
A Discussion

A.1 Indirect connections

Originally, iSIDG starts training with a fully connected graph structure: A(0). Based on the problem
setting of dynamical systems, we assume A(0) can be decomposed as: A(0) = {AD,AIN ,AU},
where AD represents the actual edges in the graph (directed connections), AIN denotes the indirect
connections between the two actual connected nodes, and AU is the set of non-connections.

1

23

Figure 3: A draft of the direct connections and indirect connections in a three node set. Edges (v1, v2)
and (v2, v3) are direct connections, and edge (v1, v3) is the possible indirect connection inferred by
structural inference methods.

Previous structural inference methods, such as NRI, fNRI and ACD, are good at eliminating AU

in the inference results. However, as shown in Figure 3, these methods may falsely reconstruct the
structure with indirect connections. It is interesting that the indirect connections resulted from the
transmission of signals between nodes. In Figure 3, there exists a chain connection from node v1
to v3 through v2, and in a dynamical system, the changes in v1 will finally affect v3, which would
mislead the structural inference methods to falsely infer an edge from v1 to v3. Moreover, for a sparse
graph, it is possible that AIN ∩AU ̸= ∅, which challenges structural inference methods, such as
NRI, fNRI and ACD.

A.2 Solution for Eliminating Indirect Connections

Our solution to eliminate indirect connections in the inference results consists of three methodologies:
(1) VAE; (2) Iterative process; and (3) Regularization terms.

VAE. As shown in previous works [22, 51, 30], the bottleneck structure of VAEs can correctly identify
many non-connections in the reconstructed adjacency matrix. Thus, we also rely on the VAE to firstly
identify as many non-connections as possible before the first round of iterative process, and sample
{R̂(p)

row, R̂
(p)
col } according to operations shown in Equations 11 - 14.

Iterative process. The iterative process follows the methodology of VIB, and is mentioned in
Section 4.4 with a new objective function:

Z = argmin
Z

I(Z;V t, {Â(p)
κ })− u · I(Z;V t+1). (22)

The iterative process is characterized by a main advantage: the first term in Equation 22
I(Z;V t, {Â(p)

κ }) < I(Z;V t,A(0)), which results in a tighter bound than Equation 3. In other
words, after feeding the direction information back to the input side of the encoder, the new search
space excludes the non-connections, which are found by VAE in the previous training epochs. With a
smaller search space, iSIDG can focus on the differentiation between misleading indirect connections
and the real connections.

Regularization terms. Although feeding the learned adjacency matrix back to the encoder can
eliminate the indirect connections, we need regularization terms to secure and accelerate this process.
The sparsity term LS encourages iSIDG to choose the more solid path from every node, to meet the
minimal sufficient statistics assumption of IB. For example, in Figure 3, at node 1, iSIDG has to
choose between the path 1→ 3 and 1→ 2→ 3 based on the sparsity regularization terms and the
minimal sufficient information for dynamics prediction in decoder.
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One may argue that it is also possible that iSIDG will falsely think there are edges from node 1 to
node 2, and from node 1 to node 3. However, this does not conform to the future state prediction.
The task of the decoder is trying to approximate:

vt+1
i = vti +∆ ·

∑
j∈Ni

f
(
||vtj , vti ||α

)
, (23)

where f(·) denotes the interaction from node vj to node vi. We may imagine the interaction could be
RNA activation level in GRN, spring force in spring-balls system, and the phase-couple of oscillators.
As a result, the interactions between nodes are assumed to be the same, and described with the same
function. Yet node 1 can only affect node 3 through node 2, which results in a superposition of
functions: f(f(·)). Therefore, both edges from node 1 to node 2, and from node 1 to node 3 cannot
predict the future state of node 3 correctly, and VAE will search for other possible edges.

B Further Implementation Details

B.1 Implementation details of iSIDG

We summarize the described architecture of iSIDG and present the pipeline of training iSIDG in
Algorithm 1.

