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Abstract

We introduce a multi-mode tensor clustering method that implements a fused ver-
sion of the alternating least squares algorithm (Fused-Orth-ALS) for simultaneous
tensor factorization and clustering. The statistical convergence rates of recovery
and clustering are established when the data are a noise contaminated tensor with a
latent low rank CP decomposition structure. Specifically, we show that a modified
alternating least squares algorithm can provably recover the true latent low rank
factorization structure when the data form an asymmetric tensor with perturbation.
Clustering consistency is also established. Finally, we illustrate the accuracy and
computational efficient implementation of the Fused-Orth-ALS algorithm by using
both simulations and real datasets.

1 Introduction

Tensors, or multidimensional arrays, have played an essential role in a wide range of scientific and
business applications, including neuroscience [9, 16], social networks [18, 4] and recommendation
systems [3, 28]. As higher order tensors have been extensively used as a framework for storing and
organizing massive data, the associated need to develop methods for tensor multi-mode clustering has
sharply increased. Several methods have been proposed for matrix biclustering for columns and rows
simultaneously [6, 5, 7, 22]. However, those methods cannot be directly applied to tensors due to the
complex higher order generalizations of the matrix singular value decomposition (SVD) and principal
component analysis (PCA). Motivated by the methodology gap between low and high dimensional
arrays, we investigate here the multi-mode clustering problem for tensors.

We propose the Fused Orthogonal Alternating Least Squares (Fused-Orth-ALS) algorithm for uncov-
ering co-clustering structures in high order tensors. Clustering along a specific mode is equivalent
to clustering the slice matrices for that mode as shown in Figure 1. The core idea is to model true
cluster means as having a rank-1 matrix basis. The method is designed to systematically investigate
and achieve the following. First, under mild assumptions on the tensor decomposition structure, our
approach encourages smoothness in the decomposed components, leading to clustering performance
with higher accuracy. Second, orthogonality is pursued for the decomposed components, avoiding
the problem of local-minima convergence of the classical ALS tensor decomposition algorithm,
preventing multiple recoveries of the same factors, and achieving faster convergence rates compared
to popular tensor decomposition methods. Third, theoretical guarantees are provided for the recovery
and clustering consistency with even a single tensor sample, which is difficult to achieve in vector or
matrix clustering. The results in synthetic and real data demonstrate the robustness of our approach
under mild model misspecification and assumption violations, and the effectiveness under high
dimensional settings for extracting underlying clustering structures. Even though we focus on order
three tensors, it is straightforward to derive analogous results for higher order tensors.
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Related work. Multiple papers are closely related to, but also clearly distinct from, our proposed
methodology for tensor multi-mode clustering. Tensor clustering utilizing tensor block model appears
in Chi et al. [8] and is further developed in Wang and Zeng [26]. A popular alternative to the tensor
block model is the CANDECOMP/PARAFAC (CP) decomposition that captures structure using the
sum of rank-1 tensors. Our paper adopts the CP decomposition because it handles heterogeneity
in each mode, learns the clustering patterns across different modes of data in a more independent
way, and provides flexibility for clustering a certain mode of the tensor without being affected by
correlation with other modes. Our method is similar to those in a recent series of papers [27, 21]
that use the CP decomposition structure. Note that their estimation algorithms use the framework
of tensor power method [1]. In contrast, our algorithm utilizes Alternating Least Square (ALS), a
widely employed decomposition algorithm [14]. The ALS algorithm estimates the CP decomposition
by specifying factor matrices simultaneously, instead of the column-by-column recovery for each
factor matrices implemented in tensor power methods. The ALS algorithm has been proved to be
robust and computational efficient [10, 12, 15]. In particular, compared to Wang et al. [27] which
performs clustering over estimated factor matrices, our method encourages smoothness in the factor
matrices by imposing a generalized LASSO penalty, resulting in apparent clustering structures in
factor matrices since data from same cluster will possess the same value by choosing appropriate
tuning parameters. In addition, one critical assumption in Sun and Li [21] is that samples from
the same cluster are ordered consecutively, an assumption that is rarely valid in applications. Our
approach employs a generalized LASSO regularization that is based on a graphical distance intuition
learned from initial observations. We demonstrate that the generalized LASSO penalty achieves better
clustering performance when clustering assignments are randomly distributed. Even though Fused-
Orth-ALS is motivated by the Orth-ALS algorithm [19], we make several advances. First, Orth-ALS
only considers tensor decomposition performance under the noiseless situation, and we successfully
provide statistical guarantees for Fused-Orth-ALS under any error model, with a mild constraint
on error tensor spectral norm. Second, theoretical properties for Orth-ALS are established only for
symmetric tensors, while Fused-Orth-ALS can achieve both recovery and clustering consistency for
any asymmetric tensors.

