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Abstract

Spectral analysis provides one of the most effective paradigms for information-
preserving dimensionality reduction, as simple descriptions of naturally occurring
signals are often obtained via few terms of periodic basis functions. In this work,
we study deep neural networks designed to harness the structure in frequency do-
main for efficient learning of long-range correlations in space or time: frequency-
domain models (FDMs). Existing FDMs are based on complex-valued transforms
i.e. Fourier Transforms (FT), and layers that perform computation on the spec-
trum and input data separately. This design introduces considerable computational
overhead: for each layer, a forward and inverse FT. Instead, this work introduces
a blueprint for frequency domain learning through a single transform: transform
once (T1). To enable efficient, direct learning in the frequency domain we derive a
variance preserving weight initialization scheme and investigate methods for fre-
quency selection in reduced-order FDMs. Our results noticeably streamline the
design process of FDMs, pruning redundant transforms, and leading to speedups
of 3 x to 10 x that increase with data resolution and model size. We perform exten-
sive experiments on learning the solution operator of spatio-temporal dynamics,
including incompressible Navier-Stokes, turbulent flows around airfoils and high-
resolution video of smoke. T1 models improve on the test performance of FDMs
while requiring significantly less computation (5 hours instead of 32 for our large-
scale experiment), with over 20% reduction in predictive error across tasks.

1 Introduction

Nature uses only the longest threads to weave her patterns, so that each small piece of her fabric reveals the
organization of the entire tapestry. (Feynman, 1965)

Naturally occurring signals are often sparse when projected on periodic basis functions (Strang,
1999). Central to recently-introduced instances of frequency-domain neural operators (Li et al.,
2020; Tran et al., 2021), which we refer to as frequency-domain models (FDMs), is the idea of
learning to modify specific frequency components of inputs to obtain a desired output in data space.
With a hierarchical structure that blends learned transformations on frequency domain coefficients
with regular convolutions, FDMs are able to effectively approximate global, long-range dependen-
cies in higher resolution signals without requiring prohibitively deep architectures.
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Yet, existing FDMs suffer from several drawbacks:

1. Slow inference: every layer of an FDM performs a forward and inverse frequency domain
transform, introducing a considerable computational overhead.

2. Expensive parameter scaling: each layer of typical FDMs (Li et al., 2020) performs a long
convolution over the inputs by parametrizing it in frequency domain, which scales poorly in
the signal resolution.

3. Incompatibility: parameter initialization schemes and layers devised to learn directly in data
space can be highly suboptimal when introduced without modifications to FDMs.

Despite attempts to improve performance (Gupta et al., 2021; Tran et al., 2021), scaling FDMs to
larger data resolutions and model sizes remains fundamentally challenging2.

In this work, we start by posing the question:

To reap the benefits of learning on frequency domain representations, is it necessary to construct
hierarchical deep models that perform forward and inverse frequency transforms at each layer?

We provide the answer in Transform Once (T1), a model that builds representations directly in
frequency domain, after a single forward transform. Each aspect of T1 addresses a specific limitation
of existing FDMs:

1. Fast: by performing a single forward transform and optimizing directly on frequency do-
main coefficients of target data, T1 iterations are at least 3x to 10x faster. When scaling to
larger models and higher resolutions, the relative speedups increase as the overhead of each
transform grows.

2. Favourable scaling: T1 employs a single real-valued transform, which we observe to stabi-
lize training and finetuning of deep networks in frequency domain.

3. Enhanced compatibility: removing redundant transforms streamlines the design space for
T1 architectures compared to existing FDMs, allowing direct introduction of optimized layers
developed for other applications e.g. UNets (Ronneberger et al., 2015).

In § 2.1 we provide a (short) history on frequency domain approaches in deep learning, followed
by background on FDMs § 2.3. In § 3, we describe how to train T1 directly in frequency domain
and motivate the choice of DCT, in § 3.1 we discuss how to choose modes of reduced-order FDMs
and in § 3.2 we introduce a simple variance-preserving weight initialization scheme for all FDMs.
Finally, in § 4 we evaluate T1 on a suite of benchmarks related to learning solution operators for
a variety of dynamics: incompressible Navier-Stokes, flow around different airfoil geometries, and
high-resolution videos of turbulent smoke (Eckert et al., 2019).