Algorithm 1 General Framework for iSIDG

1: Input: V , number of nodes n
2: Parameters: δ, σ, η, µ, α, β, γ, ξ, batch size m and

time steps T
3: Model Weights: ϕ, θ
4: Output: A(t)

5: i← 1
6: StopCond← ∥A[i] −A[i−1]∥2F < δ∥A(0)∥2F
7: A(0) = 1 ∈ n× n
8: A(i+1) = A(0)

9: Split V into VT = {V 0, . . . , V T } and VT+1 =
{V 1, . . . , V T+1}

10: while i < MaxEpoch do
11: Z← Encoder(VT , A(i), ϕ)

12: V̂T+1 ← Decoder(VT , Z, θ)
13: if i > η and StopCond then
14: R̃

(i)
κ ← {Z, A(0), ξ} using Eqs. 11 - 15

15: A(i) ← R̃
(i)
κ

16: Lp ← {V̂T+1, VT+1, δ}
17: LKL, Ld ,Ls ← {Z, n}
18: L(i) ← Lp + µLKL + αΩ(A(t), V ) + βLd +

γLs

19: L ← L(i)/T
20: Back-propagate L to update model weights ϕ

and θ
21: i← i+ 1
22: end if
23: end while
24: Return: A(t)

Algorithm 2 A MLP block.
1: Input: features input
2: x = elu(Linear1(input))
3: x = dropout(x)
4: x = elu(Linear2(x))
5: out = batch_norm(x)
6: Return: out

Algorithm 3 Pseudocode for MPM
encoder.

1: Input: features input
2: x = mlp1(input)
3: x = node2edge(x)
4: x = mlp2(x)
5: x_skip = x
6: x = edge2node(x)
7: x = mlp3(x)
8: x = node2edge(x)
9: x = concatenation([x, x_skip])

10: x = mlp4(x)
11: out = fully connected out(x)
12: Return: out

Basic settings. We implement our iSIDG model in PyTorch [33] with the help of Scikit-Learn [34] to
calculate various metrics. We run experiments on a single NVIDIA Tesla V100 SXM2 graphic card,
which has 32 GB graphic memory and 5120 NVIDIA CUDA Cores. During training, we set batch size
as 128 for datasets which have less than 10 nodes, for those more than 10 nodes, we set batch size as
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64. We train our iSIDG model with 2000 epochs on every dataset, which takes around 30 - 42 hours for
every training session. The code can be found at https://github.com/AoranWANGRalf/iSIDG.

Loss Functions. The hybrid loss function shown in Equation 21 consists of five different terms to
be calculated: {Lp,LKL,Ω(Z, V ),Ld,Ls}. We would like to describe the actual implementations
of Lp and LKL. Since the target of the decoder is the prediction of future node features based on
present states, Lp is estimated by:

−
∑
j

T∑
t=2

∥vtj − ĥt
j∥2

2σ2
+ const , (24)

where the variance σ is set as a fixed value, and the const is e−16.

And the calculation of KL-divergence LKL over a uniform prior can be simplified as the calculation
of entropy H: ∑

i,j

H(qθ(zij |v)) + const . (25)

Hyper parameters. The choice of most hyper parameters in our iSIDG model (such as those
mentioned in Algorithm 1) may refer to Table 4. In addition to the hyper parameters mentioned in the
table, we set the combination coefficient λ in Equation 13 as 0.3 for the training on all of the datasets.
We argue that λ can be set as varying values according to the training epochs, and decrease during
training, which may be helpful for faster converge. We would like to carry on more research onto
this hypothesis in the future. Besides that, we describe the choice of time step length T in Section C.
Time step length T decides the amount of samplings along a trajectory.

Table 4: Hyper parameter choices for every dataset.

