
Supplement: Single Model Uncertainty Estimation via
Stochastic Data Centering

APPENDIX

A Derivation for shifted training on NTK

We continue the derivation from the main here in more detail. Recall, the prediction on a test sample
xt in the limit as the inner layer widths grow to infinity. It has been shown that (c.f. [1, 2]):

f∞(xt) = f0(xt)−KxtXK−1
XX(f0(X)−Y), (1)

where X is the matrix of all training data samples. As before, we consider the case where the domain
is shifted by c. Using (1):

f∞(xt − c) = f0(xt − c)−K(xt−c)(X−c)K
−1
(X−c)(X−c)(f0(X− c)−Y)

≈ f0(xt − c)− (KxtX − Γxt,X,c)(KXX − ΓX,X,c)
−1(f0(X− c)−Y) (2)

Where we utilize Woodbury’s Identity [3] for expanding the inverse of the difference between two
matrices as:

(A−B)−1 = A−1 +

∞∑
m=1

(A−1B)mA−1 (3)

Using (3), we can expand (2) as:

= f0(xt − c)− (KxtX − Γxt,X,c)

(
K−1

XX +

∞∑
m=1

(K−1
XXΓX,X,c)

mK−1
XX

)
(f0(X− c)−Y)

(4)

= f0(xt − c)− (KxtX − Γxt,X,c)K
−1
XX(f0(X− c)−Y) − (contd.)

(KxtX − Γxt,X,c)

∞∑
m=1

(K−1
XXΓX,X,c)

mK−1
XX(f0(X− c)−Y)

= f0(xt − c)−KxtXK−1
XX(f0(X− c)−Y)︸ ︷︷ ︸

first

− (contd.)

Γxt,X,cK
−1
XX(f0(X− c)−Y)− (KxtX − Γxt,X,c)

∞∑
m=1

(K−1
XXΓX,X,c)

mK−1
XX(f0(X− c)−Y)

(5)

Next, we consider expanding the first term in (5). Since the only term dependent on c is the evaluation
of the network with the initial weights θ0, i.e., of the general form f0(x− c). We will expand this
using a Taylor series approximation by evaluating it at c = 0, as following:

f0(x− c) = f0(x) + cf ′
0(x) + c2f ′′

0 (x) + . . . (6)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Figure 1: Behavior of the proposed uncertainty estimator as we increase the training sample size
for a 1−D regression example. As expected, as we increase N from 5 samples to 200 samples, the
prediction uncertainties shrink to trivial estimates, thus emphasizing the ability of our approach in
capturing epistemic uncertainties.

By substituting (6) in (5), and grouping all the terms that do not depend on c, we can separate the
deterministic and stochastic (in c) which gives us our final result as:

≈ f0(xt)−KxtXK−1
XX(f0(X)−Y)︸ ︷︷ ︸

deterministic for fixed θ0

− g(c, xt,X,Y)︸ ︷︷ ︸
random due to c

(7)

Perturbations with different anchors The analysis above can be easily applied to the case where
different anchors are used with different input samples. Let us consider two randomly chosen anchors:
c1, c2 and study the dot product between two points shifted using these anchors.

[c1, x1 − c1]
⊤[c2, x2 − c2] = x⊤1 x2 + 2c⊤1 c2 − c⊤1 x2 − c⊤2 x1 (8)

= x⊤1 x2 − c⊤1 (c1c
⊤
2 x1 + x2 − 2c2),

Where in the last step we exploit the fact that c1, c2 are normalized to be on the hypersphere. We can
see that by setting v = c1c

⊤
2 x1 + x2 − 2c2, we can get a similar form of perturbation as x⊤1 x2 − c⊤1 v

by combining all c2 related terms as before (and equivalently for c1).

In this paper, we argue that the proposed stochastic data centering technique is effective at estimating
epistemic uncertainties with deep networks. For demonstration, let us consider the 1D regression
example showed in Figure 1 and train ∆−UQ models under different train sample sizes (5, 10, 50
and 200 respectively). The figure illustrates the predicted function and the associated uncertainty
estimates (shaded region around the predictions). As the training sample size increases, we notice
that the uncertainties shrink to trivial values (very close to 0), thus validating that our estimates are
strongly correlated with epistemic uncertainties.

