabling tracking target yaw. Note that for the primitive
activation control the explicit heading command in input is set
to 0. Heading tracking results in Fig. 7 show that the control
achieved by primitive activation has comparable precision to
the goal-conditioned control (see demo video for more detail).

5 Conclusion and Discussion

Inspired by the neuroscience approach to study the motor cortex in primates, we present a simple
yet effective method called Policy Dissection to align internal neural representations and kinematic
attributes of a pretrained neural policy. The resulting stimulation-evoked map allows human to steer
the agent and evoke its certain behaviors. Policy Dissection enables human-AI shared control systems
on top of the models trained from standard RL algorithms, without any re-training or modification. We
quantitatively evaluate the human-AI shared control system in autonomous driving and locomotion
tasks, and the result suggests the substantial improvement of the test-time generalization for task
transfer. We further provide interactive demonstrations in various environments to show the generality
of our method and its application for human-AI collaboration.

Limitations and societal impact. One limitation of Policy Dissection is that we only evaluate this
method in continuous control tasks with the state vector as input. A wider range of tasks and neural
network architecture such as discrete control tasks and CNNs can be adopted in future research. One
potential negative social impact is that the safety issue remains to be solved when deploying shared
control systems in real-world applications. As shown in the autonomous driving experiment, our
method derived from empirical study has no theoretical guarantee on the safety of human subjects.
The unsuccessful collaboration or conflict between human and AI may lead to potential risks.
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