Notations. Calligraphic letters such as Y ∈ Rd1×d2×d3 are used to denote order three (d1, d2, d3)-
dimensional tensors. By convention, we use a colon to indicate all elements of a mode. Thus,
mode-1, mode-2, mode-3 slices of Y can be represented as Yi::,Y:j:,Y::k. Bold uppercase and
lowercase letters are used to represent matrices and vectors respectively, such as A ∈ Rd1×d2 and
u ∈ Rd1 = [u1, ..., ud1

]⊤. The ith row and jth column of A are denoted as Ai: and A:j . For
notational convenience, we define the multilinear combination of tensor with three vectors u1,u2,u3

as Y(u1,u2,u3) =
∑

i,j,k u1,iu2,ju3,kYijk. In particular, the spectral norm of an order three tensor
Y is defined by ∥Y∥ = max∥u1∥2=∥u2∥2=∥u3∥2=1

∑
i,j,k u1,iu2,ju3,kYijk. The Frobenious norm of

Y is the natural generalization of the Frobenius norm of a matrix, ∥Y∥F =
√∑

i,j,k Y2
ijk. Lastly,

[K] := {1, 2, ...,K} stands for the whole index set and we use ◦, ⊙ to represent outer product and
Khatri–Rao product. For two positive sequences {an}, {bn}, an ≲ bn means an ≤ Cbn for some
constant C > 0 independent of n.

Figure 1: Fused-Orth-ALS algorithm performs multi-modes clustering through detecting cluster
structures of slices along each mode.
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2 Clustering model via tensor decomposition with regularization

Given observed tensor Y ∈ Rd1×d2×d3 that is a noisy version of a tensor of interest Y∗, i.e. Y =
Y∗ + E , our goal is to uncover the clustering structures for the three modes of Y∗. We assume
that Y∗ is a tensor with a rank K CP decomposition structure Y∗ =

∑
i∈[K] wiA:i ◦ B:i ◦ C:i,

where A ∈ Rd1×K ,B ∈ Rd2×K ,C ∈ Rd3×K are factor matrices with columnwise unit norm, i.e.
∥A:i∥2 = ∥B:i∥2 = ∥C:i∥2 = 1,∀i ∈ [K], and w = [w1, ..., wK ]⊤ ∈ RK captures the weights of
the factor matrices. The construction of Y∗ leads to dependence of clustering structures on the factor
matrices along each mode. Specifically, suppose there are s1 clusters for the first mode, and each row
in A can be expressed as Ai: =

∑s1
j=1 µ

⊤
1,j1i∈A∗

j
, where µ1,j = [µ(1,j),1, ..., µ(1,j),K ]⊤ is the mean

value for rows in jth cluster and A∗
j contains all the rows indices that belong to jth cluster over first

mode. Consequently, the true cluster means Ā1, ..., Ās1 for slices along first mode {Y1::, ...,Yd1::},
as indicated in Figure 1, can be written as

Ā1 =

K∑
i=1

wiµ(1,1),iB:i ◦C:i, ..., Ās1 =

K∑
i=1

wiµ(1,s1),iB:i ◦C:i

This reveals the core idea of clustering via CP decomposition: all the true cluster means share the
same K rank-1 matrix basis B:i ◦C:i,∀i ∈ [K]. Thus, for every i, we would expect there exists
s ∈ [s1] such that i ∈ A∗

s and as a result, the clustering label for ith element along the first mode will
be s. As shown in Sun and Li [21], the tensor Gaussian mixture model can be viewed as a special
case of this clustering structure. However, finding the partitions A∗

i ,∀i ∈ [s1] is a combinatorial hard
problem and could be computational intractable. Inspired by regularization term proposed in Chi
et al. [8], we impose a full pairwise difference operator over rows of A to yield a weighted penalty
on local differences,

∥ 1∆A∥1 =
∑

(i1,i2)∈S

γ1i1,i2∥Ai1: −Ai2:∥1

where S := {(i1, i2)| i1 < i2, i1 ∈ [d1], i2 ∈ [d2]} is a set containing pairs of different row indices
and parameters γ1 = {γ1i1,i2 | (i1, i2) ∈ S} are non-negative weights that are critical for controlling
the penalty imposed on pairwise row differences for A; we will explain in detail how to choose
them later. Analogously, µ2,j ,B

∗
j ,

2∆,γ2 and µ3,j ,C
∗
j ,

3∆,γ3 can be defined to characterize the
clustering structure and regularization along the second and third modes.