B Corruptions in the anchoring process

When scaling ∆−UQ to image data, especially using powerful base networks such as ResNets, we
observe a consistency training significantly improves the uncertainty estimates. To achieve this, we
make the input transformation less trivial as x → T (c), x− c, where T is a standard augmentation
technique already used in training such as random crops or blurs. Such that, during inference we set
T = I, to be identity. We apply this corruption once every 10 iterations – this is a hyper parameter,
doing this more frequently makes the process much harder resulting in a worse mean estimate whereas
making it less frequently results in uncertainties that are slightly worse. We outline the exact set of
corruptions used in the pytorch pseudo code listed below.

B.1 Pytorch implementation

Algorithm 1 lists the Pytorch pseduo-code for training a ∆−UQ for image classification, and a sample
inference script in algorithm 2. The example assumes a model as defined in algorithm 1 and a set of
anchors drawn from the training distribution at random. Once predictions per anchor are obtained, the
mean and standard deviation are returned as the final prediction of the model, and the corresponding
uncertainty on the test samples.

2

Algorithm 1 PyTorch-style example for ∆−UQ with ResNet-50.

def create_anchored_model(model):
model.conv1 = nn.Conv2d(in_channels =6, 64)
return model

Tx = transforms.Compose ([
transforms.RandomResizedCrop(size =224) ,
transforms.RandomHorizontalFlip (),
transforms.RandomApply ([color_jitter ,blurr], p=0.8),
])

load model and change the first conv layer

model_basic = ResNet50(pre_trained=False ,n_class =1000)
model = create_anchored_model(model_basic)

load datasets , setup optimizer , define criterion etc.
for i, (images , targets) in enumerate(train_loader):

anchors = Shuffle(images)

diff = images -anchors

if i % 10 ==0:
tx_anchors = Tx(anchors)

else:
tx_anchors = anchors

batch = torch.cat([tx_anchors ,diff],axis =1)
output = model(batch)

loss = criterion(output , target)

optimizer.zero_grad ()

loss.backward ()

optimizer.step()

Algorithm 2 Inference with ∆−UQ for a classification model

’’’
model : network trained with anchoring
anchors : set of randomly chosen anchors (ideally from train dist.)
test_inputs : samples on which predictions are needed
’’’
preds = []
for A in anchors:

D = test_inputs -A
X_test = torch.cat([A, D],axis =1)
y_test = model(X_test)
preds.append(y_test)

P = torch.cat(preds ,0)
mu = P.mean (0)
unc = P.std (0). sum (1) ## sum unc. along classes

B.2 ImageNet-C corruptions for OOD and Calibration

Table 1 lists the set of corruptions used to construct the ImageNet-C benchmark.

Table 1: ImageNet-C corruptions used for the calibration study
brightness contrast defocus_blur elastic_transform

fog frost gaussian_blur gaussian_noise
glass_blur glass_blur glass_blur gaussian_noise
shot_noise spatter speckle_noise zoom_blur

C Additional Results: Prediction Performance on UCI Benchmarks

While our outlier rejection, calibration and sequential optimization experiments clearly established
the effectiveness of the proposed uncertainty estimator, we also evaluate the quality of ∆−UQ models,
in terms of standard prediction fidelity metrics (regression in this section and classification in next).

