
A Overview

In this appendix we

• Introduce some notation in section B that we will use throughout the appendix.
• Give rigorous definitions of calibration errors omitted in the main paper in Section C
• Provide proofs for all claims that we make in the main text in Section D.
• Provide details for specific recalibration transformation that illustrate the shortcomings of

existing approaches (Section E).
• Give a detailed overview of proper U-scores that can be used to further generalize our

proposed framework of proper calibration errors (Section F).
• Give more experimental details and report results from additional experiments (Section G).

B Notation

The following is implied throughout the appendix. We will use

• The underlying probability space (⌦,F ,P), X the feature space, and Y the target space.
• Random variables X : ⌦ ! X and Y : ⌦ ! Y .
• PY |X=x (y) := P({!2⌦|X(!)=x^Y (!)=y})

P({!2⌦|X(!)=x}) and PY (y) := P ({! 2 ⌦ | Y (!) = y}) for
x 2 X and y 2 Y .

• PY ,PY |X=x 2 Pn with Pn = {p 2 [0, 1]n |
P

k pk = 1}, and Y = {1, . . . , n} for
categorical Y with n 2 N classes.

• The index ’�k’ on a finite vector to denote the removal of index k.
• The random variable C : ⌦ ! Y defined as C := argmaxk fk(X) for f : X ! Pn. It

can be regarded as the top-label prediction of f .

The notation regarding the (conditional) probability measures will be used for arbitrary random
variables.

C Definitions

A systematic overview of the multitude of calibration errors proposed in the recent literature requires
a common notation that can be used to harmonize definitions. For the sake of clarity, we use formula-
tions close to the notation introduced in Kumar et al. [31] and adjust the other errors accordingly,
while retaining the notation of the original work whenever possible.

We follow Kumar et al. [31] and define top-label and class-wise calibration errors in expectation:
Definition C.1. The top-label calibration error of model f : X ! Pn is defined as

TCEp (f) = (E [|fC (X)� P (Y = C | fC (X))|p])
1
p

with C := argmaxk fk (X) and the class-wise calibration error is defined as

CWCEp (f) =

 
X

k2Y

E [|fk (X)� P (Y = k | fk (X))|p]
! 1

p

for 1  p 2 R.

Note that we removed the weighting factors from the original definition in Kumar et al. [31] for easier
comparison with the other errors and a fixed upper limit (we will show that CWCEp  2

1
p ).

Definition C.2. The Kolmogorov-Smirnov calibration error [16] of model f : X ! Pn is given
by

KS (f) = E [KS (f, C)] ,

where C = argmaxk fk (X) and KS (f, k) = max�2[0,1]

���
R
[0,�] z � P (Y = k | fk (X) = z) dPfk(X) (z)

��� .
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Definition C.3. Given a reproducing kernel Hilbert space H with kernel k : [0, 1]⇥ [0, 1] ! R the
maximum mean calibration error [30] of model f : X ! Pn is

MMCE (f) =

kE [(fC (X)� P (Y = C | fC (X))) k (fC (X) , .)]k
H

.

Definition C.4. Given a reproducing kernel Hilbert space H with kernel k : Pn ⇥Pn ! Rn ⇥Rn

the kernel calibration error [57] of model f : X ! Pn is

KCE (f) =
��E
⇥�
f (X)� PY |f(X)

�
k (f (X) , .)

⇤��
H

.

We also need the following score related definitions in the proofs. These are simply a repetition from
the main paper.

Definition C.5. Given a proper score S and P,Q 2 P , the expected score sS : P ⇥ P ! R is
defined as sS (P,Q) = EY⇠Q [S (P, Y )] =

R
Y

S (P, y) dQ (y).

Definition C.6. Given a proper score S and P,Q 2 P , the associated divergence dS : P ⇥ P !
R�0 is defined as dS (P,Q) = sS (P,Q) � sS (Q,Q) and the associated generalized entropy
gS : P ! R as gS (Q) = sS (Q,Q).

D Proofs

D.1 Helpers

The following will be of use in several proofs.

Lemma D.1. Assume that S is a proper score for which CES exists, then we have

CES (f) = E [S (f (X) , Y )]� E
⇥
gS
�
PY |f(X)

�⇤
.

Proof.

CES (f)
def 4.2
= E

⇥
dS
�
f (X) ,PY |f(X)

�⇤

def C.6
= E

⇥
sS
�
f (X) ,PY |f(X)

�
� sS

�
PY |f(X),PY |f(X)

�⇤

def C.6
= E

⇥
sS
�
f (X) ,PY |f(X)

�⇤
� E

⇥
gS
�
PY |f(X)

�⇤

=

Z
sS
�
z,PY |f(X)=z

�
dPf(X) (z)� E

⇥
gS
�
PY |f(X)

�⇤

def C.5
=

Z Z
S (z, y) dPY |f(X)=z (y) dPf(X) (z)� E

⇥
gS
�
PY |f(X)

�⇤

=

Z
S (z, y) dPY,f(X) (y, z)� E

⇥
gS
�
PY |f(X)

�⇤

= E [S (f (X) , Y )]� E
⇥
gS
�
PY |f(X)

�⇤

(4)
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D.2 Theorem 3.1

Given a model f : X ! Pn and the above defined errors, we have
BS (f) = 0

=) CEp (f) = 0

() KCE (f) = 0

() f is calibrated
=) CWCEp (f) = 0

=) TCEp (f) = 0

() MMCE (f) = 0

() KS (f) = 0

=) ECE (f) = 0

(5)

and
n

1
p�

1
2

p
2 � n

1
p�

1
2

p
BS (f)

⇤
� CEp (f)

� CWCEp (f)

� TCEp (f)

� TCE1 (f)

�

8
<

:

KS (f)
ECE (f)
c · MMCE (f)

� 0

(6)

for 1  p 2 R. * BS is only included for p  2. We define c =
p
maxr k (r, r) as given in Theorem

3 of Kumar et al. [30].

Proof. Regarding BS(f) = 0 =) CEp (f) = 0 () KCE (f) = 0 () f is calibrated:

BS (f) = 0 () PY |X
a.s.
= f (X)

=) PY |f(X)
a.s.
= f (X)

()

8
<

:

CEp (f) = 0
KCE (f) = 0
f is calibrated

(7)

The last equivalence follows from Definition 2.1 and 2, and according to Widmann et al. [57].
Since the equivalence in the last line holds for each, it follows CEp (f) = 0 () KCE (f) =
0 () f is calibrated. Example sketch for BS(f) = 0 6(= CEp (f) = 0: Set f (.) = PY , then
f (X) = PY = PY |PY

= PY |f(X), but BS(f) > 0.

Regarding CEp (f) = 0 =) CWCEp (f) = 0:

CEp (f) = 0 () PY |f(X)
a.s.
= f (X)

() P (Y = k | f (X))
a.s.
= fk (X) 8k

=) Ef�k(X) [P (Y = k | f (X)) | fk (X)]
a.s.
= Ef�k [fk (X) | fk (X)] 8k

() P (Y = k | fk (X)) | fk (X)
a.s.
= fk (X) 8k

()
X

k2Y

E [(P (Y = k | fk (X))� fk (X))p] = 0

() CWCEp (f) = 0

(8)
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An example for CEp (f) = 0 6(= CWCEp (f) = 0 is given in the proof of Proposition 3.2 located
in Appendix D.3.