In summary, we propose the following penalized constrained optimization as an approach to reveal
the latent clustering structure,

min
A,B,C,w

∥Y −
∑
i∈[K]

wiA:i ◦B:i ◦C:i∥2F + λ
[
∥ 1∆A∥1 + ∥ 2∆B∥1 + ∥ 3∆C∥1

]
s.t. ∥A:i∥2 = ∥B:i∥2 = ∥C:i∥2 = 1,∀i ∈ [K] (1)

In particular, as λ increases, Ai: will shrink towards each other, indicating pairwise differences of
rows in A will become increasingly sparse. Sparsity in pairwise row differences naturally leads
to a partitioning assignment A∗

j ,∀j ∈ [s1]. For simplicity, we choose λ to be the same over three
modes. We would like to draw the attention to the difference between the regularization term in (1)
and that in Chi et al. [8]. We use an ℓ1 norm penalty which will yield pairwise difference equal to 0
due to feature selection for ℓ1 regularization, while Chi et al. [8] adopts the Frobenious norm which
only shrinks the pairwise difference to 0 gradually. As mentioned, dynamic tensor clustering [21]
used a fused LASSO penalty. However, this simple fusion structure only works if samples from
same cluster have consecutive indices. Obviously, our weighted pairwise difference operator i∆ is a
generalization, and later we will show how our method outperforms dynamic tensor clustering when
the cluster labels are randomly assigned.

3 Implementation: fused orthogonal alternating least squares algorithm

3.1 Algorithm

Starting from the alternating least square (ALS) algorithm [14], we propose the fused orthogonal
alternating least squares (Fused-Orth-ALS) method described in Algorithm 1 by adding two additional
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steps that are designed for multi-mode clustering. First, the orthogonalization step is performed before
each iteration of ALS, which allows for the avoidance of local optima and more rapid convergence to
the true factors. Moreover, a ’Fuse’ operator with generalized LASSO regularization ∆ is employed
on each column of ALS estimates which in general is defined as

Fuse(u,∆, λ) = arg min
v∈Rd
{1
2

d∑
j=1

(vj − uj)2 + λ∥∆v∥1}

Algorithm 1: Fused-Orth-ALS Algorithm
Input: Tensor Y , tensor CP rank K
Output: Ŷ =

∑K
i=1 ŵiÂ

t
:i ◦ B̂t

:i ◦ Ĉt
:i

Initialize Â0, B̂0, Ĉ0 with columns randomly from the unit sphere and iteration index t = 0;
while termination condition is not satisfied do

t← t+ 1;
Find QR decomposition of Ât−1, set Ât−1 = Q. Orthogonalize B̂t−1 and Ĉt−1 similarly;
Xt ← Y(1)(Ĉt−1 ⊙ B̂t−1), X̃t := [X̃t

:i]
K
i=1 with columns X̃t

:i ← Fuse(Xt
:i,

1∆, λ);
Yt ← Y(2)(Ĉt−1 ⊙ Ât−1), Ỹt := [Ỹt

:i]
K
i=1 with columns Ỹt

:i ← Fuse(Yt
:i,

2∆, λ);
Zt ← Y(3)(B̂t−1 ⊙ Ât−1), Z̃t := [Z̃t

:i]
K
i=1, with columns Z̃t

:i ← Fuse(Zt
:i,

3∆, λ);
Normalize X̃t, Ỹt, Z̃t with columnwise norm unit 1 and store the results as Ât, B̂t, Ĉt;

end
Estimate weights ŵi = Y(Ât

:i, B̂
t
:i, Ĉ

t
:i), ∀i ∈ [K]

We use the ’Fuse’ operator since the regularization term in (1) can be viewed as the sum of ’Fuse’
regularizations on each column of factor matrices, e.g., ∥ 1∆A∥1 =

∑K
i=1 ∥ 1∆A:i∥1, and it

can be solved efficiently via existing methods [2, 29]. After obtaining estimates Â, B̂, Ĉ, clus-
tering algorithm such as k-means or hierarchical clustering are used to obtain cluster assignment
Âi, B̂j , Ĉk,∀i ∈ [s1], j ∈ [s2], k ∈ [s3].

From a computational complexity perspective, orthogonalization, ALS updates, and Fuse operations in
Algorithm 1 takeO(K2(d1+d2+d3)),O(Kd1d2d3) andO(K(d31+d

3
2+d

3
3)) number of operations

respectively. Thus, in a general case, the total computational complexity of Fused-Orth-ALS algo-
rithm on a (d1, d2, ..., dD)-dimensional tensor is O(K(max (K

∑D
j=1 dj , D

∏D
j=1 dj ,

∑D
j=1 d

3
j ))).