DATASET δ σ η µ α β γ ξ

LI 0.00001 0.00008 150 200 50 10 20 0.5
LL 0.00001 0.00008 150 400 80 20 30 0.5
CY 0.00001 0.00008 150 300 50 10 20 0.5
BF 0.00001 0.00008 150 400 80 20 40 0.4
TF 0.00001 0.00008 150 500 70 20 50 0.4
BF-CV 0.00001 0.00008 150 400 80 20 40 0.4
NetSim1 0.00001 0.00008 180 300 50 10 20 0.5
NetSim2 0.00001 0.00008 180 400 70 20 30 0.5
NetSim3 0.00001 0.00008 180 500 80 30 50 0.5
Springs 0.0001 0.00005 100 100 50 10 20 0.5
Particles 0.0001 0.00005 100 100 50 10 20 0.5
Kuramoto 0.0001 0.00005 100 200 50 10 20 0.5

Ablation study with different GNNs. The main difference between the utilization of different GNNs
takes place in the encoder of iSIDG. For the implementation of MLP encoder, we use three stacked
multi-layer perceptron blocks, with each block consists of the units shown in Algorithm 2. We place a
concatenation operation between Block 1 and 2 to get edge representations. The last block is attached
with another Linear layer with its dimension matching the number of edges in a full-graph setting.

Table 5: Number of units in the Linear layers in MLP encoder.

BLOCK Linear 1 Linear 2

1 256 256
2 512 256
3 256 256

The number of units in the Linear layers in the MLP encoder is shown in Table 5. The dropout rates
in all of the blocks are set as 0.5.

For the simple message-passing mechanism encoder (MPM encoder), we follow the design of “MLP
Encoder" in NRI [22]. And can be summarized as the pseudocode shown in Algorithm 3.
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Algorithm 4 Pseudocode for GIN encoder.
1: Input: features input
2: x = mlp1(input)
3: x_skip = node2edge(x)
4: x_skip = mlp2(x_skip)
5: x = fGIN (x)
6: x = mlp3(x)
7: x = node2edge(x)
8: x = concatenation([x, x_skip])
9: x = mlp4(x)

10: out = fully connected out(x)
11: Return: out

Algorithm 5 Pseudocode for GAT encoder.
1: Input: features input
2: x = mlp1(input)
3: x_skip = node2edge(x)
4: x_skip = mlp2(x_skip)
5: x = fGAT (x)
6: x = mlp3(x)
7: x = node2edge(x)
8: x = concatenation([x, x_skip])
9: x = mlp4(x)

10: out = fully connected out(x)
11: Return: out

Based on the design of Graph Identity Networks and the MPM encoder, we combine these idea
together into the GIN encoder, by replacing the operations from line 3 to line 6 in Algorithm 3 with
the GIN operation mentioned in [53], but still keep the skip connection for edges representations,
and the pseudocode is shown in Algorithm 4. Similarly, if we replace the GIN operation in line 5
of Algorithm 4 with GCN operation, we obtain the GCN encoder. Moreover, the design of GAT
encoder is similar to that of GIN encoder and is shown as the pseudocode shown in Algorithm 5.

B.2 Implementation details of baselines

NRI. We use the official implementation code by the author from https://github.com/
ethanfetaya/NRI with customized data loader for our chosen datasets: synthetic networks, Net-
Sims and physical simulations. We add our metric-evaluation in “test" function, after the calculation
of accuracy in the original code.

fNRI. We use the official implementation code by the author from https://github.com/ekwebb/
fNRI with customized data loader for our chosen three datasets. We add our metric-evaluation in “test"
function, after the calculation of accuracy and the selection of correct order for the representations in
latent spaces in the original code.

MPIR. We use the official implementation code from https://github.com/tailintalent/
causal as the code for MPIR. We run the code by customized data loader for the chosen three
datasets. After the obtain of the results, we run another script to calculate the metrics.

ACD. We follow the official implementation code by the author as the framework for ACD
(https://github.com/loeweX/AmortizedCausalDiscovery). We run the code with cus-
tomized data loader for the chosen three datasets. We implement the metric-calculation pipeline in
the “forward_pass_and_eval()" function.