Regarding CWCEp (f) = 0 =) TCEp (f) = 0 () MMCE (f) = 0:

CWCEp (f) = 0 () P (Y = k | fk (X))
a.s.
= fk (X) 8k

=) P (Y = C | fC (X))
a.s.
= fC (X)

() P
✓
Y = argmax

k
fk (X) | max

k
fk (X)

◆
a.s.
= max

k
fk (X)

()
⇢

TCEp (f) = 0
MMCE (f) = 0

(9)

See Theorem 1 in Kumar et al. [30] regarding MMCE. Note that we could not verify their claim
that MMCE is a proper score, which is even contradictive to our findings. A sketch for an ex-
ample where CWCEp (f) = 0 6(= TCEp (f) = 0 is if P (Y = C | fC (X))

a.s.
= fC (X) and

P (Y = argmink fk (X) | mink fk (X)) 6= mink fk (X).

Regarding TCEp (f) = 0 () KS (f) = 0:

TCEp (f) = 0

() P
✓
Y = argmax

k
fk (X) | max

l
fl (X)

◆
a.s.
= max

m
fm (X)

() P (Y = C | fC (X))
a.s.
= fC (X)

(i)()
Z

�0
P (Y = C | fC (X) = z) dPfC(X)|C (z)

a.s.
=

Z

�0
zdPfC(X)|C (z) , 8�0 ⇢ [0, 1]

()
Z

[0,�]
P (Y = C | fC (X) = z) dPfC(X)|C (z)

a.s.
=

Z

[0,�]
zdPfC(X)|C (z) , 8� 2 [0, 1]

() E
"
max
�2[0,1]

�����

Z

[0,�]
z � P (Y = C | fC (X) = z) dPfC(X)|C (z)

�����

#
= 0

() E [KS (f, C)] = 0

() KS (f) = 0

(10)

(i) according to Theorem 4.22 of Capiński & Kopp [5].

Regarding TCEp (f) = 0 =) ECE (f) = 0:

TCEp (f) = 0

() P (Y = C | fC (X))
a.s.
= fC (X)

(i)
=) 8i = 1, . . . ,m : P (Y = C | fC (X) 2 Bi)

a.s.
= E [fC (X) | fC (X) 2 Bi]

def 3() ECE (f) = 0

(11)

(i) with Bi defined as in definition 3; follows since P (Y = C | fC (X) 2 Bi) =R
Bi

P (Y = C | fC (X) = z) dPfC(X) (z)
a.s.
=

R
Bi

fC (X) dPfC(X) (z) =
E [fC (X) | fC (X) 2 Bi].

An intuition of why TCE1 (f) = 0 6(= ECE (f) = 0 is given in example 3.2 of Kumar et al. [31].

Regarding 2 � BS (f) � (CE2 (f))
2:
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2 = ke1 � e2k22
� E

h
kf (X)� eY k22

i

def 1
= BS (f)
(i)
� BS (f)� E

⇥
gBS
�
PY |f(X)

�⇤

le D.1
= CEBS (f)
(ii)
= (CE2 (f))

2

(12)

(i) gBS non-negative, follows from definition C.6.
(ii) compare definition 2 with the squared calibration term in [38].

Regarding n
1
p�

1
q CEq (f) � CEp (f) for 0 < p  q < 1:

We use � := f (X) � PY |f(X) for shorter equations. Further, we use the p-norm inequality

n
1
p�

1
q kxkq � kxkp for a vector x 2 Rn and the Lp space inequality (E [|X|q])

1
q � (E [|X|p])

1
p for

X 2 Lq ⇢ Lp [5].

CEp (f)

def 2
=
⇣
E
h
k�kpp

i⌘ 1
p


⇣
E
h⇣

n
1
p�

1
q k�kq

⌘pi⌘ 1
p

=n
1
p�

1
q

⇣
E
h
k�kpq

i⌘ 1
p

n
1
p�

1
q

⇣
E
h
k�kqq

i⌘ 1
q

def 2
= n

1
p�

1
q CEq (f)

(13)

Note that this result is a direct contradiction to Theorem 1 of [56] since n
1
p�

1
q > 1.

Further, the name ’Lp calibration error’ is unambiguous for canonical calibration since the following
holds. Let k.kRn,p be the vector p-norm and k.kLp the norm of the Lp space. Then we have

CEp (f) =
���k�kRn,p

���
Lp

= k(k�1kLp , . . . , k�nkLp)
|kRn,p . (14)

Thus, there is no ambiguity if we first compute the vector norm or the Lp norm and there cannot be
another Lp calibration error with a different norm order.

Regarding n
1
p�

1
2
p

BS (f) � CEp (f) for 0 < p  2:

Combining equations (12) and (13) (with q = 2) gives the result.

Regarding CEp (f) � CWCEp (f):

In the following, we will use Tonelli’s theorem to split the expectation into two and the Jensen’s
inequality for the convex function |.|p.
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(CEp (f))
p = E

h��f (X)� PY |f(X)

��p
p

i

=
X

k2Y

E [|fk (X)� P (Y = k | f (X))|p]

Tonelli
=

X

k2Y

Efk(X)

⇥
Ef�k(X) [|fk (X)� P (Y = k | f (X))|p | fk (X)]

⇤

Jensen
�

X

k2Y

Efk(X)

⇥��Ef�k(X) [fk (X)� P (Y = k | f (X)) | fk (X)]
��p⇤

=
X

k2Y

Efk(X) [|fk (X)� P (Y = k | fk (X))|p]

def C.1
= (CWCEp (f))

p

(15)

Regarding CWCEp (f) � TCEp (f):

We will use F := f (X) for shorter notation.

(CWCEp (f))
p def C.1

=
X

k2Y

Efk(X) [|fk (X)� P (Y = k | fk (X))|p]

=
X

k2Y

EFk [|Fk � P (Y = k | Fk)|p]

=
X

k2Y

EF [|Fk � P (Y = k | Fk)|p]

= EF

"
X

k2Y

|Fk � P (Y = k | Fk)|p
#

(i)
= EF

"
X

k2Y

��F(k)F
� P

�
Y = (k)F | F(k)F

���p
#

� EF

⇥��F(1)F
� P

�
Y = (1)F | F(1)F

���p⇤

(ii)
= EF [|FC � P (Y = C | FC)|p]
= Ef(X) [|fC (X)� P (Y = C | fC (X))|p]

def C.1
= (TCEp (f))

p

(16)

(i) Order all summands by F . We use notation of order statistics to refer to (k)F the index with the
kth highest rank according to F .
(ii) From (i) follows (1)F = (1)f(X) = argmaxk fk (X) = C.

Regarding TCEp (f) � TCE1 (f):

Let p � q � 1. This makes (.)
p
q a convex function for positive arguments. We will show the more

general TCEp (f) � TCEq (f). From this directly follows TCEp (f) � TCE1 (f).
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TCEp (f)

= (E [|fC (X)� P (Y = C | fC (X))|p])
1
p

=
⇣
E
h
|fC (X)� P (Y = C | fC (X))|q

p
q

i⌘ 1
p

Jensen
� (E [|fC (X)� P (Y = C | fC (X))|q])

1
p

p
q

= (E [|fC (X)� P (Y = C | fC (X))|q])
1
q

= TCEq (f)

(17)

Regarding TCE1 (f) � KS (f):

We will show the more general TCEp (f) � KS (f), from which TCE1 (f) � KS (f) follows.