When dj are of the same order d and tensor rank K = o(DdD−1), the total complexity can be
simplified to O(KDdD) which is the same order as classical ALS algorithm, meaning that extra
orthogonalization and ’Fuse’ steps do not increase the computational complexity. The proposed
clustering model is clearly distinct from dynamic tensor clustering (DTC) [21], in terms of implemen-
tation of generalized LASSO regularization, ALS updates and added orthogonalization. Our method
has the same computational complexity as DTC but orthogonality leads to significant speedups in the
iterations required for recovery convergence, which will be discussed in detail in section 5 later.

3.2 Regularization weights and tuning parameters

In practice, the choice of appropriate regularization weights γ1,γ2,γ3 is critical since it affects
clustering accuracy and computational efficiency. For instance, γ1i1,i2 characterize the shrinkage of
row difference between Ai: and Aj:. From a graph perspective, each row of A can be treated as
a node in an undirected graph and nodes i1, i2 are connected by an edge with weight γ1i1,i2 . All
the edges compose the edge set S. Clearly, large value of γ1i1,i2 implies high similarity between
Ai1: and Ai2:, resulting in clustering nodes i1, i2 into the same group. In particular, our adopted
1∆ reduces to fused LASSO penalty utilized in DTC [21] in the case of a chain graph where
S = {i = (i, i + 1)| i = 1, 2, ..., d1 − 1}. A well-developed strategy [20, 5, 6] is espoused for
choosing regularization weights: we perform a rank-K CP decomposition approximation to Y , utilize
the estimated factor matrix Â to quantify the ’distance’ among different nodes, and then calculate the
regularization weights through

γ1i1,i2 = ιki1,i2 exp
(
− ν∥Âi1: − Âi2:∥22

)
(2)
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Here, ιki1,i2 is an indicator function specifying whether Âi2: is among k-nearest neighbors of Âi1:

that controls density of graph. The smallest k that ensures the graph is connected is the default choice.
The remaining component in (2) is a Gaussian kernel with ν as a measure of scale chosen as median
Euclidean distance between the i1th and i2th rows that are k-nearest neighbors of each other. Lastly,
we normalize

∑
(i1,i2)∈S γ

1
i1,i2

= d1

d1+d2+d3
to ensure the penalty over three modes are on the same

scale. Similar formulas are used for γ2 and γ3.

We choose λ through the use of the extended Bayesian Information Criterion [21, 26, 8] by minimizing

log
(
∥Y − Ŷ∥2F /

3∏
i=1

dj

)
+

3∑
j=1

log dj/

3∏
j=1

dj × dfλ

where dfλ is the number of non-zero elements in estimated factor matrices, characterizing degrees of
freedom. Moreover, rank K and clusters s1, s2, s3 are usually unknown and need to be estimated
from data. We use the ’elbow point’ method to choose rank K by plotting the recovery error, and
determine s1, s2, s3 by computing gap statistics [23].

4 Cluster recovery and convergence

This section provides a convergence analysis for the Fused-Orth-ALS algorithm. For simplicity, we
set d1 = d2 = d3 = d and choose equal regularization weights over all modes. Without loss of
generality, we assume wmax = w1 ≥ w2... ≥ wK = wmin > 0.

The technical assumptions needed for our analysis are as follows:

A1: Define incoherence ρ = maxi ̸=j{|⟨A:i,A:j⟩|, |⟨B:i,B:j⟩|, |⟨C:i,C:j⟩|} ≤ α/
√
d for some

α = polylog(d) andK = o(d1/3/polylog(d)2/3). The spectral norm of Y∗ satisfies ∥Y∗∥ ≤ wmaxα.

A2: Define the initialization error as ϵ0 = maxi{∥Â0
:i −A:i∥2, ∥B̂0

:i −B:i∥2} which satisfies

ϵ0 ≤ min
{ wmin

12wmax
− ρ2(K − 1),

wmin

72
√
2wmaxα

− 2ρ(K − 1)

α
,

(K − 1)(ρξ + ξ2)

1− (K − 1)ξ(1 + ξ)
,
1− (K − 1)(ρ+ ξ)

(K − 1)(1 + ξ)

}
with ξ is a constant upper bounded by 10Kwmaxα/(wmin

√
d).

A3: Denote the spectral norm of E by ψ such that ψ ≤ min
{
wmin/6, wmaxK/d

}
.