Across tasks, T1 is 3× to 10× faster and reduces predictive errors by 20% on average. Training T1
models on high resolution videos (600 x 1062) of turbulent dynamics is significantly faster, requiring
5 hours instead of 32 hours (FNOs) for the same number of iterations.

2 Related Work and Background

2.1 Learning and Frequency Domain: A Short History

Links between frequency-domain signal processing and neural network architectures have been ex-
plored for decades, starting with the original CNN designs (Fukushima and Miyake, 1982). Mathieu
et al. (2013); Rippel et al. (2015) proposed replacing convolutions in pixel space with element-wise
multiplications in Fourier domain. In the context of learning to solve partial differential equations
(PDEs), Fourier Neural Operators (FNOs) (Li et al., 2020) popularized the state-of-the-art FDM
layer structure: forward transform → learned layer → inverse transform. Similar architectures had
been previously proposed for generic image classification tasks in (Pratt et al., 2017; Chi et al.,
2020). Modifications to the basic FNO recipe are provided in (Tran et al., 2021; Guibas et al., 2021;
Wen et al., 2022). A frequency domain representation of convolutional weights has also been used

2Existing methods to overcome this limitation avoid the frequency domain of inputs, instead introducing an
intermediate patch embedding step (Guibas et al., 2021; Pathak et al., 2022).
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for model compression (Chen et al., 2016). Fourier features of input domains and periodic activation
functions play important roles in deep implicit representations (Sitzmann et al., 2020; Dupont et al.,
2021; Poli et al., 2022) and general-purpose models (Jaegle et al., 2021).

2.2 Learning to Solve Differential Equations

A variety of deep learning approaches have been developed to solve differential equations: neural
operators and physics-informed networks (Long et al., 2018; Raissi et al., 2019; Lu et al., 2019;
Karniadakis et al., 2021), specialized architectures (Wang et al., 2020; Lienen and Günnemann,
2022), hybrid neural-numerical methods (Poli et al., 2020; Kochkov et al., 2021; Mathiesen et al.,
2022; Berto et al., 2022), and FDMs (Li et al., 2020; Tran et al., 2021), the focus of this work.

2.3 Frequency-Domain Models

Let Dn (n-space) to be the set of real-valued discrete signals3 of resolution N . Our objective is to
develop efficient neural networks to process discrete signals x ∈ Dn,

x0, x1, . . . , xN−1, xn ∈ R.
We define a layer of FDMs mapping x to an output signal ŷ ∈ Dn as the structured operator:

X = T (x) Forward Transform

X̂ = fθ(X) Learned Map

x̂ = T −1(X̂) Inverse Transform
ŷ = x̂+ g(x) Residual

x ŷT X
fθ

X̂
T −1

x̂

g

+
(1)

where T is an orthogonal (possibly complex) linear operator. We denote the T -transformed n-space
with Dk (k-space) so that T : Dn → Dk. Typically, we assume T to be a Fourier-type transform4

(Oppenheim, 1999, Chapter 8) so that the k-space corresponds to the frequency domain and its
elements form the spectrum of the input signal x.

The learned parametric map fθ : Dk → Dk is the stem of a FDM layer: it maps the k-space into itself
and is typically chosen to be rank-deficient in the linear case, e.g. fθ(X) = S⊤

mA(θ)SmX, A(θ) ∈
Cm×m (m ≤ N). The matrix Sm ∈ Rn×m selects m desired elements of X , setting the rest to
zero. In the case of frequency domain transforms, this allows (1) to preserve or modify only specific
frequencies of the input signal x.