We will make use of the indicator function for a set A defined as A (a) =

⇢
1, a 2 A
0, else.

(TCEp (f))
p = E [|fC (X)� P (Y = C | fC (X))|p]
Tonelli
= EC

⇥
EfC(X) [|fC (X)� P (Y = C | fC (X))|p | C]

⇤

= EC

⇥
EfC(X)

⇥
[0,1] (fC (X)) |fC (X)� P (Y = C | fC (X))|p | C

⇤⇤

(i)
= EC


max
�2[0,1]

EfC(X)

⇥
[0,�] (fC (X)) |fC (X)� P (Y = C | fC (X))|p | C

⇤�

= EC


max
�2[0,1]

EfC(X)

⇥��
[0,�] (fC (X)) (fC (X)� P (Y = C | fC (X)))

��p | C
⇤�

Jensen
� EC


max
�2[0,1]

��EfC(X)

⇥
[0,�] (fC (X)) (fC (X)� P (Y = C | fC (X))) | C

⇤��p
�

= EC

"
max
�2[0,1]

�����

Z

[0,1]
[0,�] (z) (z � P (Y = C | fC (X) = z)) dPfC(X)|C (z)

�����

p#

= EC

"
max
�2[0,1]

�����

Z

[0,�]
z � P (Y = C | fC (X) = z) dPfC(X)|C (z)

�����

p#

Jensen
�

 
EC

"
max
�2[0,1]

�����

Z

[0,�]
z � P (Y = C | fC (X) = z) dPfC(X)|C (z)

�����

#!p

def C.2
= (EC [KS (f, C)])p

def C.2
= (KS (f))p

(18)

(i) � � �0 =) [0,�] (fC (X)) |fC (X)� P (Y = C | fC (X))|p �
[0,�0] (fC (X)) |fC (X)� P (Y = C | fC (X))|p � 0.

Regarding TCE1 (f) � c · MMCE (f):

This is given in the proof of Theorem 3 of Kumar et al. [30]. Note that Kumar et al. [30] used ECE in
their theorem, but their proof is actually given for TCE1. Since ECE(f) = 0 6=) MMCE (f) = 0,
we have ECE (f) 6� c · MMCE (f).

Regarding TCE1 (f) � ECE (f):

A similar statement for binary models is given in Proposition 3.3 of Kumar et al. [31] or for general
models in Theorem 2 of Vaicenavicius et al. [53]. Since our formulations differ, we provide an
independent proof.
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We will write Bi :=
�
i�1
m , i

m

⇤
. Let B := � ({B1, . . . , Bm}) be the �-algebra generated by the

binning scheme of size m 2 N used for the ECE.

TCE1 (f) = E [|fC (X)� P (Y = C | fC (X))|]
= E [E [|fC (X)� P (Y = C | fC (X))| | B]]
(i)
� E [|E [fC (X)� P (Y = C | fC (X)) | B]|]
= E [|E [fC (X) | B]� P (Y = C | E [fC (X) | B])|]

=
mX

i=1

P (f (X) 2 Bi) ·

|E [fC (X) | f (X) 2 Bi]� P (Y = C | f (X) 2 Bi)|
def 3
= ECE (f)

(19)

(i) We use conditional Jensen’s inequality [5].

D.3 Proposition 3.2

For all ✏ > 0 and surjective f : X ! Pn there exists a joint distribution PX,Y such that for all
E 2 {MMCE,KS,ECE,TCEp,CWCEp | 1  p 2 R} :

E (f) = 0 ^ CE2 (f) � 1� 1

n
� ✏.

Proof. Assume arbitrary ✏ > 0 and surjective f : X ! Pn. Choose PX,Y such that E
h
kf (X)k22

i


1
n + ✏ and

P (Y = k | f (X)) =

⇢
1 , with probability fk (X)
0 , else.

This is possible, since k.k22 : Pn !
⇥
1
n , 1
⇤

and f are surjective, from which folows 8✏ > 0 9x 2
X : 1

n + ✏ � kf (x)k22.

Write F := f (X) and Y := eY (one-hot encoded Y ).

Then we have P (Y = k | Fk) = E [Yk | Fk] = EF�k [E [Yk | F ] | Fk] = Fk and consequently
CWCEp (f) = 0. The other errors follow from Theorem 3.1. But we also have
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(CE2 (f))
2 = E

h��PY |f(X) � f (X)
��2
2

i

= E
h
kE [Y | F ]� Fk22

i

=
X

k2Y

E
h
(E [Yk | F ]� Fk)

2
i

=
X

k2Y

E
h
(E [Yk | F ])2

i
� 2E [E [Yk | F ]Fk] + E

⇥
F 2
k

⇤

=
X

k2Y

E [E [Yk | F ]]� 2E [E [Yk | F ]Fk] + E
⇥
F 2
k

⇤

= 1� 2
X

k2Y

E [E [Yk | F ]Fk] +
X

k2Y

E
⇥
F 2
k

⇤

= 1� 2
X

k2Y

E [E [Yk | Fk]Fk] +
X

k2Y

E
⇥
F 2
k

⇤

= 1� 2
X

k2Y

E
⇥
F 2
k

⇤
+
X

k2Y

E
⇥
F 2
k

⇤

= 1�
X

k2Y

E
⇥
F 2
k

⇤

= 1� E
h
kFk22

i

� 1� 1

n
� ✏

(20)

D.4 Proposition D.2

Proposition 3.2 tells us about the existence of settings such that common errors are insufficient to
capture miscalibration. We might still wonder how likely it is to encounter such a situation in practice.
Indeed, we can come up with a recalibration transformation that is perfect according to these errors
and accuracy-preserving but not calibrated. For this, assume that f : X ! Pn is a trained model.
Define tf : Pn ! Pn to replace the largest entry in its input with the accuracy of model f . The
other entries are set such that the output is a unit vector. A more formal definition is provided in the
proof.

Proposition D.2. For all models f : X ! Pn and E 2 {MMCE,KS,ECE, TCEp | 1  p 2 R} we

have

E
�
tf � f

�
= 0 and ACC

�
tf � f

�
= ACC (f) .

But, tf � f is not calibrated in general.

Proof. Assume we are given a model f : X ! Pn.

Define � : Pn⇥Pn ! Pn to order the entries of its second input according to the values given in the
first input. Let ��1 : Pn⇥Pn ! Pn revert the ordering in the second input according to the entries
of its first input. For easier notation, we will write �u (v) := � (u, v) and ��1

u (v) := ��1 (u, v),
which gives 8u, v 2 P : ��1

u � �u (v) = v. I.e. ��1
u is the inverse of �u given u.

Define cf :=
⇣

ACC (f) , 1�ACC(f)
n�1 , . . . , 1�ACC(f)

n�1

⌘|
2 Pn.