3

Table 2: Regression performance evaluation using UCI benchmarks. For each case, we show the
negative log-likelihood for the test data obtained using each of the methods. Note, all metrics
were computed as an average from 20 random trials of 0.8 − 0.2 train-test split. We followed
the experimental setup described in [4] and the results for the baselines were obtained from the
uncertainty baselines github page [5]

Function MCD DEns BNN PBP Proposed

Boston Housing 2.4 6.11 3.12 2.54 2.58

Concrete Strength 2.93 3.2 3.22 3.04 3.09

Energy Efficiency 1.21 0.61 0.93 1.01 0.56

Kin8nm -1.14 -1.17 -1.03 -1.28 -1.19

Naval Propulsion -4.45 -5.17 -6.12 -4.85 -5.86

Power Plant 2.8 3.18 2.85 2.78 2.83

Wine 0.93 0.97 1.0 0.97 0.91

Protein 2.87 3.12 2.93 2.77 2.79

Yacht 1.25 0.73 2.01 1.64 0.66

Avg. Rank 2.89 3.56 4.0 2.44 2.0

For this study, we used a suite of regression datasets typically adopted for evaluating deep models,
evaluated using the standard experiment protocol in the benchmark defined by [5]. For each of the
datasets, we fit networks with a single hidden layer (50 neurons) and ReLU activation. We trained 20
independent models with different random 80−20 train-test splits and report the average performance
across the trials. For evaluation, we used the negative log-likelihood metric (lower the better). In
addition to our approach, we include the results for MCD, DEns, BNN (variational inferencing)
and Probabilistic Backpropagation [4] (with a Matrix-Variate Gaussian prior). Furthermore, for a
holistic evaluation, we also report the average rank (across the 5 methods) from the suite of datasets
considered. As showed in Table 2, ∆−UQ performs competitively over other baselines, and achieves
an average rank of 2.0. Overall, we find that, in addition to producing high-quality uncertainty
estimates, the proposed approach also produces high-quality predictive models.

D Additional Results: Prediction Performance on Imagenet and CIFAR-10

ImageNet-C accuracy. We provide results for classification accuracy of our ImageNet model on
the validation set and the distribution shifted variants of ImageNet-C, in table 3. Here, at each
severity level (“1”–“5”) we compute the accuracy of the model across all 16 corruptions for that
severity outlined in 1 and report the mean accuracy. We also report the accuracy numbers for the
corresponding uncertainty baselines, and see that ∆−UQ does not compromise on accuracy on the
clean data, while being highly competitive to Deep Ensembles even on the most severe corruptions.

Table 3: Accuracy of ResNet-50 Model on ImageNet validation and its distribution shifted variants.
Method ImageNet-C Dist. Shift Variants (ResNet-50)

val 1 2 3 4 5 Avg.
Vanilla 76.1 62.5 52 42 30 19.5 47.8
DEns 78.1 66 56 47 36 22 50.05

MC Dropout 75 60 50 38 29 17 46
SVI 76.1 63 53 43 31 20 48.05

∆−UQ 76.1 61.7 53.1 44.2 33.2 21.8 48.95

4

https://github.com/google/uncertainty-baselines/tree/main/baselines/uci

CIFAR-10C/ResNet-20 We perform detailed analysis of calibration and accuracy on CIFAR-10
and its corrupted variants CIFAR-10C [6] using the experimental protocol followed by [7, 8], where
we use a ResNet-20 [9] and report the calibration scores across all 5 corruption levels and the
validation set – the calibration metrics are reported by averaging the performance across 5 random
seeds of the model. We report the average accuracy for each corruption level in table 4, and display
the calibration metrics – ECE, NLL and Brier Score in figure 2. In both the accuracy and calibration
metrics we find that ∆−UQ outperforms all the comparable baselines, including Deep Ensembles,
though using only a single model.

Table 4: Accuracy of ResNet-20 Model on CIFAR10 validation and its distribution shifted variants.
Method CIFAR10-C Dist. Shift Variants (ResNet-20)

val 1 2 3 4 5 Avg.
Vanilla 90.5 81.8 75.1 68.3 60.6 49.1 69.8
DEns 93.4 85.9 79.8 73.1 65 52.4 72.9

MC Dropout 91 83.7 77.5 70.1 61.5 49.4 70.2
SVI 88.6 82.3 76.9 70.8 63.1 52.6 70.6

∆−UQ 92.3 85.8 80.9 75.2 67.8 56.2 74.25

Ablation studies. We mainly perform ablation on the inference part of ∆−UQ – we try to quantify
the variability in performance when anchoring is not used, and when uncertainty is not used in terms
of the calibration metrics for the ImageNet-C/ResNet-50 experiment considered in the main paper.
We consider two main ablations of the main model as stated next. Note, in all three cases the only
difference is the procedure for inference. The training procedure is kept fixed across all models, and
we use the same ResNet-50 model to perform these ablation studies reported in table 5.

