
Appendix

A Standard error calculation, tuning, and implementation details

In this section we provide more details on different inverse methods we use in the paper. As many
of the inverse methods we use in the paper have a stochastic component, we perform all following
experiments 3 times and report the standard error. Since we have a budget of 5 runs for tuning the
hyperparameters of Autoinverse methods, we allocate similar or higher resources for other methods
in order to make the comparisons fair.

NA To avoid local minima, we run 50 solves of inversion with random initialization (each having
up to 2000 iterations). As an alternative to tuning, we run NA 5 times and report the best NFP error.
To accelerate the inversion in this paper we perform batch optimization. Thus, we can increase the
number of target samples (up to GPU memory limit) without impacting the inversion time noticeably.

NA ensemble The configurations for NA ensemble is similar to NA except for the forward model.
Unlike NA, we have an ensemble of networks (Fµ) that comprises the forward model of NA ensemble:

Fµ(x) :=
1

M

∑
m

µm(x). (11)

Unlike UANA, single networks in the ensemble are incapable of predicting uncertainty. The cost
function for NA ensemble is therefore defined as:

LNAen(x) := argmin
x

∥Fµ(x)− y∗∥22 (12)

Similar to UANA, the back propagation is based on an ensemble of gradients coming from all the
single networks in the ensemble (Figure 5).

xz = xz−1 − δ

M∑
m=1

(
∂LNAen

∂f̂m
× ∂f̂m

∂x
) (13)

Similar to NA, we run NA ensemble 5 times and pick the best results with respect to the NFP error.

tandem Since tandem does not explicitly possess any hyperparameter, instead of tuning, we
evaluate 5 pre-trained inverse models (each initialized differently) and select the one that has the best
NFP error on 10% of the target data. We then perform the inversion on the remaining target data
using the best-performing inverse model.

UANA and UA-tandem In Section 4.5 of paper we showed how using a diverse range of activation
functions in the ensemble network improves the quality of epistemic uncertainty and consequently
the results of the inversion. For training the surrogates used in UANA, UA tandem and NA ensemble
we use 10 networks in the ensemble with the following activations Fµ:
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Figure 5: NA ensemble architecture
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Table 3: Training details of different neural surrogate models used in inverse methods for
multi-joint robot.

Network’s name Sub-networks name Trainable parameters Layer configuration

INN - 3727416 [30, 3]
NA - 3204302 100, 1000, 1500, 1000, 100

NA ensemble Forward networks 351802 × 10 100, 500, 500, 100
UANA µ networks 351802 × 10 100, 500, 500, 100

σ networks 20902 × 10 100, 100, 100
Tandem Forward network 3204302 100, 1000, 1500, 1000, 100

Inverse network 113804 100, 250, 250, 100
µ networks 351802 × 10 100, 500, 500, 100

UA-tandem σ networks 20902 × 10 100, 100, 100
Inverse network 117108 100, 250, 250, 100

MINI - 10802 100, 100

• Tanh ×2

• ReLU ×2

• CELU ×2

• LeakyReLU ×2

• ELU
• Hardswish

We use ReLU activation functions for all other methods.

INN For each one of the 1000 target performances we randomly sample the latent space of the INN
architecture [30] 1024 times. Thus, we end up with 1024 designs (for a single target) and evaluate all
designs on the NFP and report the best error as the NFP error. For the surrogate error, we report the
average forward loss.

MINI MINI is based on a mixed-integer optimization which is capable of finding the globally
optimum solution [2]. This method is deterministic and every run returns the same solution, as a
result we do not report the standard error for MINI.

Hardware To have a fair comparison we run all the methods on the same GPU machine for
evaluating time performances. We used an NVIDIA TITAN X GPU for time evaluation. For other
evaluations we used a GPU cluster. Training the forward models is trivially parallelizable. Moreover,
we can parallelize 50 iterations of NA and UANA and aggregate the data in a post-processing step and
choose the best results based on the surrogate error. Nevertheless, we are reporting our computation
time assuming both training and inversion are performed serially on a single GPU.

B Training details for neural surrogate models in multi-joint robot
(Table 1 in paper)

In Table 3 and Table 4, we can compare the capacity, training time, and accuracy of the neural network
surrogates used for the inversion of multi-joint robot. We keep similar training capacity for all
methods except MINI. MINI uses a combinatorial optimization and is not scalable to large networks
[2]. We trained a smaller surrogate for MINI but at the same time we monitored its training loss to lie
within a reasonable range.

C Details for ‘Neural inversion in the presence of imperfect data’

C.1 Counterpart results of tandem and UA-tandem for spectral printer

Table 5 presents the results of spectral printer, similar to Section 4.3 (Table 2) of the paper but
comparing tandem and UA-tandem. As evident from the table, we obtain similar performance gain
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Table 4: [Continued] Training details of different neural surrogate models used in inverse methods
for multi-joint robot.