Residual connections or residual convolutions g (Li et al., 2020; Wen et al., 2022) are optionally
added to reintroduce frequency components filtered by Sm. A FDM mixes global transformations
applied to coefficients of the chosen transform to local transformations g i.e. convolutions with finite
kernel sizes. To ensure that such models can approximate generic nonlinear functions, nonlinear
activations are introduced after each inverse transform.

Fourier Neural Operators Layers of the form (1) appear in recent FDMs such as Fourier Neural
Operators (FNOs) (Li et al., 2020) and variants (Tran et al., 2021; Guibas et al., 2021; Wen et al.,
2022).

In example, an FNO is recovered from (1) by letting T be a Discrete Fourier Transform (DFT)
x̂ = T −1 ◦ fθ ◦ T (x) =W ∗S⊤

mA(θ)SmWx
whereW ∈ CN×N is the standardN -dimensional DFT matrix andW ∗ its conjugate transpose. The
Discrete Fourier Transforms (DFTs) is a natural choice of T as it can be computed in O(N logN)
via Fast Fourier Transform (FFT) algorithms (Oppenheim, 1999, Chapter 9.2).

We identify two major limitations of FDMs in the form (1); each layer performs T and T −1 and
DFTs are complex-valued, resulting in overheads and a restriction of the design space for fθ(X).

With T1, we aim to develop an FDM that does not require more than a single T , while preserving
or improving on predictive accuracy. Ideally, the transform in T1 should be (1) real-valued, to
avoid restrictions in the design space of the architecture and thus retain compatibility with existing

3For clarity of exposition, models and algorithms proposed in the paper are introduced without loss of
generality for one-dimensional scalar signals (i.e. Dn ≡ Rn).

4e.g. discrete Fourier transform (DFT), discrete cosine transform (DCT), etc.
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pretrained models, (2) universal, to allow the representation of target signals, and (3) approximately
sparse or structured, to allow dimensionality reduction.

ŷ

x

X X̂

x̂

T T −1

fθ

T T −1

g
x x̂

X X̂
S⊤
mA(θ)Sm

W W ∗ W W ∗

Commutative diagrams for FDM layers (1) and linear FNOs (frequency domain part).

3 Transform Once: The T1 Recipe

With T1, we introduce major modifications to the way FDMs are designed and optimized. In par-
ticular, T1 is defined, inferred and trained directly in the frequency domain with only a single direct
transform required to process data. Hence follows the name: transform once (T1).

Direct learning in the frequency domain Consider two signals x ∈ Dn, y ∈ Dn and suppose
there exists a function φ : Dn → Dn mapping x to y, i.e.

y = φ(x).
Then, there must also exist another function ψ : Dk → Dk that relates the spectra of the two signals,
i.e. Y = ψ(X) being X = T (x) and Y = T (y). In particular,

φ(x) = T −1 ◦ ψ ◦ T (x) ⇔ T ◦ φ(x) = ψ ◦ T (x)
It follows that, from a learning perspective, we can aim to approximate ψ directly in the k-space
rather than φ in the n-space. To do so, we define a learnable parametric function fθ : Dk → Dk

and train it to minimize the approximation error Jθ of the output signal spectrum Y in the k-space.
Given a distribution p(x) of input signals, T1 is characterized by the following nonlinear program

min
θ

Ex,y

[
∥T (y)− Ŷ ∥

]
subject to Ŷ = fθ ◦ T (x)

x ∼ p(x)

y = φ(x)

x

y

X

Y

ŶT

T

fθ Jθ
(2)

If T is a DFT, the above turns out to be a close approximation (or equivalent, depending on the
function class of fθ) to the minimization of ∥y − ŷ∥ in n-space by the Parseval-Plancherel identity.

Theorem 3.1 (Parseval-Plancherel Identity (Stein and Shakarchi, 2011, pp. 223) ). Let T be the
normalized DFT. Given a signal v ∈ Dn and its transform V = T (v), it holds ∥v∥ = ∥V ∥.