A4: Denote M = maxj ∥ 3∆†
:j∥2 and define ϑ = maxi ∥ 3∆C:i∥1 that satisfies

ϑ ≤
(
wmax(ϵ

2
0α+ 2ϵ0ρ(K − 1) + ρ2(K − 1)) + ψ

)
/
(
2Mwmin(1− ϵ20)

)
Assumption A1 relaxes the requirements on the orthogonality of columns in factor matrices and
imposes a weaker condition on the rank K than Orth-ALS algorithm [19]. Assumption A2 specifies
initialization criteria that are needed only for computational issues. The bounded perturbation is
specified in A3. In particular, it can be proved with high probability if elements in E are i.i.d from a
sub-Gaussian distribution as stated in Tomioka and Suzuki [24]. The bounded fusion assumption,
A4, restricts clustering complexity on factor matrices. To illustrate its meaning, consider a simple
scenario when all clusters along the third mode have the same size d/s3. For Ci: belonging to the
same cluster C∗

j , they should take the same value µ3,j under our model assumption. Consequently,
A4 can be rephrased as ϑ = O(d1.5(1− 1/s3)); in the special case when C has only one cluster, e.g.
s3 = 1, A4 reduces to ∥ 3∆C∥1 = 0. Thus, bounding ϑ is equivalent to bounding cluster size s3
when sample size over third mode is kept fixed.

We can now derive a recovery error bound for the Fused-Orth-ALS algorithm.

Theorem 1 Assuming assumptions A1-A4 hold, factor matrix estimate Ĉ:i,∀i ∈ [K] of Algorithm 1
satisfies the following error bound with high probability

∥Ĉ:i −C:i∥2 ≲
wmaxρ

2(K − 1)

wmin
+ ψ/wmin

when choosing appropriate λ. Similar error bounds hold for the other two factor matrices estimates
Â, B̂.

5



The error bound derived in Theorem 1 reveals how the weight wi, incoherence parameter ρ, rank K
and perturbation level ψ interact with each other on affecting the convergence behavior of Fused-
Orth-ALS algorithm. Lower perturbation level ψ, lower incoherence parameter ρ, rank K and lower
signal ratio of wmax/wmin all result in lower error bounds. Clearly, the error bound for each column
in factor matrices has two parts: one is related to perturbation level ψ, the other is dependent on the
underlying CP decomposition structure, signal ratio wmax/wmin, rank K and dimension d along
each mode. Thus, under high dimensional settings when d→∞, i.e., ρ2 ≤ α2/d→ 0, the second
part will dominate the error bound while if tensor data is almost noiseless, e.g. ψ ≈ 0, the first part
will be the main source of error. The following corollary analyzes the relationship between these two
parts under a special case when the error tensor follows a sub-Gaussian distribution.

Corollary 1 Assume assumptions A1-A4 hold. If we further assume each element in error tensor,
Eijk, is independent, with zero mean and satisfies E[etEijk ] ≤ e

σ2t2

2 , wmax/wmin ≤ C where C is
positive constant and the minimal weight satisfies

wmin ≻

√
σ2

[
3d log

6

log 3/2
+ log

2

δ

]
d2/(K − 1)2

then Ĉ:i, ∀i ∈ [K] from Algorithm 1 satisfies the following error bound,

∥Ĉ:i −C:i∥2 ≲ (K − 1)/d

with probability at least 1− δ. Same error bounds hold for the other two factor estimates Â, B̂.

Thus, by imposing the sub-Gaussian distribution assumption on error tensor elements, recovery
consistency for factor matrices estimated from Fused-Orth-ALS algorithm can be established.

Next, we demonstrate cluster consistency for the clustering algorithm performed on factor matrices
recovered by Fused-Orth-ALS algorithm. Since clustering algorithm is performed on rows of Â, B̂, Ĉ,
clustering error is quantified through the true mean value and its estimate ∥µ1,j1 − µ̂1,j1∥2, ∥µ2,j2 −
µ̂2,j2∥2, ∥µ3,j3 − µ̂3,j3∥2.

Theorem 2 Assume assumptions in Corollary 1 hold, we have

max
j1
∥µ̂1,j1 − µ1,j1∥2 ≲ K1.5/d

max
j2
∥µ̂2,j2 − µ2,j2∥2 ≲ K1.5/d

max
j3
∥µ̂3,j3 − µ3,j3∥2 ≲ K1.5/d

hold with probability at least 1 − δ. Furthermore, if minj1∈A∗
m,j′1∈A∗

m′ ,m ̸=m′ ∥µ1,j1 − µ1,j′1
∥2 ≳

K1.5/d, minj2∈B∗
n,j

′
2∈B∗

n′ ,n̸=n′ ∥µ2,j2 − µ2,j′2
∥2 ≳ K1.5/d, minj3∈C∗

l ,j
′
3∈C∗

l′ ,l ̸=l′ ∥µ3,j3 −
µ3,j′3

∥2 ≳ K1.5/d, we have Âm = A∗
m, B̂n = B∗

n, Ĉl = C∗
l hold with probability at least

1− δ.