Network’s name Sub-networks name Total training time (s) Total inversion time (s) Training loss

INN - - 1024× (1.3× 10−2) 2.10× 10−2

NA - 190 374 3.33× 10−5

NA ensemble single 1650 426 3.91× 10−6

UANA µ networks 1650 1075 2.34× 10−6

σ networks 192
Tandem Forward network 190 3.8× 10−3 3.33× 10−5

Inverse network 181
µ networks 1650

UA-tandem σ networks 192 3.8× 10−3 2.34× 10−6

Inverse network 1109
MINI - 150 2.98× 104 4.89 ×10−4

Table 5: The distribution of ink densities (≥ 0.4) after the inversion of spectral printer using
UA-tandem. Once we insert noise into LC channel or sample it sparsely, Autoinverse detects and
avoids it. STD has been rounded to nearest integer.

Model Data set NFP error C M Y K LC LM LK LLK

Standard (2.62± 0.488)× 10−3 180± 12 48± 2 13± 4 3± 1 174± 8 36± 12 0± 0 0± 0
UA-tandem Sparse (2.34± 0.097)× 10−3 291± 11 43± 0 15± 2 3± 1 0± 0 89± 16 0± 0 0± 0

Noisy (5.16± 0.423)× 10−3 242± 2 63± 0 18± 1 1± 0 0± 0 64± 32 8± 1 29± 2

Standard (3.51± 2.903)× 10−2 159± 9 40± 10 0± 0 12± 9 255± 124 187± 256 5± 4 1070± 1514
tandem Sparse (2.18± 0.840)× 10−2 208± 22 36± 3 0± 0 17± 7 52± 30 20± 9 14± 19 0± 0

Noisy (3.82± 0.810)× 10−2 174± 29 60± 32 39± 42 71± 9 303± 171 192± 239 114± 123 62± 74

when augmenting tandem with uncertainty awareness. Similar to UANA, UA-tandem has completely
avoided the LC channel.

C.2 Soft robot actuation distribution

Figure 2 in the paper showed the actuation distribution of only 8 soft robot edges (Section 4.3
in paper). In Figure 6 we show the distribution of actuation for all edges computed by UANA on
surrogates learned using partially noisy and partially sparse data. We repeat this experiment using
UA-tandem to emphasize on the generality of Autoinverse (Figure 7).

C.3 Training details of surrogates used for spectral printer and soft robot

Tables 6 and 7 show the layer configuration, number of trainable parameters, the training and inversion
time, and the training loss of different surrogate models used in spectral printer. Tables 8 and 9
show the layer configuration, number of trainable parameters, the training and inversion time, and the
training loss of different surrogate models used in soft robot. From the tables we can observe that

Table 6: Training details of different neural surrogate models used in inverse methods for spectral
printer.

Network’s name Sub-networks name Trainable parameters Layer configuration

NA - 905931 100, 500, 800, 500, 100
NA ensemble Forward networks 64531 × 10 100, 100, 200, 100, 100

UANA µ networks 64531× 10 100, 100, 200, 100, 100
σ networks 24231× 10 100, 100, 100

Tandem Forward network 905931 100, 500, 800, 500, 100
Inverse network 117108 100, 250, 250, 100
µ networks 64531× 10 100, 100, 200, 100, 100

UATandem σ networks 24231× 10 100, 100, 100
Inverse network 117108 100, 250, 250, 100
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Figure 6: The actuation distribution of all the edges for inversion on both noisy and sparse data via
UANA.

Table 7: [Continued] Training details of different neural surrogate models used in inverse methods
for spectral printer.

Network’s name Sub-networks name Training time Inversion time Training loss

NA - 295 300 4.45× 10−6

NA ensemble Forward networks 441 563 3.38× 10−6

UANA µ networks 441 1.15× 103 3.44× 10−6

σ networks 240
Tandem Forward network 295 1.07× 10−2 4.45× 10−6

Inverse network 260
µ networks 441

UATandem σ networks 240 1.04× 10−2 3.44× 10−6

Inverse network 1.08× 103
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Figure 7: The actuation distribution of all the edges for inversion on both noisy and sparse data via
UA-tandem.

Table 8: Training details of different neural surrogate models used in inverse methods for soft
robot.