This result also applies to any other norm-preserving transform T , e.g. a normalized type-II DCT
(Oppenheim, 1999, pp. 679). For the linear transforms considered in this work, T (x) =Wx, W ∈
CN×N , condition for Th. 3.1 to hold is W to be orthonormal, i.e. W ∗W = I.
Note that T1 retains, in principle, the same universal approximation properties of FNOs (Kovachki
et al., 2021) as fθ is allowed to operate on the entirety of the input spectrum. Given enough capacity,
fθ can arbitrarily approximate ψ, implicitly reconstructing φ via T −1 ◦ fθ ◦ T .

Speedup measurements We provide a concrete example of the effect of pruning redundant trans-
forms on computational costs. We measure wall-clock inference time speedups of depth d T1

T1(x) := fd ◦ · · · ◦ f2 ◦ f1 ◦ T (x)
over an equivalent depth d FNO with layers (1). The only difference concerns the application of
transforms between layers.

Fig. 3.1 provides the speedups on two-dimensional signals: on the left, we fix model depth d = 6
and investigate the scaling in signal width (i.e. number of channels) and signal resolution. On the

4



right, we fix signal width to be 32 and visualize the interaction of model depth and signal resolution.
For common experimental settings e.g. resolutions of 64 or 128, 6 layers and width 32, T1 is at
least 10 x faster than other FDMs. It will later be shown (§ 4) that T1 also preserves or improves on
predictive accuracy of other FDMs across tasks.
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T1 Speedup on Two-Dimensional Data

Figure 3.1: Speedup in a forward pass of T1 over
FNOs sharing the same transform T (DFT) on
two-dimensional signals of increasing resolution.
The speedup for a given configuration (point on
the plane) is shown as background color gradient.
The improvement grows with signal width, reso-
lution and model depth.

When T1 is not preceded by online preprocessing
steps for inputs x, such as other neural networks
or randomized data augmentations, the transform on
T (x) can be done once on the dataset, amortizing the
cost over training epochs, and increasing the speed
of T1 further.

Choosing the right transform The transform T
in T1 is chosen to be in the class of Discrete
Cosine Transforms (DCTs) (Ahmed et al., 1974;
Strang, 1999), in particular the normalized DCT-II,
which can also be computed O(N logN) via FFTs
(Makhoul, 1980). DCTs provide effective repre-
sentations of smooth continuous signals (Trefethen,
2019) and are the backbone of modern lossy com-
pression methods for digital images.

Although other transforms are available, we empir-
ically observe DCT-based T1 to perform best in our
experiments. This phenomenon can be explained by the sparsity and energy distribution properties
of the transformed spaces, an intrinsic property of the specific dataset and chosen transform. This
is in line with results of classic signal processing and compression literature. Particularly, DCT
features are known to have a higher energy compaction than their DFT counterparts in a variety
of domains, from natural images (Yaroslavsky, 2014) to audio signals (Soon et al., 1998). Energy
compaction is often the decisive factor in choosing a transform for downstream tasks.

Letting T be a real-valued transform in T1 architectures preserves compatibility between fθ and
existing architectures e.g., models pre-trained on natural image datasets.

3.1 Reduced-Order T1 Model and Irreducible Loss Bound

We seek to leverage structure induced in Dk by T . To this end we allow T1, similarly to (1), to
modify specific elements of X and consequently trasform only certain frequency components of x
(and y).

The reduced-order T1 model is designed to operate only on m < N elements (selected by Sm ∈
RN×m) of the input k-space, i.e. on a reduced k-space Dm ≡ Rm of lower dimension. Thus, we
can employ a smaller neural network γθ : Dm → Dm for mapping SmX to the corresponding m
elements SmY of the output k-space. Thus, training involves a truncated objective that compares
predictions with elements in the output signal spectrum also selected by Sm:

γθ

x X SmX Ŷ

y

Y

SmY

Jθ
min
θ

Ex,y

[
∥Sm ◦ T (y)− Ŷ ∥

]
subject to Ŷ = γθ ◦ Sm ◦ T (x)

x ∼ p(x)

y = φ(x)