Now, we can give a formal definition of tf , which is defined as tf (p) = ��1
p (cf ).

Regarding accuracy:
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We will use [.]k to denote entry with index k of the expression inside the brackets. Since we can
assume ACC (f) > 1�ACC(f)

n�1 in every practical setting, we have

argmax
k

tfk � f (X)

= argmax
k

h
��1
f(X) (cf )

i

k

(i)
= argmax

k

h
��1
f(X) � �f(X) (f (X))

i

k

= argmax
k

[f (X)]k

= argmax
k

fk (X) .

(21)

(i) cf and �f(X) (f (X)) have their largest entry at index k = 1.

This states that tf is accuracy-preserving.

Regarding zero TCE:
Note that ACC(f) = P (Y = argmaxk fk (X)). Using this, we have
P
⇣
Y = argmaxk t

f
k � f (X) | maxk t

f
k � f (X)

⌘
= P (Y = argmaxk fk (X) | ACC (f)) =

P (Y = argmaxk fk (X)) = ACC (f) = maxk t
f
k � f (X). It follows TCEp

�
tf � f

�
= 0.

Proof for the other errors follows from Theorem 3.1.

Even though tf is the perfect transformation according to ECE and accuracy, it is not the correct
choice if the whole model prediction is relevant and supposed to be calibrated.

D.5 Proposition 3.3

We will write Ŷ = argmaxk fk (X) for the top-label prediction of classifier f .

Define

µ(n) =
mX

i=1

pi

(r
2

⇡
�i exp

✓
� µ2

i

2�2
i

◆
+ µi


1� 2�

✓
�µi

�i

◆�)
(22)

with
µi = E [fC (X) | fC (X) 2 Bi]| {z }

=confi

�P
⇣
Y = Ŷ | fC (X) 2 Bi

⌘

| {z }
=acci

(23)

as the true unknown difference between model confidence and model accuracy in bin i,

�2
i =

1

ni
V [fC (X) | fC (X) 2 Bi]| {z }

V conf
i :=

+
1

ni
acci (1� acci)| {z }

V acc
i :=

(24)

as the combined model and accuracy sample variance in bin i, and � as the cumulative distribution
function (cdf) of a standard normal distribution.

The ECE for data size n and m bins is estimated by

ˆECE(n) =
mX

i=1

p̂b
��� ˆaccb � ˆconfb

��� (25)

where p̂i = ni
n is the estimated bin frequency, ˆacci = 1

ni

P
j

n
Ŷj = Yj ^ Ŷj 2 Bi

o
the es-

timated bin accuracy, ˆconfi = 1
ni

P
j Ŷj

n
Ŷj 2 Bi

o
the estimated bin confidence, and ni =
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P
j

n
Ŷj 2 Bi

o
is the number of data instances in bin i. We assume equal width binning, i.e.

Bi =
�
i�m
m , i

m

⇤
.

We have

E
h

ˆECE(n)

i
⇡ µ(n) � ECE ,

dµ(n)

dn
< 0 ,

d2µ(n)

(dn)2
> 0 and

d2µ(n)

dn dECE
> 0.

Proof. First,

E
h

ˆECE(n)

i

def
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"
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���

#
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o
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(i)
⇡ 1
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=

mX

i=1

P
⇣
Ŷ 2 Bi

⌘
E
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���
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(26)

(i) ’knowing’ a single summand in a mean estimator does not change much.

As one can see, the ECE estimator approximately consists of several E
h��� ˆacci � ˆconfi

���
i
. Ac-

cording to the central limit theorem (CLT), we have limni!1

✓
ˆacci�accip

V acc
i /ni

◆
⇠ N (0, 1) and

limni!1

✓
ˆconfi�confip

V conf
i /ni

◆
⇠ N (0, 1). We assume ˆacci and ˆconfi approximately follow the nor-

mal distributions given by the CLT, i.e. ˆacci ⇠ N

⇣
acci,

V acc
i
ni

⌘
and ˆconfi ⇠ N

⇣
confi,

V conf
i
ni

⌘
.

This gives ˆacci � ˆconfi ⇠ N

⇣
acci � confi,

V conf
i +V acc

i
ni

⌘
. 4 If X ⇠ N

�
µ,�2

�
, then |X| is a folded

normal distribution (FN) with E [|X|] =
q

2
⇡� exp

⇣
� µ2

2�2

⌘
+ µ

⇥
1� 2�

�
�µ

�

�⇤
with � the cdf of a

standard normal distribution [52]. We also have
r

2

⇡
� exp

✓
� µ2

2�2

◆
+ µ

h
1� 2�

⇣
�µ

�

⌘i
= E [|X|] � |E [X]| = |µ| (27)

(by Jensen’s inequality) and

4http://www.stat.ucla.edu/⇠nchristo/introstatistics/introstats_normal_linear_combinations.pdf
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(28)

Consequently,
��� ˆacci � ˆconfi

��� follows approximately a folded normal distribution with

E
h��� ˆacci � ˆconfi

���
i
⇡
r

2

⇡
�i exp

✓
� µ2

i

2�2
i

◆
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✓
�µi
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(29)

where µi and �i are defined as above in equations (23) and (24).
Consequently, by combining equations (27), (29) and (26) we get the first result:

E
h

ˆECE(n)

i
⇡

mX

i=1

pi

(r
2

⇡
�i exp

✓
� µ2

i

2�2
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◆
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| {z }
=µ(n)

�
mX

i=1

pi |µi|

=
mX

i=1

pi |acci � confi|

= ECE

(30)

As we can see, the average outcome depends on �i, which further depends on ni, i.e. the data size
influences our expected result. To get the next result, which shows the trend of this influence, we
calculate the first derivative:
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(31)

This means µ(n) is monotonically decreasing with growing data size.

Next, we have
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This means, in combination with the previous result, µ(n) is a strictly convex and monotonically
decreasing function of the data size nb. The ECE estimate is increasingly sensitive to the data size for
smaller data sizes, while for larger data sizes the sensitivity vanishes.
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Next, we analyze how the goodness of calibration influences this behaviour. Recall that µi =
acci � confi, i.e. µ2

i is the ground truth squared calibration error of bin i. We have
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Consequently, if µ2
i increases (i.e. calibration gets worse), the gradient d

dnE
h

ˆECE(n)

i
monotonically

approaches zero from beneath. Contrary, the gradient is the highest when µi = 0. In other words,
the sensitivity of the ECE estimate w.r.t. the data size monotonically depends on the goodness of
calibration. With better calibration, the sensitivity gradually gets worse.

Further, we have

dµ2
i
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=
d

dECE
(acci � confi)

2

=
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dECE
|acci � confi|2
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(34)

Combining equations (33) and (34) gives d2

dndECEµ(n) > 0 as stated in the proposition.

D.6 Lemma 4.1

Let P be a set of arbitrary distributions for which exists a proper score S. As-
sume we have random variables Q and Y with Q,PY ,PY |Q 2 P for which
gS (PY ) ,E

⇥
gS
�
PY |Q

�⇤
,E [|S (Q, Y )|] ,E [|S (PY , Y )|] < 1. The last two expectations are re-

quired for Fubini’s theorem.
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D.7 Theorem 4.3

For all proper calibration errors with infP2P gS (P ) 2 R, there exists an associated calibration
upper bound

US (f) � CES (f)

defined as US (f) := E [S (f (X) , Y )]� infP2P gS (P ). Under a classification setting and further
mild conditions, it is asymptotically equal to the CES with increasing model accuracy, i.e.

lim
ACC(f)!1

US (f)� CES (f) = 0.