Network’s name Sub-networks name Trainable parameters Layer configuration

NA - 45506206 2000, 5000, 5000, 2000
UANA µ networks 3227606× 10 300, 1500, 1500, 300

σ networks 45106× 10 100, 100, 100
Tandem Forward network 45506206 2000, 5000, 5000, 2000

Inverse network 3227440 300, 1500, 1500, 300
µ networks 3227606× 10 300, 1500, 1500, 300

UATandem σ networks 45106× 10 100, 100, 100
Inverse network 3227440 300, 1500, 1500, 300

Table 9: [Continued] Training details of different neural surrogate models used in inverse methods
for soft robot.

Network’s name Sub-networks name Total training time (s) Total inversion time (s) Training loss

NA - 5428 2250 2.63× 10−4

UANA µ networks 16940 2950 2.39× 10−5

σ networks 16290
Tandem Forward network 5428 2.90× 10−1 2.63× 10−4

Inverse network 1740
µ networks 16940

UATandem σ networks 16290 1.65× 10−1 2.39× 10−5

Inverse network 9458
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Figure 8: The landscape of the aleatory and epistemic uncertainty.

the training capacity of different surrogates models is comparable. Furthermore, the training accuracy
of all models is similar.

C.4 Epistemic and aleatoric loss behaviour for spectral printing experiment

Epistemic uncertainty The key to handling design feasibility is the epistemic uncertainty (Equation
3(c) paper). We know that the scarcity of data results in higher epistemic uncertainty [18]. On the
other hand, by definition, we do not have any infeasible or out-of-range data points in our dataset.
Hence, if we query a network with an infeasible or out-of-range input, we will get high uncertainty
for the prediction. We use this trend to avoid such samples in the inversion. Figure 8(a) shows the
trend of the epistemic uncertainty values for spectral printer (Section 4.3, Table 2 in paper).
For that experiment, we ran the inversion using UANA on 3 different datasets: standard, noisy, and
sparse and observed how the problematic ink channel (LC) is avoided. Figure 8(a) demonstrates why
that ink channel is avoided. In Figure 8(a), we set all ink channels except LC to 0 while increasing
the values of LC ink density from 0 (the x-axis of the plot).

As expected, for all three datasets moving away from the feasible region (between 0 and 1) increases
the epistemic uncertainty. When trained for the sparse data (red curve), where the LC channel has not
been sampled after 0.4, the epistemic uncertainty starts to increase earlier.

Outside the feasible region, each network in the ensemble has to extrapolate as it has not been trained
in those regions. Consequently, the predictions of ensemble networks diverge. The divergence of
the networks increases the epistemic uncertainty and, during the inversion, the uncertainty aware
methods can reject solutions in these regions.

Aleatoric uncertainty Figure 8(b) demonstrates the behavior of the aleatoric uncertainty of the
surrogate used for the same experiment (UANA on spectral printer). Similarly, to generate the
plots, we set all the ink channels to 0 and change the values of the Light Cyan ink densities. As
evident from Figure 8(b), the level of uncertainty increases significantly for the noisy dataset, while
for sparse and standard datasets aleatoric uncertainty is at least two orders of magnitude smaller. The
increase of aleatoric uncertainty for the noisy data helps UANA avoid any samples from those regions
(Tables 2 in the paper and Table 5).

D Details for ‘Autoinverse brings AutoML to neural inversion’

Spectral printer Complementary to Figure 4 of the paper, in Figure 9 we compare the inversion
performance using a diverse range of inverse methods. Here we clearly see that basic methods, such
as NA and tandem fail spectacularly in computing feasible designs.
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Figure 9: Spectral reproduction of a ground-truth painting using different inverse methods (spectral
printer). Apart form the reproduction quality, we show the distribution of the computed designs,
i.e., ink densities. Note that the feasible ink density range is [0, 1].

Boundary loss is a semi-generic regularization, suitable for handling box constraints [30]:

Lbnd = ReLU

(
|x− µx| −

1

2
Rx

)
(14)

where Rx is the value range of design samples in the dataset and µx is their average. Incorporating
the boundary loss in NA in Figure 9 results in an improvement in the distribution of the ink intensities.
However, the results are still far from acceptable.

Note how applying hand-crafted regularization (ink intensity regularization) [32] improves the quality
of tandem significantly (tandem with regularization in Figure 9). UANA and UA-tandem
however perform comparably without any regularization.

Soft robot objective for the Neural Adjoint method The objective function for soft robot
inversion comprises of two terms, one is responsible for bringing the tip of the robot to the target and
the other one (R(xin)) guarantees the deformations to remain physical [33].

L(xin) :=
∥∥xout

i − t
∥∥
1
+ λ · R(xin)

i ∈ [123, 124] ,
(15)

R(xin) :=
∑

1<i<n,i̸=n/2,
i̸=n/2+1

(
xin
i+1 − xin

i

2
−

xin
i − xin

i−1

2

)2

. (16)

where t represents the target location and xout
i represents the position of all 206 vertices of soft robot,

among which i ∈ [123, 124] represent the position of its tip. Also, λ adjusts the importance of the
smoothness term and R(xin) regulates the actuation of the flexible edges (xin ) to insure that the
deformation of the robot is physical.