(3)
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How to choose modes in reduced-order FDMs We now detail some intuitions and heuristic
to choose which modes k0, . . . , km−1 should be kept to maximize the information content in the
truncated spectrum. For this reason, we evaluate the irreducible loss arising from discarding some
N −m modes. We recall that the (reduced) k-space training objective Jθ(X,Y ) reads as

Jθ(X,Y ) = ∥SmY − Ŷ ∥ =

m∑
l=1

|Ykl
− γθ,kl

◦ Sm(X)| ,

since only the firstm predicted output modes Ŷk1
, . . . , Ŷkm

can be compared to Yk. We then consider
the total loss Lθ of the approximation task, including the N − m elements of the output k-space
discarded by our model, i.e.

Lθ(X,Y ) = ∥Y − S⊤
mŶ ∥ =

m−1∑
l=0

|Ykl
− γθ,kl

◦ Sm(X)|︸ ︷︷ ︸
Jθ(X,Y )

+

N−1∑
k=m

|Yk − 0|︸ ︷︷ ︸
Ro(Y )

.

It follows that the overall loss Lθ is higher than T1’s training objective Jθ, i.e. Lθ = Jθ +Ro > Jθ,
whilst Ro represents the irreducible residual loss due to truncation of the predictions Ŷk.

Optimal mode selection in auto-encoding T1 In case Y = X , i.e. the reduced-order T1 is tasked
with reconstructing the input spectrum, the optimal modes minimizing the irreducible loss are the
ones with highest magnitude. This can be formalized as follows.
Proposition 3.1 (Top-m modes minimize the irreducible loss). Let Y = X (reconstruction task).
Then the choice k0, . . . , km−1 = topk (m) |Xk| minimizes the irreducible loss term Ro.

This means that if the spectrum of X is monotonically decreasing in magnitude, then low-pass
filtering is the optimal mode selection.
Corollary 3.1 (Low pass filtering is optimal for monotonic spectrum). If |Xk| is monotonically
decreasing in k, then the choice k0, . . . , km−1 = 0, . . . ,m− 1 minimizes the residual Ro.

However, spectra in practical datasets are commonly non-monotonic e.g., the spectrum of solutions
of chaotic or turbulent systems (Dumont and Brumer, 1988). We show an example in Fig. 3.2.

Mode selection criteria in general tasks When Y ̸= X and the task is a general prediction task,
the simple topm analysis is not optimal. Nonetheless, given a dataset of input-output signals it is
still possible to perform an a priori analysis on Ro to inform the choice of the best modes to keep.

Often, we empirically observe the irreducible error Ro for reduced-order T1 to be smaller than for
non-reduced-order FDMs i.e Ro <

∑K−1
k=m ∥Yk − Tk(ŷ)∥ with layers of type (1)5.

We also note that the reachable component Jθ of the objective cannot always be minimized to zero
regardless of the approximation power of γθ. For each k < m, Sm discards N − m frequency

5See Fig. 4.1 and Appendix B for experimental evidence in support of this phenomenon.
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Figure 3.2: Reconstructions after low-pass filtering (first m modes) [Bottom] or top-m selection
[Top] of ERA5 (Hersbach et al., 2020) climate data. The non-monotonic structure of the spectrum
implies more accurate reconstructions can be obtained with top-m selection.
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components of the input signal which, if different than zero, likely contain the necessary information
to approximate ψk(X) exactly. Specifically, the irreducible lower bound on Jθ should depend on
“how much” the output’sm frequency components depend on the discardedN−m input’s elements.

A rough quantification of such bound can be obtained by inspecting the mismatch between the
gradients of ψk − γθ,k ◦ Sm with respect to X . In particular, it holds

N−1∑
j=0

∣∣∣∣∂ψk(X)

∂Xj
− ∂γθ,k(SmX)

∂Xj

∣∣∣∣ = m−1∑
j=0

∣∣∣∣∂ψk(X)

∂Xj
− ∂γθ,k(SmX)

∂Xj

∣∣∣∣+ N−1∑
j=m

∣∣∣∣∂ψk(X)

∂Xj

∣∣∣∣ ,
Unless ∂Xjψk(X) = 0 holds for all j = m, . . . , N − 1 and k = 0, 1, . . . , N − 1 i.e. no dependency
of the ground truth map in k-space on the truncated elements, there will be an irreducible overall
gradient mismatch and thus a nonzero Jθ.