• Naïve: We consider the case where a model trained with anchoring as usual, is used during
inference without anchoring, i.e., instead of passing {c, x− c} as before for an anchor c,
we pass {0, x}, as this behaves as a naive model that does not have the benefit of obtaining
uncertainties or ensembling like behavior as ∆− UQ.

• Ensemble mean: Next, we consider the version where anchoring is done during inference
and compute the mean of predictions from different anchors as before, but we do not use
the uncertainties obtained – i.e., the final prediction is simply the mean of the predictions
obtained with different anchors.

• ∆−UQ: This is our final model that takes the mean and scales it by the uncertainties during
inference.

We observe from the results in table 5 first that simply training with anchoring shows benefits in
model performance even if anchoring is not used during inference, as seen in improvement in the
calibration performance of the naïve model (shown as {0, x} in the table) over the vanilla model.
Next, we see that using anchoring to compute the mean improves performance further as seen in
the next column (shown as µ), and finally factoring in the uncertainties performs the best. Even
the ablated versions perform competitively compared to some of the other uncertainty baselines,
indicating the effectiveness of ∆−UQ .

E Details on GAN-based Optimization Experiment

In this experiment, we evaluated the utility of the proposed uncertainty estimator in guiding sequential
optimization in the latent space of a pre-trained GAN network. We begin by assuming access to a
generative model G(z), which maps a latent noise vector z onto a realization on the training image
manifold. Denoting the latent space as Z , our goal is to maximize a scalar function defined for an
image, i.e., f(x) by performing optimization in the latent space.

argmax
z∈Z

f(G(z)). (9)

In our experiment, we used a GAN trained on MNIST hand-written images and defined the thickness
function (total number of non-zero pixels in an image) for optimization. The dimensionality of the

5

Test

Test

Test

Test 1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Figure 2: Calibration experiments using CIFAR-10C with a ResNet-20 model. We report average
metrics for model accuracy and calibration across 5 random seeds and corruption severity levels.
Note, we calibrate our predictions as before using a scaling strategy as: µ̄ = µ(1− σ). We compare
against standard baselines obtained from [8, 7].

noise latent space was set to 100. Similar to our design optimization experiments with synthetic data,
we started with an initial random sample (uniform random in the latent space) of 25, synthesized
the corresponding images using the generator and computed the thickness function for each of them.
We performed optimization for 50 steps (with 1 sample in each round) and evaluated the maximum
thickness achieved as the metric of choice (the global optimum is not known). We repeated the
experiment across 5 random seeds and 5 independent trials for each seed. The results in Figure
7 (main paper) illustrate the maximum thickness obtained using different uncertainty estimators
across 25 experiments. We find that our approach consistently produced the highest function value
and outperformed other approaches. As expected, DEns performed the second best, followed by
MCD. Interestingly, with BNNs, the variational inferencing technique is known to lead to underfitting
and we find out, despite achieving reasonably higher function values, the reconstructions were of
significantly poorer quality (off the image manifold).

6

Table 5: Calibration Comparison With Ablation: We study how different ablations of our model perform on
the calibration task.