This theorem shows that clustering consistency holds as long as K1.5/d→ 0, which allows rank K
increase with the dimension d. At first look, the conclusion in Theorem 2 seems to indicate that the
cluster mean error bound does not depend on number of clusters over each mode, s1, s2, s3. However,
as we stated before, assumption A4 employs an "invisible" bound on the number of clusters which is
closely related with the convergence rate derived in Theorem 2. We provide a detailed explanation
in supplementary material stating cluster mean error bound K1.5/d increases with the number of
clusters si. Note that Theorem 2 assumes that true rank K is known; we leave the effect of an
estimated rank K̂ on clustering consistency for further study.

5 Numerical experiments

5.1 Synthetic datasets

In this section, we investigate the performance of the Fused-Orth-ALS algorithm on small samples
and compare the recovery and clustering error with alternative tensor-based clustering methods.

6



Recovery error is evaluated through ∥Ŷ − Y∗∥F /∥Y∗∥F . Clustering error measures the frequency of
mismatches between the estimated clustering assignment M̂ and the true M over samples x1, ..., xn,
which is defined as∣∣∣{(i, j) : 1M̂(xj1 )=M̂(xj2 )

̸= 1M(xj1
)=M(xj2

), j1 < j2, j1, j2 ∈ [n]}
∣∣∣/[n(n− 1)/2

]
and can be easily computed after obtaining the cluster assignment Âm, B̂n, Ĉl,∀m ∈ [s1], n ∈
[s2], l ∈ [s3]. Note that the clustering error is similar to two other commonly used metrics: adjusted
Rand index [11] and variation of information [17]. For the simulations below, elements in the error
tensor E are generated independently from a Gaussian distribution with mean 0 and variance σ2. We
compare Fused-Orth-ALS Algorithm with three methods: dynamic tensor clustering (DTC) [21],
CP-Kmeans algorithm which performs a rank-K CP decomposition on the tensor observations first
and then independently applies k-means algorithm clustering to the rows of derived factor matrices,
and multiway clustering for tensor block models (TBM)[26].

5.1.1 Single-mode clustering

We first generate an order three tensor with CP-rank 2 for which we would like to do single-mode
clustering along the third mode. The dimension of the first and second modes are set the same
(d1 = d2 = d) and their unnormalized columns are

A:1 = B:1 = (µ,−µ, 0.5µ,−0.5µ, 0, ..., 0︸ ︷︷ ︸
d−4

)⊤,A:2 = B:2 = (0, 0, 0, 0, µ,−µ, 0.5µ,−0.5µ, 0, ..., 0︸ ︷︷ ︸
d−8

)⊤

The third factor matrix with unnormalized & unshuffled columns is generated using

C:1 = (µ, ..., µ︸ ︷︷ ︸
⌊d3/2⌋

,−µ, ...,−µ︸ ︷︷ ︸
⌊d3/2⌋

)⊤,C:2 = (−µ, ...,−µ︸ ︷︷ ︸
⌊d3/4⌋

, µ, ..., µ︸ ︷︷ ︸
⌊d3/2⌋

,−µ, ...,−µ︸ ︷︷ ︸
⌊d3/4⌋

)⊤ (3)

Then, the rows of C are shuffled randomly. There are four clusters over the third mode with cluster
means (µ,−µ), (µ, µ), (−µ, µ), (−µ,−µ) respectively. After normalizing the columns of A,B,C,
we calculate the weights wi. Even though this example is inspired from Sun and Li [21], shuffling
the rows of C leads to additional clustering challenges since a more sophisticated regularization is
required to capture the clustering features. µ reflects cluster difficulty as it determines the distance
between different clusters. A smaller µ leads to a more challenging clustering problem. For simplicity,
the factor matrices used in this example, A,B,C, are orthogonal, satisfying assumption A1.

We set d = 20, d3 = 48, µ = 1, vary σ ∈ {0, 0.25, 0.5, 0.75, 1} and compare the performance of
the four algorithms by reporting recovery and clustering errors. As summarized in Figure 2 (a) and
(b), Fused-Orth-ALS outperforms the other three methods under different values of perturbation,
achieving the best recovery error and clustering error. Not surprisingly, TBM performs worst due to
model misspecification: the formulation of simulated factor matrices leads to an underlying cluster
structure for mode three instead of a multiway block structure for all three modes. Figure 2 (c)
and (d) show that average running times are comparable for Fused-Orth-ALS and DTC where the
orthogonalization step added in Fused-Orth-ALS still decrease number of iterations required for
convergence. Furthermore, to illustrate the advantage of generalized LASSO regularization imposed
on Fused-Orth-ALS over fused LASSO penalty adopted in DTC, we vary the value for µ ∈ {0.1, 0.7}
to mimic different levels of clustering complexity and set d = 8, σ = 0.001, d3 = 20. It is obvious
from Table 1 that our method outperforms DTC especially as the ’signal’ µ becomes weak.

