
A Experiments on PASCAL VOC

A.1 Dataset and Implementation Details

PASCAL VOC. We also conduct experiments on PASCAL VOC for a comprehensive comparison
with previous methods. Following [15, 13, 28, 10], we adopt two training settings: VOC12 and
VOC12+COCO20cls. For the VOC12 setting, we use the VOC07 trainval set as the labeled training
data, and the VOC12 trainval set as the unlabeled training data; For the VOC12+COCO20cls setting,
apart from the VOC12 trainval set, we also employ COCO20cls as unlabeled data, where images are
sampled from the COCO training set [34] to only contain 20 PASCAL VOC classes. All experiments
are tested on the VOC07 test set. We adopt AP50 and AP50:95 as the evaluation metrics.

Implementation Details. All models are trained on 8 V100 GPUs for 90K iterations with 5 images
per GPU. The initial learning rate is set to 0.01, then divided by 10 at 60k and 80k iterations. The
mixing ratio r between labeled and unlabeled images is set to 1:4. We adopt α = 4 to balance the
losses on labeled and unlabeled images.

A.2 Experimental Results

In Tab. 4, we compare our method with state-of-the-art methods on PASCAL VOC. Using VOC12 as
the unlabeled data, our method surpasses previous methods by a large margin, especially in AP50:95,
our DTG-SSOD surpasses the previous best method MUM [15] by +2.96 points. Our results also
hold on the larger amount of unlabeled images, specifically, when the combination of VOC12 and
COCO20cls is used as unlabeled images, our method attains further improvements, reaching 80.63
AP50 and 54.58 AP50:95. Since our DTG-SSOD enforces the student to mimic the teacher’s behaviour
revealed in the NMS process, our detector can precisely model relations between different candidates
and reserve high-quality detection boxes as final results, resulting in higher AP50:95.

Table 4: Comparison with state-of-the-art methods on PASCAL VOC. Both settings adopt the VOC07
trainval set as the labeled data.

Methods VOC12 VOC12+COCO20cls
AP50 AP50:95 AP50 AP50:95

Supervised Baseline 69.71 42.49 69.71 42.49
CSD [27] 74.70 - 75.10 -
STAC [28] 77.45 44.64 79.08 46.01

Instant-Teaching [10] 78.30 48.70 79.00 49.70
ISMT [35] 77.23 46.23 77.75 49.59

Unbiased Teacher [13] 77.37 48.69 78.82 50.34
MUM [15] 78.94 50.22 80.45 52.31

Ours (DTG-SSOD) 79.20 53.18 80.63 54.58

B Additional Ablation Study

Table 5: Study on NMS
threshold τ

τ mAP AP50 AP75

0.40 35.8 55.9 38.6
0.45 36.3 56.4 38.8
0.50 33.9 53.1 36.3

At the beginning of NMS, a score threshold τ is set to filter out
clear background samples. In our DTG-SSOD, we assume only
teacher candidates with higher scores than τ can provide precise
and informative knowledge for the student training; in contrast, for
those teacher candidates, whose scores are lower than τ , we assign
background labels to their corresponding student samples. In Tab. 5,
we conduct ablation studies on NMS threshold τ for the R-CNN
stage. The best performance is achieved when the threshold τ is set
to 0.45.

C Additional Analyses

We further provide some additional examples to analyze the advantage of our DTG-SSOD over the
traditional sparse-to-dense paradigm. We conclude that the superiority of our method comes from
two aspects:
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Figure 5: Some visualized examples to demonstrate the advantage of our method over the traditional
sparse-to-dense paradigm. (a-b) For the same student proposals, our dense-to-dense paradigm and
traditional sparse-to-dense paradigm will assign different labels. It is obvious that our dense-to-dense
paradigm can assign more precise and reasonable training labels. (c) The teacher is better at modeling
relations over cluster candidates than the student.

The DTG-SSOD can provide precise and reasonable training labels for the student. Due to
coarse and inaccurate pseudo boxes, the hand-crafted label assignment methods confuse the decision
boundary of the positive and negative training samples. In Fig. 5(a), some poorly localized proposals
are assigned as positive ones in the sparse-to-dense paradigm, however, our method can successfully
suppress these misleading labels. Specifically, in our DTG-SSOD, the teacher model predicts low
scores (< τ ) for these proposals, thus they are considered as clear background samples. In Fig. 5(b),
for these ambiguous proposals, which partially detect salient regions of objects, our method assigns
positive labels and applies regression supervision to them. As a result, these proposals can be
suppressed by NMS and avoid duplicated detections.

Relationship information offered by Rank Matching promotes the student training. In Fig. 5(c),
the teacher model can assign higher scores to high-quality candidates, thereby reserving more precise
boxes in NMS. Therefore, relationship information learned by the teacher is beneficial to the student,
and it does not exist in previous methods.

D Details about Data Augmentation

We summary transformations used in the weak and strong augmentation in Fig. 6.

Random Resize: 

short edge  (0.5, 1.5)

Solarize jitter, ratio   (0, 1)

Brightness jitter, ratio   (0, 1)

Contrast jitter, ratio   (0, 1)

Sharpness jitter, ratio   (0, 1)

one of

Random Resize: 

short edge  (0.5, 1.5)

Solarize jitter, ratio   (0, 1)

Brightness jitter, ratio   (0, 1)

Contrast jitter, ratio   (0, 1)

Sharpness jitter, ratio   (0, 1)

one of Translation, ratio   (0, 0.1)

Rotate, angle   (0, 30°)

Shift, angle   (0, 30°)

one of Cutout: 

num (1,5), 

ratio (0.05, 0.2)

Weak Augmentation 

Strong Augmentation 

Figure 6: The summary of transformations used in weak and strong augmentation.
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E Broader Impact

Object detection is a fundamental computer vision task and beneficial to a wide range of applications,
including autonomous driving, smart surveillance, and robotics. This work aims to use easily
accessible unlabeled data to promote object detection and reduce dependency on hand-labeled data.
Any object detection application can benefit from our work. We do not foresee obvious undesirable
ethical/social impacts at this moment.
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