C Further Details about Datasets

C.1 Synthetic networks

The six directed Boolean networks (LI, LL, CY, BF, TF, BF-CV) are the most often observed
fragments in many gene regulatory networks, each has 7, 18, 6, 7, 8 and 10 nodes, respectively. Thus
by carrying out experiments on these networks, we can get acknowledge about the performance
of the chosen methods on the structural inference of real-world biological networks. We collect
the six ground-truth directed Boolean networks from [35] and simulate the single cell evolving
trajectories with BoolODE [35] https://github.com/Murali-group/BoolODE with default
settings mentioned in that paper for every network. We sample 12000 trajectories and group them
into three datasets: for training, for validation, and for testing, each with the number of 8000, 2000
and 2000, respectively. Then we sample 49 snapshots with equal time interval in every trajectory and
save them as “.npy" files for data loading.
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C.2 NetSim datasets

The NetSim datasets simulate blood-oxygen-level-dependent imaging data across different regions
within the human brain and is described in [43] and https://www.fmrib.ox.ac.uk/datasets/
netsim/. We target at inferring the existence of directed connections between different brain areas.
Among the total 28 datasets in NetSim, we choose the first three datasets (NetSim1, NetSim2 and
NetSim3) which have 5, 10, and 15 nodes, respectively. We sample 49 snapshots on each trajectory
with equal interval and randomly group them into three sets for training, validation and testing with
the ratio of 8: 2: 2, respectively.

C.3 Physical simulations

To generate these physical simulations (springs, charged particles and phase-coupled oscillators), we
follow the description of the data in [22] but with fixed interactions. To be specific, at the beginning
of the data generation for each physical simulation, we randomly generate a ground truth graph and
then simulate 12000 trajectories on the same ground truth graph, but with different initial conditions.
The rest settings for the simulations are the same as that mentioned in [22]. It is worth mentioning
that the connections in the physical simulations are indirected, which are different from those in the
synthetic networks and NetSim datasets. We collect the trajectories and randomly group them into
three sets for training, validation and testing with the ratio of 8: 2: 2, respectively.

D Further Details about Experiments

D.1 Metrics

We choose the three most representative metrics from 0-1 classification for the evaluation of structural
inference results, namely the area under the receiver operating characteristic (AUROC), the area
under the precision-recall curve (AUPRC) and Jaccard index (JI). All of the metrics are calculated
from the inferred structure and the full-patch of ground-truth.

AUROC. The area under the receiver operating characteristic (AUROC) is a performance metric to
evaluate the result of classification tasks. It demonstrates the model’s ability to discriminate between
cases (positive examples) and non-cases (negative examples). For our case, it is used to make clear
the model’s ability to distinguish actual edges and empty interactions. It is calculated as the area
under the receiver operating characteristic curve (ROC), which sets false positive rate (FPR) as x-axis
and true positive rate (TPR) as y-axis at various threshold settings. In the ROC space, the best
possible prediction method would yield a point in the upper left corner or coordinate (0,1) of the
ROC space, representing 100% no false negatives and 100% no false positives. Then a model outputs
more precise results with many TPR yields a higher AUROC value, and vice versa.

AUPRC. The area under the precision-recall curve (AUPRC) is a useful performance metric for
imbalanced data in a problem setting since we care a lot about finding the existence of interactions
between nodes. It shows the ability of the model to find the existence of all ground-truth edges
without accidentally marking any non-interaction as existence. The AUPRC is calculated as the area
under the Precision-recall (PR) curve. The x-axis of a PR curve is the TPR and the y-axis is the
precision. This is in contrast to ROC curves, where the y-axis is the TPR and the x-axis is FPR.
Similar to calculate AUROC, AUPRC is also calculated from various threshold settings.

Jaccard index. The Jaccard index (sometimes called the Jaccard similarity coefficient) (JI)
compares the inferred edges and ground-truth to see the shared results and the distinct results.
Jaccard index is a measure of similarity for the two sets of data, with a range from 0% to
100%. The higher the percentage, the more similar the two populations. It is calculated as
"Intersection of two sets/Union of two sets". Although JI is easy to calculate and interpret, the
result is extremely sensitive to small samples sizes and may produce erroneous results, especially
when the number of samples is small or the data sets contain missing observations.
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Table 6: AUPRC values (%) of iSIDG and baselines on synthetic networks.