Proof. Regarding existence of upper bound
Assuming infQ2P gS (Q) 2 R.

CES (f)
le D.1
= E [S (f (X) , Y )]� E

⇥
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 E [S (f (X) , Y )]� E

inf

Q2P

gS (Q)

�

= E [S (f (X) , Y )]� inf
Q2P

gS (Q)

th 4.3
= US (f)

(35)

Regarding accuracy limes
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Assuming mild conditions gS : Pn ! R is continuous and gS (e1) = gS (e2) = · · · = gS (en). See
Figure 2 in Gneiting & Raftery [13] for an example when this is violated. S does not have to be
symmetric for this to hold.
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gS (Q)� E [gS (e1)]
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gS (Q)� gS (e1)

(iii)
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gS (Q)� inf
Q2Pn

gS (Q)

= 0

(36)

(i) Perfect accuracy results in deterministic predictions, i.e. 8z 2
Pn : limACC(f)!1 PY |f(X)=z 2 {ei | n � i 2 N}. If we define i : X ! Nn as
i (X) := argmaxk limACC(f)!1 P (Y = k | f (X)), then we have ei(X) = limACC(f)!1 PY |f(X).
(ii) Follows from initial condition.
(iii) Since gS is concave and by the definition of Pn, we have

8z 2 Pn9�1, . . . ,�n � 0,
X

k

�k = 1: gS (z) = gS

 
X

k

�kek

!
�
X

k

�kgS (ek) =
X

k

�kgS (e1) = gS (e1) .

(37)
From this follows that gS (e1) = infQ2Pn gS (Q).

D.8 Proposition 4.5

Given injective functions h, h0 : P ! P we have

US (h � f)� US (f) = CES (h � f)� CES (f) ,

US (h � f) > US (h0 � f) () CES (h � f) > CES (h0 � f)

and (assuming S is differentiable)

dUS (h � f)
dh

=
dCES (h � f)

dh
.
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Proof.

US (h � f)� US (h0 � f)
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�⇤

le D.1
= CES (h � f)� CES (h0 � f)

(38)

from which follows US (h � f) � US (f) = CES (h � f) � CES (f) and US (h � f) >
US (h0 � f) () CES (h � f) > CES (h0 � f). Further we have for differentiable S

dUS (h � f)
dh

th 4.3
=

dE [S (h � f (X) , Y )]� infQ2Pn gS (Q)

dh

=
dE [S (h � f (X) , Y )]

dh

=
dE [S (h � f (X) , Y )]� E

⇥
gS
�
PY |f(X)
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(i)
=

dE [S (h � f (X) , Y )]� E
⇥
gS
�
PY |h�f(X)

�⇤

dh
le D.1
=

dCES (h � f)
dh

(39)

(i) Since h is injective, we have 8z 2 Pn : {x 2 X | f (x) = z} = {x 2 X | h � f (x) = h (z)}
and {(x, y) 2 X ⇥ Y | f (x) = z} = {(x, y) 2 X ⇥ Y | h � f (x) = h (z)}. Consequently
P (Y | f (X) = z) = P(Y,f(X)=z)

P(f(X)=z) = P(Y,h�f(X)=h(z))
P(h�f(X)=h(z)) = P (Y | h � f (X) = h (z)).

E Recalibration transformations

E.1 calibrated and accuracy-preserving

The binary case is directly given in the multi-class case, but if we only have a scalar output, which is
common for binary classification, deriving the transformation is not that trivial. Consequently, we
handle this case separately.

We will also make use of the following lemma.
Lemma E.1. For random variables Y and X , we have

P (Y | P (Y | X)) = P (Y | X) .

Proof. Proof directly follows from Proposition 1 in Vaicenavicius et al. [53] with h ⌘ id.

E.1.1 Binary case (scalar output)

Assume we are given f : X ! [0, 1].

Define tf : [0, 1] ! [0, 1] as

tf (p) =

⇢
P (Y = 1 | f (X) < 0.5) , if p < 0.5
P (Y = 1 | f (X) � 0.5) , else

(40)
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The first line has as unbiased estimator the precision (or positive predictive value), the second the
false omission rate.

This gives

P
�
Y = 1 | tf � f (X)

�
=

⇢
P (Y = 1 | P (Y = 1 | f (X) < 0.5)) , if f (X) < 0.5
P (Y = 1 | P (Y = 1 | f (X) � 0.5)) , else

=

⇢
P (Y = 1 | f (X) < 0.5) , if f (X) < 0.5
P (Y = 1 | f (X) � 0.5) , else

= tf � f (X)

(41)

i.e. tf � f is calibrated. Further, if P (Y = 1 | f (X) < 0.5) < P (Y = 1 | f (X) � 0.5), then tf � f
has the same accuracy as f . This can be assumed as given for any meaningful classifier. The reduction
in sharpness directly follows from the analog proof in the multi-class case.

E.1.2 Multi-class case (vector output)

Let r : Pn ! A with A =
n
a 2 {0, 1}K |

P
k ak = 1

o
be defined as r (p) := eargmaxk pk . In

words, r returns a vector of only zeros except a ’1’ at index argmaxk pk for input p 2 Pn.

Define tf : Pn ! Pn as

tf (p) = P (Y | r � f (X) = r (p)) (42)

(For easier notation, we say P (Y ) 2 Pn )

Given a dataset {(X1, Y1) , . . . , (Xm, Ym)}, an unbiased estimator of P (Y | r � f (X) = a) 8a 2
A is Pa = 1

|Ia|
P

i2Ia
eYi with Ia = {i 2 {1, . . . ,m} | r � f (Xi) = a}. And since |A| = n,

estimation is also feasible for higher number of classes.

We also have

P
�
Y | tf � f (X)

�
= P (Y | P (Y | r � f (X) = r � f (X)))

= P (Y | P (Y | r � f (X)))

= P (Y | r � f (X))

= tf � f (X)

(43)

Consequently, tf � f is calibrated.

If argmaxk fk (X) = argmaxk P (Y = k | argmaxk fk (X)), then argmaxk fk (X) =
argmaxk P (Y = k | r � f (X)) = argmaxk P (Y = k | r � f (X) = r � f (X)) = argmaxk t

f
k �

f (X), i.e. tf is accuracy preserving. Recall that argmaxk fk (X) is the predicted top-label, making
argmaxk P (Y = k | argmaxk fk (X)) the most likely outcome given a predicted top-label. So, we
can restate the above as: tf is accuracy preserving if for every predicted top-label the most likely
outcome is that label. This should hold in every meaningful practical setting, or else tf might as well
improve the accuracy.

tf � f has lower sharpness as f w.r.t. a proper score S. This is a special case of the following
proposition, where we write SHARPS (f) as the sharpness of model f given by the sharpness term
in Lemma 4.1 of a proper score S.
Proposition E.2. Assume Lemma 4.1 holds given a proper score S. For a function m : Pn ! Pn

and model f : X ! Pn, we have

SHARPS (f) � SHARPS (m � f) .