Metric Vanilla Temp
Scaling DEns MCD SVI-

AvUC {0, x} (µ) ∆−UQ

ECE ↓

lower quartile 0.124 0.096 0.050 0.078 0.032 0.077 0.085 0.022
median 0.174 0.139 0.090 0.134 0.045 0.117 0.112 0.038
mean 0.194 0.160 0.088 0.153 0.054 0.130 0.110 0.044

upper quartile 0.274 0.236 0.126 0.219 0.070 0.193 0.125 0.063

NLL ↓

lower quartile 4.635 4.53 4.035 4.699 4.164 4.011 4.072 4.014
median 5.115 4.993 4.624 5.093 4.823 4.818 4.679 4.617
mean 5.234 5.091 4.604 5.553 4.707 4.832 4.516 4.352

upper quartile 6.292 6.165 5.893 6.522 5.778 5.925 5.124 4.987

Brier ↓

lower quartile 0.941 0.926 0.877 0.933 0.883 0.882 0.887 0.868
median 0.987 0.970 0.922 0.967 0.935 0.944 0.940 0.925
mean 0.964 0.945 0.888 0.961 0.900 0.926 0.903 0.887

upper quartile 1.052 1.027 0.989 1.025 0.985 1.026 0.972 0.949

F Benchmark Functions

Figure 3 illustrates the different benchmark functions for evaluating the proposed approach in black-
box optimization. In addition to the functions listed, we also considered the Hartmann functions, in
dimensions 3 and 6 respectively, defined as follows.

Hartmann3: f(x) =
4∑

i=1

αi exp

(
−

3∑
j=1

Aij(xj − Pij)
2

)
, where

α = (1.0, 1.2, 3.0, 3.2)⊤

A =

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

 , P = 10−4

3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

 (10)

Hartmann6: f(x) =
4∑

i=1

αi exp

(
−

6∑
j=1

Aij(xj − Pij)
2

)
, where

α = (1.0, 1.2, 3.0, 3.2)⊤

A =

 10 3 17 3.50 1.7 8
0.05 10 17 0.1 8 4
3.0 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 ,

P = 10−4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3511 2883 3047 6650
4047 8828 8732 5743 1091 381

 (11)

G Detailed Results for Sequential Optimization

At the core of AI-powered applications in science and engineering lies the need to perform design
optimization for maximizing a chosen target objective, and to enable automated exploration in
high-dimensional parameter spaces. When f is Lipschitz continuous, i.e., ∥f(x) − f(x′)∥ ≤
c∥x − x′∥, and its first- and second-order information are accessible, this can be solved using
first-order optimization methods such as stochastic gradient descent (SGD) [10] or second-order
methods such as L-BFGS [11]. However, in practice, while f can be explicitly evaluated for any

7

Function Bounds Definition

Multi Optima
(1D) [-1, 2]

Ackley [-10, 10]

Beale (2D) [-4.5, 4.5]

Booth (2D) [-10, 10]

Branin (2D) [-5, 10]
[0, 15]

Bukin (2D) [-15, -5]
[-3, 3]

Six-Hump
Camel (2D)

[-3, 3]
[-2, 2]

Dropwave
(2D) [-5.1, 5.1]

Griewank [-10, 10]

Holder Table
(2D) [-10, 10]

Levy N.13
(2D) [-10, 10]

Levy [-10, 10]

Figure 3: Benchmark functions used in this paper to evaluate sequential optimization

x, its first- and second-order information are unknown, thus making such an optimization very
challenging. Commonly referred to as black-box optimization [12], this formulation is adopted in
applications ranging from drug design [13] to additive manufacturing [14] and optimizing financial
investments [15] to hyper-parameter tuning in neural networks [16].

x∗ = argmax
x∈D

f(x). (12)

8

Dropwave Function (2D)

Figure 4: Convergence curves for each of the benchmark functions used in our evaluations.

In each step of this optimization, we approximate the function f using the samples observed so far to
obtain the surrogate f̂ . Assuming that our goal is to maximize f , one can acquire more samples in
regimes of D where the mean estimate from the surrogate is high (exploitation) or the uncertainty is
large (exploration). In order to balance between these two objectives and to guide the progressive
search for the optima, BO utilizes an appropriate acquisition function [17]. In this study, we use the

9

popular expected improvement (EI) score to perform candidate selection.

aqEI :=

{
(µ(x)− f(x+)− ξ)Φ(Z) + σ(x)ϕ(Z) if σ(x) > 0

0 if σ(x) = 0

where Z =
(µ(x)− f(x+)− ξ)

σ(x)
. (13)

Here, µ(x) and σ(x) are the mean and uncertainty estimates from the surrogate f̂ for any sample,
and f(x+) is the best known function value so far during any iteration of the optimization. Further,
Φ(.) and ϕ(.) denote the cumulative distribution and probability density functions corresponding to
the normal distribution. Finally, the hyper-parameter ξ controls the exploration-exploitation trade-off.
Figure 4 shows the convergence curves for each of the black-box functions.

