
A Appendix

A.1 Satisfying inequality constraints everywhere for componentwise convexity

For componentwise convexity, Ei in (6) is the set of one-dimensional convex functions and Ci is given
by, with (t1, . . . , tmi) = (t(Si)

(1) , . . . , t
(Si)
(mi)

),

Ci =

⇢
c 2 Rmi ; 8j = 3, · · · ,mi :

cj � cj�1

tj � tj�1
�

cj�1 � cj�2

tj�1 � tj�2

�
. (17)

We can see that, for each i 2 {1, . . . , d} and each x�i 2 [0, 1]d�1, the one-dimensional cut
u 2 [0, 1] 7! YS(u,x�i) (where only the input i is varying) is convex if and only if each additive
component Yi,Si is convex on [0, 1]. This happens if and only if the mi � 2 inequality constraints
in (17) are satisfied.

A.2 Speed-up of numerical implementation

Notation. The expression (9) can be rewritten in the matrix form Yn :=
Pd

i=1�i⇠i =  ⇠ with
 = [�1, . . . ,�d] an n⇥m matrix and ⇠ = [⇠>1 , . . . , ⇠

>
d ]

> an m⇥ 1 vector. With this notation, we
have the following expressions for µc and ⌃c (see Section 3.3):

µc = ⌃ 
>C�1yn,

⌃c = ⌃�⌃ >C�1 ⌃,

where C =  ⌃ > + ⌧
2In and ⌃ = bdiag(⌃1, . . . ,⌃d) is an m⇥m block diagonal matrix.

The computation of C�1, required in GP predictions and estimation of the covariance parameters
via maximum likelihood, can be performed more efficiently when m ⌧ n using properties of
matrices [28, 29]. Next, we detail how the computational complexity of C�1 can be reduced from
O(n3) to O(m3). We also provide an efficient computation of the determinant |C| that is required in
covariance parameter estimation.

Computation of C�1. To avoid numerical instability issues, we first rewrite C in terms of the
Cholesky decomposition ⌃ = LL>. Here, L is an m ⇥ m block lower-triangular matrix given
by L = bdiag(L1, · · · ,Ld) with Li the Cholesky decomposition of ⌃i for i = 1, . . . , d. Thus,
C�1 = [( L)Im( L)> + ⌧

2In]�1. Now, by applying the matrix inversion lemma (see, e.g., [28],
Appendix A.3), we obtain:

C�1 = [( L)Im( L)> + ⌧
2In]

�1 = ⌧
�2[In � L(⌧2Im +L> > L)�1L> >].

We need to compute now the inversion of the m⇥m matrix A = ⌧
2Im +L> > L. Let eL be the

Cholesky decomposition of A. Denote P =  L. Then C�1 is given by

C�1 = ⌧
�2[In � (eL�1P>)> eL�1P>].

Since eL is a lower triangular matrix, then eLM = P> can be sequentially solved in M .

In addition to reducing complexity to O(m3) for m ⌧ n, some of the intermediate steps here can be
parallelized. For instance, the computation of the d Cholesky matrices Li with mi < m.

Computation of |C|. From [28] (Appendix A.3), and considering the Cholesky decomposition
⌃ = LL>, we have that the determinant |C| is given by

|C|= |( L)Im( L)> + ⌧
2In|= ⌧

2(n�m)
|⌧

2Im +L> > L|= ⌧
2(n�m)

|eL|
2
,

where |eL|=
Qm

j=1
eLj,j with eLj,j the element associated to the j-th row and j-th column of eL.

A.3 Squared-norm criterion

The next lemma is elementary to show and its second part is also given in [21].

14



Lemma 1. Consider a subdivision S = {u1, . . . , um} and write its ordered knots as 0 = u(1) <

· · · < u(m) = 1. For j = 1, . . . ,m, write the hat basis function �j as �u(j�1),u(j),u(j+1)
in (4), with

the conventions u(0) = �1 and u(m+1) = 2. For j = 1, . . . ,m, we have

E
(S)
j :=

Z 1

0
�j(t)dt =

8
>>>><

>>>>:

u(j+1)

2
if j = 1

1� u(j�1)

2
if j = m

u(j+1) � u(j�1)

2
if j 2 {2, . . . ,m� 1}

.