Proof. Since we assumed Lemma 4.1 holds, the conditions for Fubini’s theorem are met. We will
use:
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SHARPS (f)
le 4.1
= E

⇥
dS
�
PY ,PY |f(X)

�⇤

def C.6
= E

⇥
sS
�
PY ,PY |f(X)

�⇤
� E

⇥
gS
�
PY |f(X)

�⇤

def C.5
=

Z Z
S (PY , y) dPY |f(X)=z (y) dPf(X) (z)� E

⇥
gS
�
PY |f(X)

�⇤

=

Z
S (PY , y) dPY,f(X) (y, z)� E

⇥
gS
�
PY |f(X)

�⇤

Fubini
=

Z
S (PY , y)

Z
dPf(X)|Y=y (z) dPY (y)� E

⇥
gS
�
PY |f(X)

�⇤

=

Z
S (PY , y) dPY (y)� E

⇥
gS
�
PY |f(X)

�⇤

def C.6
= gS (PY )� E

⇥
gS
�
PY |f(X)

�⇤

(44)

Now, we can show

SHARPS (f)
eq (44)
= gS (PY )� E

⇥
gS
�
PY |f(X)

�⇤

= gS (PY )� Em�f(X)

⇥
Ef(X)

⇥
gS
�
PY |f(X)

�
| m � f (X)

⇤⇤

Jensen
� gS (PY )� Em�f(X)

⇥
gS
�
Ef(X)

⇥
PY |f(X) | m � f (X)

⇤�⇤

= gS (PY )� Em�f(X)

⇥
gS
�
Ef(X) [E [eY | f (X)] | m � f (X)]

�⇤

= gS (PY )� Em�f(X) [gS (E [eY | m � f (X)])]

= gS (PY )� Em�f(X)

⇥
gS
�
PY |m�f(X)

�⇤

eq (44)
= SHARPS (m � f)

(45)

If the underlying score is the log score, then the sharpness is the mutual information between
predictions and target random variable. Consequently, we can interpret the sharpness as generalized
mutual information. This gives the proposition the following intuitive meaning: There exists no
function, that can transform a random variable in a way such that the mutual information with another
random variable is increased. Or, in other words, we cannot add ’information’ to a random variable
by transforming it in a deterministic way.

F Proper U-scores

In this section we introduce a generalization of proper scores. Based on U-statistics, we define
proper U-scores. This allows us to naturally extend the definition of proper calibration errors to be
based on proper U-scores instead of just proper scores. Consequently, we can cover more calibration
errors with desired properties. For example, we can show that the squared KCE [57] is a proper
calibration error based on a U-score (but not on a conventional score). The squared KCE has an
unbiased estimator, thus, this extension of the definition of proper calibration errors has substantial
practical value.

F.1 Background

Let X1, . . . , Xn be n iid random variables and � (x1, . . . , xr) a function with r  n. Let P =
{a 2 {1, . . . , n}r | a1 < · · · < ar} be the set of r sized ordered permutations out of n, i.e. |P| =

�n
r

�
.
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Then U = 1
|P|
P

a2P � (Xa1 , . . . , Xar ) is a unbiased minimum-variance estimator (UMVE) of
E [� (X1, . . . , Xr)] and called U-statistic [21].

F.2 Contributions

Assume we have two measure spaces (X ,FX) and (Y ,FY ), and corresponding PX and PY sets
of possible probability measures. We want to score a conditional distribution P : X ! PY given
another conditional distribution Q : X ! PY .
Definition F.1. A U-scoring rule S is a function of the form

S : P
r
Y ⇥ Y

r ! R

with r 2 N and R :� R [ {�1,1} .

It takes r predictions and events and returns a score. For r = 1, U-scoring rules are scoring rules in
the common definition.
Definition F.2. A U-scoring function sS based on a U-scoring rule S is defined as

sS : P
2r
Y ! R

(P1, . . . , Pr, Q1, . . . , Qr) 7!
Z

Y r

S (P1, . . . , Pr, y1, . . . , yr) d (Q1 ⇥ · · ·⇥Qr) (y)
(46)

For r = 1, U-scoring functions are scoring functions in the common definition. If
Q1, . . . , Qr are the distributions of Y1, . . . , Yr we can also write s (P1, . . . , Pr, Q1, . . . , Qr) =
E [S (P1, . . . , Pr, Y1, . . . , Yr)].
Definition F.3. A U-scoring function sS (and its U-scoring rule S) is defined to be proper if and
only if

8P 2 PX , X1, . . . , Xr
iid⇠ P, 8P,Q : X ! PY :

EsS (P (X1) , . . . , P (Xr) , Q (X1) , . . . , Q (Xr))

� EsS (Q (X1) , . . . , Q (Xr) , Q (X1) , . . . , Q (Xr))

(47)

and strictly proper if and only if additionally

8P 2 PX , X1, . . . , Xr
iid⇠ P, 8P,Q : X ! PY :

Q 6= P

=) EsS (P (X1) , . . . , P (Xr) , Q (X1) , . . . , Q (Xr))

> EsS (Q (P1) , . . . , Q (Pr) , Q (P1) , . . . , Q (Pr))

(48)

In words, sS (or S) is proper if comparing Q with itself gives the best expected value, and strictly
proper if no other P 6= Q can achieve this value. The U-statistic of a proper sS is a UMVE [21]. For
r = 1, proper U-scores are identical to proper scores if PX is sufficiently large. This holds since for
function f : X ! R and appropriate PX we have:

�
8µ 2 PX :

R
fdµ = 0

�
() f = 0.

Definition F.4. g (Q1, . . . , Qr) = s (Q1, . . . , Qr, Q1, . . . , Qr) is called the (generalized or associ-
ated) entropy.
Definition F.5. Given a proper U-score S, the associated U-divergence d is defined as

dS : P
2r
Y ! R�0

(P1, . . . , Pr, Q1, . . . , Qr) 7! sS (P1, . . . , Pr, Q1, . . . , Qr)� gS (Q1, . . . , Qr) .
(49)

If S is a strictly proper U-score, Q1, . . . , Qr iid and P1, . . . , Pr iid, then EdS is zero if and only if
8i 2 {1, . . . , r} : Qi

a.s.
= Pi. This follows directly by setting Pi = P (Xi) and Qi = Q (Xi) in

equation (48).

Assuming P1, . . . , Pr are random variables and PY |P1
, . . . ,PY |Pr

2 PY are
the conditional distribution of independent random variables Y1, . . . , Yr ⇠
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PY , where each Yi only depends on Pi. Under the condition that
gS (PY , . . . ,PY ) ,E

⇥
gS
�
PY |P1

, . . . ,PY |Pr

�⇤
,E [|S (P1, . . . , Pr, Y1, . . . , Yr)|] ,E [|S (PY , . . . ,PY , Y1, . . . , Yr)|] <

1, we have the decomposition

E [S (P1, . . . , Pr, Y1, . . . , Yr)]

= E
⇥
sS
�
P1, . . . , Pr,PY |P1

, . . . ,PY |Pr

�⇤

= gS (PY , . . . ,PY )

+ E
⇥
dS
�
P1, . . . , Pr,PY |P1

, . . . ,PY |Pr

�⇤

� E
⇥
dS
�
PY , . . . ,PY ,PY |P1

, . . . ,PY |Pr

�⇤
.