3.2 Weight Initialization for Reduced-Order FDMs

FDMs (Li et al., 2020; Tran et al., 2021; Wen et al., 2022) opt for a standard Xavier-like (Glorot
and Bengio, 2010) initialization distribution that takes into account the input channels c to a layer
i.e. N (0, 1c ). However, well-known variance preserving properties of Xavier schemes do not hold
for FDM layers truncating N −m elements of the k-space. Notably, Xavier schemes do not scale
the variance of the weight initialization distribution based on the number of elements m kept after
truncation of the spectrum performed by fθ, leading to the collapse of the outputs to zero.

To avoid this issue in T1 and other FDMs, we develop a simple variance-preserving (vp) that intro-
duces a variance scaling factor based on m and the class of transform.
Theorem 3.2 (Variance Preserving (vp) Initialization). Let x̂ = W ∗S⊤

mASmWx be a k-space
reduced-order layer and W is a normalized DCT-II transform. If x ∈ RN is a random vector with

E[x] = 0, V[x] = σ2I.
Then,

Aij ∼ N
(
0,
N

m2

)
⇒ V[x̂] = V[x].

We report the proof in Appendix A, including some considerations for specific forms of fθ.
Corollary 3.2 (vp initialization for DFTs). Under the assumptions of Theorem 3.2, if W is a nor-
malized DFT matrix we have Re(Aij), Im(Aij) ∼ N (0, N

2m2 ) ⇒ V[x̂] = V[x].

The collapse phenomenon is empirically shown in Fig. 3.3 for m = 24, comparing a single
layer of FNO and FFNO (with Xavier initialization) with FNO equipped with the proposed vp
scheme. Under the assumptions of Corollary 3.2, we sample A and compute empirical variances of
x̂ = W ∗S⊤

mA(θ)SmWx for several finite batches of input signals x. We repeat the experiment for
signals of different lengths N . The vp scheme preserves unitary variances whereas the other layers
concentrate output variances towards zero at a rate that grows with N −m.

0.5 1 1.5 2 2.5
σ2

Ours (DFT)

0 0.5 1 1.5
σ2

Variances of x̂
FNO (DFT)

0 2 4 6
σ2

FFNO (DFT)

24 32 64 128

Figure 3.3: Output variance histogram in layer outputs x̂ = W ∗
mS⊤

mA(θ)SmWN , for a finite sample of inputs
x and a single sample of θ. Color indicates signal resolution.
When the learned frequency-domain transformation fθ is obtained, instead of the single low-rank
linear layer fθ = A(θ)SmX , as the composition of several layers, preserving variances can be
achieved by applying the vp scheme only to the first layer. For some variants of FDMs e.g. FNO
that truncate the spectrum at each layer, vp initialization should instead be applied to all.
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4 Experiments

We validate T1 on learning to approximate solution operators of dynamical systems from images.

• In § 4.1, we apply T1 on the standard task of learning solution operators for incompressible
Navier-Stokes, comparing against other FDMs. In § 4.1.1 we perform a series of ablation exper-
iments on each ingredient of the T1 recipe, including weight initialization and architecture. In
§ 4.1.2 we provide scaling laws.

• In § 4.2 we deal with fluid-solid interaction dynamics in the form of higher resolution images
(128). We consider turbulent flows around varying airfoil geometries, benchmarking against
current SOTA (Thuerey et al., 2020).

• In § 4.3 we show how the computational efficiency of T1 allows learning on unwieldy data with-
out downsampling or building low-resolution meshes. We consider learning on high-resolution
video (600 × 1062) capturing the turbulent dynamics of smoke (Eckert et al., 2019).