For j, j
0 = 1, . . . ,m, we have

E
(S)
j,j0 :=

Z 1

0
�j(t)�j0(t)dt =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

u(j+1) � u(j)

3
if j = j

0 = 1
u(j) � u(j�1)

3
if j = j

0 = m

u(j+1) � u(j�1)

3
if j = j

0
2 {2, . . . ,m� 1}

u(j+1) � u(j)

6
if j

0 = j + 1
u(j) � u(j�1)

6
if j

0 = j � 1

0 if |j � j
0
|� 2

.

Proof of Proposition 1. From a probabilistic point of view, assuming that the input variables are
random variables, i.e. (Xi, i 2 J [ {i

?
}) are uniformly distributed on [0, 1] and independent,

then (13) can be rewritten as an expectation,

IS,i? = E
 ✓X

i2J

bYi(Xi)�
X

i2J[{i}

bYi?,i(Xi)

◆2
!
,

where, for i 2 J , bYi =
Pmi

j=1
b⇠i,j�i,j , and for i 2 J [ {i

?
}, bYi?,i =

Pmi

j=1
e⇠i,j�i,j (with mi? = 2).

Then

IS,i? = Var

✓X

i2J

bYi(Xi)�
X

i2J[{i}

bYi?,i(Xi)

◆
+ E2

✓X

i2J

bYi(Xi)�
X

i2J[{i}

bYi?,i(Xi)

◆

=
X

i2J
Var

✓ miX

j=1

(b⇠i,j � e⇠i,j)�i,j(Xi)

◆
+Var

✓ 2X

j=1

e⇠i?,j�i?,j(Xi?)

◆
(18)

+

✓X

i2J

miX

j=1

(b⇠i,j � e⇠i,j)E (�i,j(Xi))�
2X

j=1

e⇠i?,jE (�i?,j(Xi?))

◆2

.

Recall ⌘i,j = b⇠i,j � e⇠i,j . We have for i 2 J ,

Var

✓ miX

j=1

⌘i,j�i,j(Xi)

◆
= E

 ✓ miX

j=1

⌘i,j�i,j(Xi)

◆2
!

�

 
E
✓ miX

j=1

⌘i,j�i,j(Xi)

◆!2

=
miX

j,j0=1

⌘i,j⌘i,j0E
(Si)
j,j0 �

✓ miX

j=1

⌘i,jE
(Si)
j

◆2

, (19)

with the notation of Lemma 1. To compute the term relative to dimension i
? in (18), recall that, if x

belongs to the support [0, 1] of Xi? , then �i?,1(x) = 1� x and �i?,2(x) = x. Hence,

Var

✓ 2X

j=1

e⇠i?,j�i?,j(Xi?)

◆
= Var(e⇠i?,1(1�Xi?) + e⇠i?,2Xi?) =

(e⇠i?,2 � e⇠i?,1)2

12
. (20)

Using (19) and (20) in (18), and observing that E(�i?,j(Xi?)) = 1/2 for j = 1, 2, concludes the
proof.

15



Table 3: Q2 performance of MaxMod for the example in Appendix A.4 with d = 3, D = 10 and
n = 10D. The active dimensions are displayed in the order they have been activated by MaxMod.

�
Sobol index active dimensions knots per dimension Q

2 (bYMaxMod)
(xD�1, xD) [%]

0 1.7⇥ 10�5 (2, 1, 3) (5, 5, 3) 99.8
0.5 0.02 (2, 1, 3, 10, 9) (5, 5, 3, 2, 2) 99.2
1 0.08 (1, 2, 3, 9, 10, 5) (5, 4, 3, 2, 2) 97.6

1.5 0.15 (1, 2, 3, 10, 9) (5, 4, 3, 2, 2) 95.5
1.7 0.18 (1, 2, 10, 3, 9, 5) (5, 4, 2, 3, 2, 2) 94.7

Proof of Proposition 2. As in the proof of Proposition 1, we write

IS,i?,t = E
 ✓X

i2J

bYi(Xi)�
X

i2J

bYi?,t,i(Xi)

◆2
!
,

where, for i 2 J , bYi =
Pmi

j=1
b⇠i,j�i,j , and bYi?,t,i =

Pemi

j=1
e⇠i,j e�i,j , where e�i,j = �i,j for i 6= i

? and
where e�i?,j is defined as in �j in Lemma 1 from the subdivision eSi? = Si [ {t}.