(50)

Proof is identical to proof of Lemma 4.1. The first term is the generalized entropy, the second the
calibration, and the third the sharpness term.

Thus, every proper U-score S induces a proper calibration error defined as

CES (f)

= E
⇥
dS
�
f (X1) , . . . , f (Xr) ,PY |f(X1), . . . ,PY |f(Xr)

�⇤

with iid X1, . . . , Xr.

(51)

Since proper U-scores are identical to proper scores for r = 1, this definition of proper calibration
errors does not contradict definitions or findings in the main paper. For any strictly proper U-score S,
CES of model f is zero if and only if f is calibrated. This directly follows from the property of the
U-divergence. But, it should be noted that we cannot assume every property holding for r = 1 also
holds for r 2 N. Investigating this can be seen as potential future work.

An example with r = 2:

For positive definite kernel matrix k, define

S (P1, P2, y1, y2) = (P1 � ey1)
| k (P1, P2) (P2 � ey2) (52)

which gives

gS (Q1, Q2) = 0 (53)

and

dS (P1, P2, Q1, Q2)

= (P1 �Q1)
| k (P1, P2) (P2 �Q2)

(54)

and the calibration term

E
⇥
dS
�
P1, P2,PY |P1

,PY |P2

�⇤

= E
⇥�
P1 � PY |P1

�|
k (P1, P2)

�
P2 � PY |P2

�⇤ (55)

If P1, P2 ⇠ Pf(X), then this is the squared KCE (SKCE) of f [57]. Widmann et al. [57] proved
that the SKCE is zero if and only if f is calibrated, and f is calibrated if f (X) = PY |f(X), which
includes f (X) = PY |X . Consequently, the associated divergence is not uniquely minimized by the
target distribution. Thus, the score of the SKCE is proper but not strictly proper.

Interestingly, E
⇥
dS
�
PY ,PY ,PY |f(X),PY |f(X0)

�⇤
= 0 for X,X 0 iid, i.e. the score of the SKCE

only measures calibration and ignores sharpness. This fact is consistent with all previous findings of
the SKCE.
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G Extended experiments

In this section, we provide further details of the experimental setup and report additional results.
This includes results in the squared space, where the upper bound estimator is minimum-variance
unbiased. Further, we present results on the Friedman 1 regression problem, which is also used by
Widmann et al. [58].

G.1 Details on the ECE estimator simulation in Figure 2

We simulate model predictions of a 100 class classification problem with validation set size of
10’000 and test set size of 10’000. For this, we sample the model predictions from a multivariate
logistic normal distribution [1], since it is a lot more flexible in its covariance matrix than a dirichlet
distribution. This brings the samples closer to real-world model predictions. We sample the covariance
matrix from an inverse-wishart distribution with a scale matrix of I100/0.01. The scale matrix was
tempered in such a way to receive model predictions with ⇡ 87.6 % classification accuracy. We will
explain the label sampling in the following. Again, we aimed for realistic values.

Now, we want a model-target relation of which we know that the model is calibrated. For this, we
iterate over every model prediction and use each model prediction as a categorical distribution from
which we sample the label. Consequently, each model prediction is the ground truth distribution
of each label. This gives us calibrated prediction-target pairs, which we used to estimate the ECE
of the perfectly calibrated ’model’ in Figure 2 (blue line). Next, to gradually decrease the level of
calibration, we scale the predictions via different temperatures in the logit space. Thus, we know that
the ’model’ of mediocre calibration (orange line) is worse than the ’model’ of perfect calibration, and
better than the ’model’ of bad calibration (green line).

G.2 Details on experimental setup of Section 5

The experiments are conducted across several model-dataset combinations, for which logit sets are
openly accessible 5 [29, 45]. This includes the models LeNet 5 [32], ResNet 50 (with and without
pretraining), ResNet 50 NTS, ResNet 101 (with and without pretraining) ResNet 110, ResNet 110
SD, ResNet 152, ResNet 152 SD [20], Wide ResNet 32 [62], DenseNet 40, DenseNet 161 [22], and
PNASNet5 Large [33] and the datasets CIFAR10, CIFAR100 [27], and ImageNet [9]. We did not
conduct model training by ourselves, and refer to [29] and [45] for further details. Validation and test
set splits are predefined in every logit set. We include TS, ETS, and DIAG as injective recalibration
methods. For optimization of TS and ETS, we modified the available implementation of Zhang et al.
[63] and used the validation set as calibration set. For DIAG, we used the exact implementation of
Rahimi et al. [45].

For every dataset we investigate ten ticks of different (sampled) test set sizes. The ticks are determined
to be equally apart in the log2 space. The minimum is always 100 and the maximum the full available
test set size. We use repeated sampling with subsequent averaging to counteract the increased
estimation variance for low test set sizes. The estimated standard errors are also shown in the plots,
but they are often barely visible. The number of samples in each tick is along the following:

• Tick 1 (n = 100): 20000
• Tick 2: 15842
• Tick 3: 12168
• Tick 4: 8978
• Tick 5: 6272
• Tick 6: 4050
• Tick 7: 2312
• Tick 8: 1058
• Tick 9: 288
• Tick 10 (full test set): 2

5https://github.com/markus93/NN_calibration/ and https://github.com/AmirooR/IntraOrderPreservingCalibration
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The seeds for the sampling of the experiments have been saved. Since we choose the amount of
samples such that the estimation standard error is low, we expect similar results no matter the chosen
seed.

All experiments have been computed on a machine with 1007 GB RAM and two Intel(R) Xeon(R)
Gold 6230R CPU @ 2.10GHz.

G.3 Estimated model calibration

Calibration errors according to different estimators and for different model-dataset combinations are
shown in figure 5 and first row of figure 7 (in squared space). These experiments confirm that the
proposed upper bound is stable across a multitude of settings.

(a) ResNet 152 on ImageNet (b) LeNet 5 on CIFAR10 (c) ResNet 110 on CIFAR100

(d) ResNet 110 SD on CIFAR100 (e) ResNet 50 on BIRDS (f) ResNet 101 on CARS

(g) Pretrained ResNet 101 on CARS (h) ResNet 50 NTS on BIRDS (i) PNASNet5 Large on ImageNet

(j) Pretrained ResNet 50 on CARS (k) ResNet 110 SD on CIFAR100

Figure 5: Different calibration error estimates versus the test set size. The red line corresponds to
the square root of the Brier score which is an upper bound of CE2. The other estimators are lower
bounds.
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G.4 Recalibration improvement

In the main text we investigated recalibration improvement of common estimators for the calibration
error and compared their reliability to RBS. According to Proposition 4.5 and since RBS is asymptot-
ically unbiased and consistent, it can be regarded as a reliable approximation of the real improvement
of the recalibration methods. However, if we move to the squared space, our proposed upper bound is
even provably reliable since it has a minimum-variance unbiased estimator. This motivates further
experiments comparing existing calibration errors in the squared space, which we describe in the fol-
lowing. Here, we first report additional results comparing common estimators to RBS; we then report
results in the squared space. We start with a formal description of the problem and experimental setup.