Table 1: Comparison of Fused-Orth-ALS and DTC under different signal levels. Average errors and
standard deviations (in parenthesis) are reported based on 50 replications.

µ = 0.1 µ = 0.7

Fused-Orth-ALS DTC Fused-Orth-ALS DTC

Recovery error 0.8198(0.2034) 1.0538(0.0224) 0.0011(0.0001) 0.0069(0.0006)
Clustering error 0.1902(0.1475) 0.3847(0.0394) 0(0) 0(0)
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Figure 2: Comparison of single-mode clustering for Fused-Orth-ALS, DTC CP-Kmeans and TBM

5.1.2 Multi-mode clustering

To validate the performance on multi-mode clustering, we extend the simulation settings above
by imposing clustering structures on all three factor matrices A,B,C, similarly to (3). The
corresponding choice of cluster means are: (µ, 0.5µ), (−0.5µ, µ), (0,−µ), (−µ, 0) for mode 1,
(0, µ), (−µ, 0), (0.1µ,−µ), (−µ,−0.1µ) for mode 2 and (µ, µ), (−µ, µ), (µ,−µ), (−µ,−µ) for
mode 3. Accordingly, each mode has four clusters, i.e., s1 = s2 = s3 = 4 of same size:
⌊d1/4⌋, ⌊d2/4⌋, ⌊d3/4⌋ respectively. For example, for the first mode, there are ⌊d1/4⌋ rows of
the factor matrix taking value (µ, 0.5µ), ⌊d1/4⌋ rows taking value (−0.5µ, µ), ⌊d1/4⌋ rows taking
value (0,−µ) and the rest rows taking value (µ, 0). We fix d1 = d2 = 20, d3 = 40, µ = 1 and
vary σ ∈ {1, 2, 3, 4, 5}. Since the detailed comparison between Fused-Orth-ALS and DTC has been
illustrated above, we omit DTC (originally designed for dynamic single mode clustering of tensors).
Comparison results can be found in Figure 3. It is clear that Fused-Orth-ALS algorithm outperforms
the other two methods, especially under the noisy case when σ is large.
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Figure 3: Comparison of multi-modes clustering for Fused-Orth-ALS, CP-Kmeans and TBM

5.2 Real datasets

Experiments are conducted on two real datasets: the brain node structural connectivity from Human
Connectome Project (HCP) 1 [25] and political relationships between nations 2 [13]. Details for
choosing rank K and number of clusters are provided in supplementary material.

The HCP dataset is formatted as Y ∈ R68×68×136, and consists of brain connectivity among 68 brain
nodes for 136 individuals. Each entry takes on ordinal value {0, 1, 2} which indicates the strength
level of connectivity {low, moderate, high} between different brain nodes. Clustering results in Table
2 capture spatial connectivity between hemispheres of brain (the first character in the node name
indicates the left or right hemisphere and the number in the parenthesis indicates the node count with
same name). Cluster I and II mainly capture connectivity in either left or right hemisphere while

1Dataset is available at http://www.humanconnectomeproject.org/
2Dataset is available at http://www.charleskemp.com/code/irm.html.
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cluster III represents the cross-section connection between left and right hemisphere. r.supramarginal
and l.supramarginal are picked as smaller clusters - those regions are known to play a critical role in
visual word recognition and reading.

Table 2: Clustering result for 68 brain nodes in HCP dataset

Cluster Brain Nodes
I l.insula,l.superiortemporal(3),l.middletemporal(3)

l.inferiortemporal(3),l.inferiorparietal,l.lateraloccipital(2)
II r.insula,r.superiortemporal(3),r.middletemporal(3),

r.inferiortemporal(3),r.lateraloccipital(2),r.precuneus,r.lingual
III l.superiorfrontal(3),l.frontalpole ,l.caudalmiddlefrontal, l.parstriangularis,

l.parsopercularis,l.precentral,l.temporalpole,l.postcentral,
l.superiorparietal,l.medialorbitofrontal,l.isthmuscingulate,l.precuneus,

l.cuneus,l.parahippocampal,l.lingual,
r.superiorfrontal(3),r.frontalpole,r.caudalmiddlefrontal,r.parstriangularis,

r.parsopercularis,r.precentral,r.temporalpole„r.postcentral,
r.superiorparietal,r.inferiorparietal,r.medialorbitofrontal,r.isthmuscingulate,

r.cuneus,r.parahippocampal
IV r.supramarginal(4)
V l.supramarginal(4)

The Nations dataset is formatted as Y ∈ R14×14×56 consisting of 56 political relationships of 14
countries between 1950-1965. Each entry represents the presence or absence of a political action,
such as ’treaties’, ’send tourists to ’ between different nations. Since 78.9% entries are zero in this
dataset, we include an ℓ0 penalized tensor block model (denoted as ’TBM-Sparse’) for comparison.
The clustering result in Table 3 for Fused-Orth-ALS algorithm assigned the nations into three clusters,
one representing western-bloc countries (Cluster I), one communist bloc (Cluster III), one neutral
bloc (Cluster II). This result is consistent with the structure of political environment after world war
II. In addition, the goodness-of-fit (proportion of variance explained) for five methods is provided in
Table 4. For the nations dataset, Fused-Orth-ALS algorithm shows the highest variance explained.