We express bYi? from the current subdivision Si? to the refined subdivision eSi? , as in Proposition
SM2.1 in [21], which yields

bYi? =
emi?X

j=1

⇠̄i?,j
e�i?,j .

Then we can carry out the same computations as in the proof of Proposition 1 (as if we had e⇠i?,j = 0
for j = 1, 2 in that proof) to conclude, also using Lemma 1.

A.4 Robustness of MaxMod in the presence of non-additive functions

To enrich the discussion on the robustness of MaxMod in the presence of a non-additive component,
we performed a new experiment with a target function given by

y(x) =
dX

i=1

arctan

✓
5


1�

i

d+ 1

�
xi

◆
+ �xD�1xD,

with d = 3 and D = 10. Here, � � 0 is a parameter that controls the influence of the non-additive
contribution. Observe that, as � increases, the influence of xD�1 and xD also increases.

We repeat the experiment in Section 5.2.1 for � = 0, 0.5, 1, 1.5, 1.7 and for n = 10D (value also
used in Table 2). The values of � correspond to percentages of variance explained by the interaction
term (Sobol index). For the Sobol analysis, we have used the R package sensitivity [35]. From
Table 3, we observe that MaxMod properly activates dimensions (x1, x2, x3, x9, x10) in the first
iterations while preserving accurate Q

2 values. For � > 2, corresponding to a Sobol index larger
than 20% for the interaction term, the Q

2 performance of MaxMod decreases. This is expected since
the additive cGP is not able to capture the non-additive behavior.

A.5 Real application: flood study of the Vienne river (France)

A.5.1 Database description

The database consists of numerical simulations using the software Mascaret [34], which is a 1-
dimensional free surface flow modeling industrial solver based on the Saint-Venant equations [36, 37].
It is composed of an output H representing the water level and 37 inputs depending on a value of
flow upstream that is disturbed by a value dQ, on data of the geometry of the bed that are disturbed
by modifying the gradients of quantities dZref , and on Strickler friction coefficients (cf2 for the
major bed and cf1 for the minor bed). More precisely, the inputs correspond to:

16



• 12 Strickler coefficients corresponding to cf1, denoted as X1, . . . , X12, whose distributions
are uniform over [20, 40];

• 12 Strickler coefficients corresponding to cf2, denoted as X13, . . . , X24, whose distributions
are uniform over [10, 30];

• 12 dZref gradient perturbations, denoted as X25, . . . , X36, with standard normal distribu-
tions truncated on [�3, 3];

• and 1 upstream flow disturbance value dQ, denoted as X37, with a centered normal distribu-
tion with standard deviation � = 50 and truncated over [�150, 150].

In [34], the laws (either uniform or truncated Gaussian) of the input parameters have been chosen ar-
bitrarily, according to the empirical distributions observed during experimental campaigns. Moreover,
these random variables have been assumed independent.

Developments in Section 4.2 assume that the input variables are independent and uniformly distributed.
To account for laws different from the uniform one (e.g. the truncated Gaussian law), new analytic
expressions of the squared-norm criterion imply more technical developments that are not provided
in this work. However, the expectations in Appendix A.3 can still be approximated via Monte Carlo.
In our numerical experiments, we preferred to apply a quantile transformation of the input space for
having independent uniformly distributed random variables X1, . . . , X37 on [0, 1]37. It can be shown
that this transformation preserves the monotonicity constraints and additive structure.

A.5.2 Additional results

Figures 5 and 6 show the additional results discussed in Section 5.2.2 for n = 3d and n = 4d.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

10

9

8

7

6

5

4

3

2

1

Input Dimension

M
ax

M
od

It
er
at
io
n

reps

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

10

9

8

7

6

5

4

3

2

1

M
ax

M
od

It
er
at
io
n

Figure 5: The choice made by MaxMod for the ten replicates considering the flood application in
Section 5.2.2 with (top) n = 3d = 111 and (bottom) n = 4d = 148.

17



0.10

0.22

0.40

0.70

1.00

1.30

1.52

1.70

0.20

0.40

0.60

0.80

0.90

0.95

0.97

0.98

1 2 3 4 5 6 7 8 9 10

MaxMod iteration

�
lo
g(
1
�

Q
2
)

Q
2

n = 74 n = 111 n = 148

Figure 6: Q2 boxplots per iteration of MaxMod for the flood application in Section 5.2.2. Results are
shown for n = 2d, 3d, 4d.

18