METHOD LI LL CY BF TF BF-CV

iSIDG 40.3± 3.4 18.3± 2.9 42.1± 5.7 38.0± 5.0 46.6± 5.6 32.8± 4.4

NRI 27.3± 3.1 7.30± 1.3 31.1± 4.7 28.2± 3.1 32.7± 3.6 17.1± 3.6

fNRI 29.0± 3.4 8.59± 1.9 25.8± 5.7 29.8± 4.3 33.2± 4.9 20.1± 3.5

MPIR 15.6± 2.6 5.78± 1.4 16.7± 2.5 23.7± 3.3 31.3± 2.1 17.8± 2.0

ACD 21.9± 3.5 14.7± 2.5 29.9± 5.4 23.2± 4.8 34.3± 4.0 24.8± 3.6

Table 7: JI values (%) of iSIDG and baselines on synthetic networks.

METHOD LI LL CY BF TF BF-CV

iSIDG 45.4± 3.9 49.5± 5.0 47.2± 5.5 46.8± 4.8 46.0± 4.3 46.6± 3.6

NRI 41.6± 2.9 37.2± 4.4 36.5± 4.8 38.0± 4.1 35.9± 4.3 40.6± 3.5

fNRI 41.8± 3.0 38.5± 5.7 33.5± 6.2 32.4± 5.1 35.0± 5.0 37.4± 3.4

MPIR 11.9± 1.7 3.70± 0.8 13.3± 1.4 18.4± 2.6 24.5± 2.0 15.6± 1.6

ACD 22.6± 4.5 11.0± 2.6 20.2± 2.8 15.0± 2.2 18.1± 2.5 14.0± 2.8

Table 8: AUPRC and JI values (%) of iSIDG and baselines on NetSim datasets.

AUPRC JI

METHOD NetSim1 NetSim2 NetSim3 NetSim1 NetSim2 NetSim3

iSIDG 40.0 ± 4.9 36.3 ± 4.5 34.8 ± 5.0 49.1 ± 4.8 47.6 ± 5.0 44.2 ± 4.5

NRI 34.5 ± 2.9 32.4 ± 3.0 32.1 ± 3.3 43.9 ± 3.5 42.3 ± 2.8 41.2 ± 2.9

fNRI 33.1 ± 3.7 30.8 ± 3.8 30.2 ± 4.1 44.1 ± 4.2 40.9 ± 4.0 41.7 ± 3.6

MPIR 25.2 ± 2.2 23.7 ± 3.1 21.9 ± 3.0 25.4 ± 1.3 24.1 ± 2.6 23.5 ± 2.9

ACD 32.9 ± 2.6 30.7 ± 3.5 30.2 ± 2.1 26.8 ± 1.7 25.6 ± 2.4 23.7 ± 3.5

Table 9: AUPRC and JI values (%) of iSIDG and baselines on physical simulations.

AUPRC JI

METHOD Springs Particles Kuramoto Springs Particles Kuramoto

iSIDG 80.7± 6.7 70.6± 4.9 71.8± 5.4 81.8± 4.2 72.6± 4.1 71.3± 3.7

NRI 79.8± 4.4 69.4± 2.1 71.7± 4.6 80.4± 2.8 72.2± 2.6 71.3± 3.3

fNRI 80.7± 5.7 72.6± 3.2 73.9± 6.8 82.2± 2.8 74.6± 2.4 73.4± 3.7

MPIR 35.5± 5.2 32.4± 3.9 39.0± 3.4 33.7± 4.8 30.4± 4.2 37.3± 3.1

ACD 80.2± 6.1 58.4± 3.6 70.4± 5.7 80.0± 2.6 57.3± 4.7 69.4± 5.8

D.2 Further experimental results

In this section, we demonstrate additional experimental results as the supplement to Section 5. We
present AUPRC and JI values as well as a case study about the structural inference results of iSIDG
and baseline methods.