Sensitivity to initialization (soft robot) In Section 4.4 of the paper, we learned how hand-
crafted regularization improves the quality of the designs. Despite having regularization, soft
robot inversion using NA fails when initialized with values far from feasible region. This is evident
from both the irregular robot shapes (Figure 3(b) in the paper) and the distribution of the actuation
(Figure 10) computed using regularized NA but with wrong initialization. At the same time, UANA
without any regularization and with a wrong initialization produces plausible robot shapes (Figure 3(b)
in the paper) and actuation distribution (centered around 0). Interestingly, the smoothness score for
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Figure 10: The effect of wrong initialization for inversion of soft robot using NA with regularization
and two different initialization. Note the robustness of UANA without any form of regularization.
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Figure 11: Stability of Autoinverse within a wide range of its hyperparameters α and β.

clearly failed shapes obtained from NA with regularization, are for both initializations very small
(Figure 10). This shows how even regularization can be multi-modal and fall into a wrong local
minima and generate designs with nonphysical shapes (Figure 3(b)).

E Details for ‘Ablation studies’

As discussed in Section 4.5 of the paper, the power of UANA lies in its uncertainty awareness and not
the ensembling process. We include the result of NA ensemble for paitning reproduction in Figure 9.
While we observe a marginal improvement of NA ensemble over NA, it is clearly outperformed by
UANA.

Sensitivity to uncertainty weights Autoinverse is extremely stable when tuning its hyperpa-
rameters, i.e., uncertainty weights (α and β in Equation 3 in paper). This ensures that a light
hyperparameter tuning is enough for obtaining reasonable results. We evaluate this behavior by using
a wide range of α and β values spanning over 5 orders of magnitude. This ablation is performed
using UANA. In the ablation of aleatoric (α) and epistemic (β) weight, we have used the noisy and
epistemic data of spectral printer, respectively. When evaluating α we keep β fixed at the tuned
value. Alternatively for the evaluation of β, α is constant at the tuned value.
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Figure 12: Pareto front for 12 randomly chosen targets.

The most interesting fact about Figures 11(a) and 11(b), is the correlation of the α and β with the
NFP error. This correlation means that adjusting the importance of these weights on the surrogate
model directly improves the quality of the inversion in reality. Interestingly, we can observe the
robustness of Autoinverse against the variation of α and β, such that for a range of around 3
orders of magnitude the NFP loss remains stable around a desirable value. The larger the weights,
Autoinverse chooses less and less samples in the problematic regions (LC channel density larger
than 0.4). This trend continues with very large uncertainty weights. However, these weights cannot
be indefinitely increased as the MSE term of the objective (Equations 6 and 10 in the paper) will be
undermined and inversion’s NFP error increases.

F Pareto front of accuracy versus uncertainty

We calculate the Pareto front for 12 randomly chosen targets from the spectral printer experiment with
the standard dataset (Figure 12). We use the NSGA II [8], an evolutionary algorithm that samples our
forward BNN to discover the Pareto front iteratively. The uncertainty score in this experiment is the
weighted sum of aleatoric and epistemic uncertainty. We set the values of the weights on the tuned
values on the inversion task. The population size and the number of generations in this experiment
are 1000 and 100, respectively. Figure 12 suggests that the losses of uncertainty aware inversion are
conflicting such that for example reducing the MSE loss will lead to the increase of the uncertainty
score.

G Ablation of the number of networks in the ensemble

In this experiment we investigate the importance of the accuracy of the calculated uncertainties on
the final NFP error. We have trained deep ensemble networks with a varying number of networks
in the ensemble. The networks are trained on the spectral printer experiment for both noisy and
sparse datasets. As evident in Figure 13, by increasing the number of networks in the ensemble the
NFP error improves significantly. This trend indicates the importance of accurate prediction of the
uncertainties.
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Figure 13: Evaluating the inversion performance using Deep Ensembles with different number of
sub-networks.

H Implementation

In practice, training the ensemble networks directly with negative log likelihood loss (Equation 8)
is challenging [31]. Instead, following [29], we take a 3-step procedure for implementing deep
ensemble predictive uncertainty. We start with training an ensemble of conventional networks with
diverse activation functions and MSE as its loss. These networks are in fact the initialization of Fµ(·).
The next step is training Fσ(·) and fine tuning Fµ(·) jointly with the negative log likelihood loss
(Equation 8). Finally, we replace f̂(·) with Fµ(·) and incorporate Fσ(·) in the Autoinverse loss.
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