Table 3: Clustering result for 14 nations in Nations dataset

Cluster Characteristic Country

Cluster I Western Brazil, Netherlands, UK, USA
Cluster II Neutral Burma, Egypt, Israel, Jordan,India, Indonesia
Cluster III Communist China, Cuba, Poland, USSR

Table 4: Comparison of goodness-of-fit for HCP and nations dataset

Fused-Orth-ALS DTC TBM TBM-Sparse CP-Kmeans
HCP 0.921 0.921 0.925 - 0.921

Nations 0.522 0.458 0.439 0.433 0.324

6 Conclusions

This paper studies the properties and convergence rates for a novel multiway tensor clustering algo-
rithm, Fused-Orth-ALS. The underlying CP decomposition structure imposes low-rank constraints
on the tensor observation, and graph similarity based fusion regularization encourages smoothness
on factor matrices, thus leading to automatic clustering. The Fused-Orth-ALS algorithm can handle
sparse and dense data tensors, and achieves clustering consistency even under model misspecification.
An open problem is developing theory for rank selection consistency. Another interesting topic is on
clustering consistency if there are missing entries in the data. We leave these directions for further
study. There are no foreseeable negative social impacts of this work.
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[17] Marina Meilă. Comparing clusterings—an information based distance. Journal of multivariate analysis,
98(5):873–895, 2007.

[18] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learning on
multi-relational data. In Icml, volume 11, pages 809–816, 2011.

[19] Vatsal Sharan and Gregory Valiant. Orthogonalized als: A theoretically principled tensor decomposition
algorithm for practical use. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 3095–3104. JMLR. org, 2017.

[20] Yiyuan She et al. Sparse regression with exact clustering. Electronic Journal of Statistics, 4:1055–1096,
2010.

[21] Will Wei Sun and Lexin Li. Dynamic tensor clustering. Journal of the American Statistical Association,
pages 1–28, 2019.

10

http://dx.doi.org/10.1111/biom.12540


[22] Kean Ming Tan and Daniela Witten. Statistical properties of convex clustering. Electronic journal of
statistics, 9(2):2324, 2015.

[23] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of clusters in a data set
via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2):
411–423, 2001.

[24] Ryota Tomioka and Taiji Suzuki. Spectral norm of random tensors. arXiv preprint arXiv:1407.1870, 2014.

[25] David C Van Essen, Stephen M Smith, Deanna M Barch, Timothy EJ Behrens, Essa Yacoub, Kamil Ugurbil,
Wu-Minn HCP Consortium, et al. The wu-minn human connectome project: an overview. Neuroimage, 80:
62–79, 2013.

[26] Miaoyan Wang and Yuchen Zeng. Multiway clustering via tensor block models. In Advances in Neural
Information Processing Systems, pages 713–723, 2019.

[27] Miaoyan Wang, Jonathan Fischer, Yun S Song, et al. Three-way clustering of multi-tissue multi-individual
gene expression data using semi-nonnegative tensor decomposition. The Annals of Applied Statistics, 13
(2):1103–1127, 2019.

[28] Yanqing Zhang, Xuan Bi, Niansheng Tang, and Annie Qu. Dynamic tensor recommender systems. arXiv
preprint arXiv:2003.05568, 2020.

[29] Yunzhang Zhu. An augmented admm algorithm with application to the generalized lasso problem. Journal
of Computational and Graphical Statistics, 26(1):195–204, 2017.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Section 1.

(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 6.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 4.
(b) Did you include complete proofs of all theoretical results? [Yes] See supplementary

materials.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Section 5
and supplementary material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5 and supplementary material

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 5.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5.
(b) Did you mention the license of the assets? [Yes] See Section 5.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See supplementary material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See Section 5.

11



(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

12


	Introduction
	Clustering model via tensor decomposition with regularization
	Implementation: fused orthogonal alternating least squares algorithm
	Algorithm
	Regularization weights and tuning parameters

	Cluster recovery and convergence
	Numerical experiments
	Synthetic datasets
	Single-mode clustering
	Multi-mode clustering

	Real datasets

	Conclusions