AUPRC and JI results. We present the AUPRC and JI results of iSIDG and baseline methods on
synthetic networks, NetSim datasets and physical simulations in Tables 6 - 9. The results are the mean
values and 95% intervals of 15 experiments, respectively. Similar to the AUROC results presented
in Section 5.1, iSIDG performs the best among all of the chosen methods in datasets with directed
graphs, and can match the best baseline method in datasets with indirected graphs.

Besides that, we conduct a case study of iSIDG with different objective functions, and calculate the
average accumulated path lengths based on 15 experiments of each on Linear network dataset. The
results are shown in Figure 4. It is clear that our choice of objective function with regularization
terms of smoothness, connectiveness and sparsity successfully encourages iSIDG model to infer the
structure of the system with less indirect interactions and more accurate results.
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Figure 4: Averaged accumulated length of the connections between nodes of the inference results on
Linear network dataset with different objective functions. The y-axis represents the averaged counts
of paths according to their length, and the x-axis denotes the path length between two nodes. The
results are the mean values of 15 experiments on Linear network dataset with different objective
functions.
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Figure 5: Reconstruction results of different methods on Linear network dataset.

Case study. To gain an intuitive understanding of the results of the structural inference of directed
graphs, we conduct a case study on the Linear network dataset. The reconstructed adjacency matrices
of our iSIDG, fNRI and ACD methods on Linear network dataset are visualized in Figure 5, as
well as the ground-truth. The results are the mean results of 15 experiments of each method and
are shown in terms of distributions of reconstructed relations. In the figure, 0.0 at a point [x, y]
denotes the absence of interaction from x to y, and 1.0 represents in an opposite way. As shown in
Figure 5, compared with the ground-truth, the structure reconstructed by ACD contains many indirect
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Figure 6: Mutual information comparison between methods with or without iterative process on
Linear network dataset.

connections. It is possibly the result from the fact that ACD infers a latent posterior graph from the
input features based on hidden confounding [50]. For Linear network dataset, which has a “chain"
structure, it may confuse ACD method as it contains many indirect interactions, and thus leads to
inaccurate inference results. Moreover, fNRI utilizes a factorized latent space for every possible
interaction types. For the case here, it even reserves a latent space for “Non-interaction" type, which
further disentangles possible indirect interactions from direct ones, and therefore slightly promotes
its accuracy. In contrast, the iterative training process in iSIDG creates relaxation of the gradients
during training. As a result, it can distinguish most indirect interactions from the direct ones and
reconstruct the adjacency matrix more precisely than the other methods on Linear network dataset.

D.3 Mutual information

We conduct another case study to demonstrate the difference of the mutual information between our
iSIDG with and without the iterative process on Linear network dataset with 10 experiments of every
model with 1400 training epochs. We utilize nearest-neighbor MI estimator [36] and the plots are
shown in Figure 6. The plots show the mutual information between input features and embeddings in
latent space MI_XZ for every edge, as well as the mutual information between embeddings in latent
space and the output features MI_ZY for every edge. Since the input consists of node features, we
concatenate them according to [sender, receiver] to represent each edge for the calculation of mutual
information, respectively.

As shown in Figure 6, in both methods, the two types of mutual information increase in the first phase,
and then after around 800 epochs of training, the mutual information between embeddings in latent
space and output features decreases, while the other one keeps growing. These phenomena verify the
two procedures in the training of deep neural networks as mentioned in the IB theory [42, 1], namely
label-fitting and representation-compression.

In the phase of representation-compression, when the stop condition is reached, the method with
the iterative process stops the current training round, feeds the obtained adjacency matrix from
latent space back to the input side of encoder, and starts another round of training with the obtained
adjacency matrix. The phase-transition is demonstrated by the decrease of both mutual information
and start with another round of label-fitting and representation-compression. Therefore, the iterative
training process creates several rounds of relaxation during training, and encourages our iSIDG
model to learn a more compressed representation in the latent space. As shown in Figure 5, the
compressed representation in the latent space eliminates most of the indirect interactions and promotes
the structural inference accuracy of our iSIDG model.