References
[1] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-

Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019. (Cited
on 1)

[2] Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. Advances in
Neural Information Processing Systems, 32, 2019. (Cited on 1)

[3] Max A Woodbury. Inverting modified matrices. Statistical Research Group, 1950. (Cited on 1)

[4] Shengyang Sun, Changyou Chen, and Lawrence Carin. Learning structured weight uncertainty
in bayesian neural networks. In Artificial Intelligence and Statistics, pages 1283–1292. PMLR,
2017. (Cited on 4)

[5] Zachary Nado, Neil Band, Mark Collier, Josip Djolonga, Michael Dusenberry, Sebastian
Farquhar, Angelos Filos, Marton Havasi, Rodolphe Jenatton, Ghassen Jerfel, Jeremiah Liu,
Zelda Mariet, Jeremy Nixon, Shreyas Padhy, Jie Ren, Tim Rudner, Yeming Wen, Florian
Wenzel, Kevin Murphy, D. Sculley, Balaji Lakshminarayanan, Jasper Snoek, Yarin Gal, and
Dustin Tran. Uncertainty Baselines: Benchmarks for uncertainty & robustness in deep learning.
arXiv preprint arXiv:2106.04015, 2021. (Cited on 4)

[6] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=HJz6tiCqYm. (Cited on 5)

[7] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. Advances in neural information processing
systems, 32, 2019. (Cited on 5, 6)

[8] Ranganath Krishnan and Omesh Tickoo. Improving model calibration with accuracy versus
uncertainty optimization. In Advances in Neural Information Processing Systems, volume 33,
pages 18237–18248, 2020. (Cited on 5, 6)

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016. (Cited on 5)

[10] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages
421–436. Springer, 2012. (Cited on 7)

[11] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989. (Cited on 7)

[12] Charles Audet and Warren Hare. Derivative-free and blackbox optimization, volume 2. Springer,
2017. (Cited on 8)

10

https://openreview.net/forum?id=HJz6tiCqYm

[13] Petra Schneider, W Patrick Walters, Alleyn T Plowright, Norman Sieroka, Jennifer Listgarten,
Robert A Goodnow, Jasmin Fisher, Johanna M Jansen, José S Duca, Thomas S Rush, et al.
Rethinking drug design in the artificial intelligence era. Nature Reviews Drug Discovery, 19(5):
353–364, 2020. (Cited on 8)

[14] Chengcheng Wang, XP Tan, SB Tor, and CS Lim. Machine learning in additive manufacturing:
State-of-the-art and perspectives. Additive Manufacturing, 36:101538, 2020. (Cited on 8)

[15] Joan Gonzalvez, Edmond Lezmi, Thierry Roncalli, and Jiali Xu. Financial applications of
gaussian processes and bayesian optimization. arXiv preprint arXiv:1903.04841, 2019. (Cited
on 8)

[16] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin
Wang. A comprehensive survey of neural architecture search: Challenges and solutions. ACM
Computing Surveys (CSUR), 54(4):1–34, 2021. (Cited on 8)

[17] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012. (Cited on 9)

11

	Derivation for shifted training on NTK
	Corruptions in the anchoring process
	Pytorch implementation
	ImageNet-C corruptions for OOD and Calibration

	Additional Results: Prediction Performance on UCI Benchmarks
	Additional Results: Prediction Performance on Imagenet and CIFAR-10
	Details on GAN-based Optimization Experiment
	Benchmark Functions
	Detailed Results for Sequential Optimization