Let D be a sampled subset of the full test set. Let f be the underlying model and h an optimized
recalibration method. Let e be an calibration error estimator taking a dataset and a model as inputs.
The recalibration improvement according to estimator e is estimated via e (D, f)� e (D,h � f).

Recalibration improvement of common estimators We compute the recalibration improvement
of common estimators on several test set samples of a given size and plot the average of these on the
y-axis. We extend the results reported in the main text by covering additional datasets, models and
architectures. These extended experiments confirm the findings reported in the main text, namely that
only RBS reliably quantifies the improvement in calibration error after recalibration (Fig. 6; standard
errors are shown).

Recalibration improvement in the squared space The recalibration improvement in the squared
space according to estimator e is estimated via (e (D, f))2� (e (D,h � f))2. The results are depicted
in Figure 7. For CIFAR10, we also included the KDE estimator for CE2

2 according to [43]. Only the
Brier score (square of RBS) yields provably unbiased estimates of the true recalibration improvement
w.r.t. CE2

2. In contrast to our approach, all other estimators are sensitive to test set size and/or
substantially underestimate the true recalibration improvement in squared space.

For larger subsets of the CIFAR100 test set, the automatic bandwidth optimization for KDE CE2

does not return a valid bandwidth. These cases are omitted from Figure 7b and 7e. We also omitted
KDE CE1 as it shows similar behaviour as KDE CE2 but is shifted substantially towards the negative
like in the CIFAR10 case (Fig. 7d).

G.5 Variance regression

In the following, we give more details on the variance regression experiment in the main paper, but
also add further results of the Friedman 1 regression problem.

In all following scenarios, we are interested in the effect of recalibration towards predictive uncertainty.
For this, we use Platt scaling (x ! wx + b with parameters w, b 2 R) of the variance output and
optimize w and b with the L-BFGS optimizer on the validation set. Further, since Platt scaling is
injective, we apply Theorem 4.3 and Proposition 4.5 to treat the DSS score as an calibration error for
recalibration. Consequently, optimizing Platt scaling with the DSS score is equivalent to optimizing
the associated calibration error.

We will use this recalibration procedure in each iteration during model training, but without modifying
the model for the next training step.

Widmann et al. [58] used the MSE as training objective, while we use the DSS, as it is a natural
extension of the MSE to variance regression.

We repeat each experiment with five distinct seeds and aggregate the results, giving the characteristic
error bands in each figure.

G.5.1 UCI dataset Residential Building

The Residential Building dataset consists of 107 features and 372 data instances. To have similar
conditions as the Friedman 1 regression problem in the next section, we split the dataset into a
training, validation, and test set with sizes 100, 100, and 173. We use a fully-connected mixture
density network as Widmann et al. [58], except we are also using an output node for the variance
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(a) TS applied to ResNet 152
on ImageNet

(b) TS applied to LeNet 5
on CIFAR10

(c) TS applied to ResNet 110
on CIFAR100

(d) TS applied to ResNet 110 SD
on CIFAR100

(e) TS applied to ResNet 50
on BIRDS

(f) DIAG applied to ResNet 101
on CARS

(g) DIAG applied to
pretrained ResNet 101 on CARS

(h) DIAG applied to
ResNet 50 NTS on BIRDS

(i) DIAG applied to PNASNet5 Large
on ImageNet

(j) DIAG applied to
pretrained ResNet 50 on CARS

(k) ETS applied to ResNet 110 SD
on CIFAR100

Figure 6: Different calibration improvement estimates versus the test set size. The red line corresponds
to the square root of the Brier score.

prediction, and reduce its size for a more stable training. Specifically, it consists of 107 input nodes,
200 hidden nodes, and 2 output nodes. Similar to Widmann et al. [58], we use Adam as model
optimizer with default parameters (0.001 learning rate, 0.9 first momentum decay, 0.999 second
momentum decay).

We show similar results as in Figure 4 but with aggregations from different runs with distinct seeds.
The evaluations are depicted in 8 and repeat the findings in the main paper.
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(a) DenseNet 40 on CIFAR10 (b) Wide ResNet 32 on CIFAR100 (c) DenseNet 161 on ImageNet

(d) DenseNet 40 on CIFAR10 (e) Wide ResNet 32 on CIFAR100 (f) DenseNet 161 on ImageNet

Figure 7: First row: Different squared calibration error estimates versus the test set size. The red line
corresponds to the Brier score which is an upper bound of CE2

2. The other errors are lower bounds.
Second row: Estimated improvements in the squared space of injective recalibration methods in
different settings. Our approach captures the true improvement w.r.t. CE2

2 in an unbiased manner.

G.5.2 Friedman 1

The Friedman 1 regression problem consists of ten feature variables but only five influence the target
variable [11]. The target variable is given by

Y = 10 sin(⇡X1X2) + 20(X3 � 0.5)2 + 10X4 + 5X5 + ✏ (56)

with input Xi ⇠ U (0, 1) independently uniformly distributed for i = 1, . . . , 10, and noise ✏ ⇠
N (0, 1). It was used lately to investigate model calibration in the regression case [58]. We slightly
modify the Friedman 1 regression problem to have varying variance depending on the sixth feature
variable, i.e. ✏ ⇠ N (0, 0.5 +X6). This makes it non-trivial to give an estimate of the predictive
uncertainty in the form of the predicted variance. We sample a training, validation, and test set, each
of size 100 similar to Widmann et al. [58].

We use the same fully-connected mixture density network as Widmann et al. [58], except we are
also using an output node for the variance prediction. Further, we use the same training details as
Widmann et al. [58]. We repeat each run three times and aggregate the results.

We again compare DSS, SKCE, and average predicted variance throughout model training with and
without recalibration. We depict the performance according to various errors during model training in
Figure 9. As can be seen, recalibration adjusts overfitting of the predicted variance. Consequently, the
uncertainty communication of the model is improved. Further, the SKCE seems to be less influenced
by the variance calibration and more so by the mean calibration. This is a significant drawback when
uncertainty communication is done via the predicted variance.
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Figure 8: Left: Average predicted variance throughout model training before and after recalibration.
Initially, due to a bad fit, recalibration adjusts the variance accordingly for better communicated
uncertainty. Once the model fit improves, the predicted variance requires less adjustment due to less
uncertainty in each prediction. Middle: DSS communicates reasonably changes in the variance due
to recalibration. Right: SKCE fails to capture the variance trend and behaves erratically.
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Figure 9: Upper left: DSS shows that overfitting occurs at some point during training. Recalibration
successfully adjusts this overfit. This indicates that most of the overfit is regarding variance and not
mean prediction. Upper right: Average predicted variance starting from the point of overfitting.
Recalibration adjusts the steadily decreasing predicted variance to a constant level. Lower left:
SKCE signals improved calibration at the start of training but remains relatively unchanged by the
variance overfit. Lower right: The MSE curve confirms that the predicted mean is not overfitted and
suggests the SKCE is more sensitive to the calibration of the mean than the calibration of the variance
estimate. Our recalibration does not influence the predicted mean, thus we omit the recalibrated
model from this subfigure.
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