D.4 Ablation studies on different encoders and decoders

We conduct another series of ablation studies to demonstrate the different choices of encoders
and decoders in our iSIDG model. We choose four methods as encoders for our ablation study,
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Table 10: AUROC values (%) of iSIDG with different encoders and decoders on LI dataset.

MLP MULTI RNN

MLP 64.8 ± 4.9 60.6 ± 4.9 60.9 ± 4.8

MPM 75.5 ± 3.3 70.4 ± 5.4 71.6 ± 3.8

GCN 81.0 ± 4.7 76.5 ± 4.0 76.3 ± 4.6

GIN 86.2 ± 4.2 79.8 ± 4.4 79.5 ± 4.8

GAT 65.9 ± 3.8 63.0 ± 4.3 62.7 ± 3.9

Table 11: AUROC values (%) of DAG-GNN and DAG-NoCurl on synthetic networks

METHOD LI LL CY BF TF BF-CV

DAG-GNN 42.3± 2.0 40.5± 3.1 42.9± 4.5 43.2 ± 3.4 40.8 ± 2.8 40.5 ± 3.7

DAG-GNN* 40.0± 5.1 46.8± 3.6 44.0± 5.7 50.3± 4.5 50.2± 3.6 51.7± 4.1

DAG-NoCurl 43.0± 2.7 43.2± 3.3 49.5± 4.4 51.8± 3.2 39.4± 5.5 51.1± 3.2

Table 12: AUROC (%) of DAG-GNN and DAG-NoCurl on physical simulations and NetSim datasets.

METHOD Springs Particles Kuramoto NetSim1 NetSim2 NetSim3

DAG-GNN 48.2± 2.3 40.0± 3.4 45.5± 4.5 43.1 ± 3.4 42.4 ± 4.9 40.9 ± 3.6

DAG-GNN* 39.5± 2.7 38.4± 2.1 38.5± 3.3 35.4 ± 3.4 34.0 ± 4.6 33.2 ± 3.9

DAG-NoCurl 47.4± 2.6 44.8± 3.6 47.0± 4.7 49.5 ± 3.1 47.2 ± 3.6 46.5 ± 3.3

namely: multi-layer-perceptrons (MLP), simple message-passing mechanism (MPM), GCN, GIN,
and GAT. We also take three different decoders into account: MLP, avoiding degenerate decoder
(MULTI) [22][51], and recurrent decoder (RNN) [22]. The results are shown in Table 10, where the
rows denote the choice of encoder, the columns for decoder, and the results are the average values
and 95% intervals of 15 experiments with every combination of encoder and decoders. As shown in
Table 10, the methods with GNNs as encoder are greatly more accurate than the ones with simple
MLP encoder. The only exception are the ones with GAT encoder, which are only marginally superior
to the ones with MLP encoder. The reason may be that GAT is prone to over-fitting and the attention
weights lack supervision in the cases of structural inference. When it comes to GIN as encoder, the
results are superior to methods with other encoders by at least 3.2 percent of AUROC. Surprisingly,
methods with MLP decoder, which is the simplest decoder among the three, output the most accurate
reconstruction results. We argue that it may be due to the simple task of the iSIDG: only focusing on
structural inference instead of both structural inference and dynamic prediction (as that of NRI).

E Do DAG-structure Learning Methods Work in Our Problem Setting?

We observe that there is a series of works, which deal with the directed acyclic graphs (DAG)
structure learning [59, 57, 58]. These works formulate the problem as a continuous optimization with
a structural constraint that ensures acyclicity [59], with explicit structural constraints [57], or with
implicit mechanism to force the acyclicity [58]. Although it is claimed by the authors that these work
deal with DAG structure learning, which is different from our problem setting, we are still curious
about the performance of these works on the problem of structural inference of dynamical systems.

We choose DAG-GNN [57] and DAG-NoCurl [58], which are the representative in the research field
of DAG structure learning. We follow the official implementations of these models:

• DAG-GNN: https://github.com/fishmoon1234/DAG-GNN;
• DAG-NoCurl: https://github.com/fishmoon1234/DAG-NoCurl;

and we only change the data loader modules to load physical simulations, synthetic networks and
NetSims datasets, respectively. We ran the experiments for ten rounds, and summarize the AUROC
results in Tables 11 and 12, where we note DAG-GNN* as the DAG-GNN with acyclicity constraint
set as zero. As shown in the tables, DAG-GNN, DAG-GNN* and DAG-NoCurl fail to infer the
existence of interactions in dynamical systems. The reason may be that the existence of cycles in the
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Table 13: Training time (in hour) of iSIDG and baseline methods on synthetic networks.

METHOD LI LL CY BF TF BF-CV

iSIDG 48.2 50.6 40.8 44.7 40.3 44.0
NRI 14.3 18.2 13.0 15.5 13.6 16.9
fNRI 15.5 21.9 14.9 18.6 13.7 18.0
MPIR 5.0 14.4 3.6 8.0 5.5 7.9
ACD 40.5 42.8 39.6 44.0 41.7 43.2

Table 14: Training time (in hour) of iSIDG and baseline methods on physical simulations and NetSim
datasets.

METHOD Springs Particles Kuramoto NetSim1 NetSim2 NetSim3

iSIDG 42.2 36.0 39.2 20.7 36.9 50.8
NRI 20.1 20.3 19.8 8.8 16.0 21.5
fNRI 22.8 20.7 19.0 9.0 17.8 25.6
MPIR 7.9 6.6 6.3 2.1 5.6 9.5
ACD 39.8 36.4 38.0 20.5 35.8 45.7

Table 15: Training time (in hour) of iSIDG and baseline methods on “Springs100", ESC and HSC
datasets.

METHOD Springs100 ESC HSC

iSIDG 106.5 96.8 50.3
NRI 40.6 39.4 30.4
fNRI 49.0 42.0 31.8
MPIR 20.7 19.5 12.0
ACD 82.4 80.4 51.8

Table 16: Counts of total parameters (in million) of iSIDG and baseline methods.

iSIDG 1.72
NRI 1.12
fNRI 1.12
MPIR 0.62
ACD 3.70

systems, which is common observed among dynamical systems, violates the acyclicity assumptions
of these methods. In particularly, although the acyclicity constraint in DAG-GNN* is set as zero,
DAG-GNN* is unable to correctly infer the structure of our datasets, and (un)surprisingly performs
even worse than DAG-GNN.

F Time and Memory Efficiency

We summarized the training time of iSIDG and baseline methods on all of the datasets mentioned in
this work in Tables 13 - 15. All of the results are the averaged training time of 10 rounds of each
method, and is summarized in hours. Unfortunately yet unsurprisingly, iSIDG performs the worst
among all of the methods in almost all of the datasets. On one hand, the iterative process surely has a
negative effect on the time efficiency, on the other hand, iterative process encourages our method
to learn the adjacency matrix more accurate than baseline methods on most of the datasets. It is
notable that ACD has comparable training time to iSIDG, and has comparable accuracy with iSIDG
on Kuramoto dataset.

We summarized the memory efficiency of iSIDG and baseline models in Table 16. As shown in
the table, the number of total parameters of iSIDG is 0.6 M larger than NRI and fNRI, but is less
than half of the number of ACD, which indicates the moderate memory efficiency of iSIDG among
baseline methods.
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G Broader Impact

Methods such as iSIDG for structural inference of dynamical systems allow for numerous researchers
in the field of physics, chemistry and biology to study the interactions inside the systems. We have
shown that iSIDG works well on either one-dimensional node features or multi-dimensional features,
where the features are continuous variables, which proves its wide application. While the emergence
of the structural inference technology may be extremely helpful for many, it has the potential for
misuse. Potentially, iSIDG can be extended to infer the online social connections via measuring
mutual information, which could erode privacy.
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