Configuration and model details are reported in the supplementary material. The code is available
at https://github.com/DiffEqML/kairos. Weights & Biases (wandb) (Biewald, 2020) logs of
results are provided.

4.1 Incompressible Navier-Stokes

We show that T1 matches or outperforms SOTA FDMs with less computation on the standard incom-
pressible Navier-Stokes benchmark. Losses are reported in n-space (signal space) for comparison.

Setup We consider two-dimensional Navier-Stokes equations for incompressible fluid in vorticity
form as described in (Li et al., 2020). Given a dataset of initial conditions, we train all models to
approximate the solution operator at time 50 seconds for high viscosity (ν = 1e−3) and at time 15
for lower viscosity (ν = 1e−4). As a metric, we report normalized mean squared error (N-MSE).
Both initial condition as well as solution are provided as images of resolution 64.

We include as baseline established FDMs, such as Fourier Neural Operators (FNOs) (Li et al., 2020)
and Factorized Fourier Neural Operators (FFNOs) (Tran et al., 2021). We indicate with the suffix
vp models that employ the proposed variance preserving initialization scheme. All models truncate
to m = 24, except FFNOs to m = 32.

Ground Truth T1+vp FNOvp FFNO

0 2 0 2 0 2 0 1

Ground Truth T1+vp FNOvp FFNO

−5 0

log10(|Y|)

0 5 10

|Ŷ−Y|

0 20

|Ŷ−Y|

0 10 20

|Ŷ−Y|

Figure 4.1: [Left] Direct predictions at T = 50s on high viscosity Navier-Stokes. [Right] Ground-truth
spectrum and absolute errors in k-space (DCT-II). Despite predicting only the first m = 24 elements, reduced-
order T1 models produce smaller errors even in other regions of the k-space.

Results We perform 20 training runs for each model and report mean and standard deviation in
Table 4.1. T1 reduces solution error w.r.t FNOs by over 20% and FFNOs by over 40%. A single for-
ward pass of T1 models is on average 2x faster than FNO and 10x than FFNOs. We note that FFNOs

Method Param. (M) Size (MB) Step (ms) high ν low ν

FFNO (Tran et al., 2021) 8.9 35 294 0.997±0.003 1.016±0.010
FNO (Li et al., 2020) 14.2 56 31 0.379±0.006 0.328±0.004

FNOvp 14.2 56 32 0.351±0.003 0.315±0.006
T1+vp 10.2 40 19 0.257±0.007 0.240±0.004

Table 4.1: Benchmarks on incompressible Navier-Stokes. Direct long-range prediction errors (N-MSE) in
n-space (signal space) of different models.
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are designed to share parameters between layers and thus require deeper architectures – and slower,
due to more transforms. In particular, training time (500 epochs) for T1 is cut to 20 minutes down
from 40 of FNOs, matching the model speedup. Finally, we report an improvement in performance
for FNOs with parameters initialized following our proposed scheme (FNOvp). Fig. 4.1 provides
sample predictions in n-space (left) to contextualize the task, in addition to prediction errors in fre-
quency domain (right). Despite being a reduced order model with m = 24, T1+vp produces smaller
errors on truncated k-space elements (k > m) compared to FNOvp and FFNO.

4.1.1 Ablations on weight scheme and architecture

Method high ν low ν

T1 0.491 0.449
T1vp 0.304 0.280
T1+ 0.295 0.260
T1+vp 0.257 0.240

Table 4.2: Ablation on the effect
of the proposed weight initialization
scheme and T1 architecture.

We repeat the previous experiment and report prediction errors
for four variants of T1: same architecture and weight initializa-
tion scheme as FNOs (T1), T1 with our proposed vp scheme
(T1vp), a reduced-order variant with k-space model fθ defined
as a UNet architecture (T1+), and T1+ with variance preserv-
ing scheme (T1+vp). The results in Table 4.2 provide empir-
ical evidence in support of the vp scheme and its synergistic
effect with the proposed architecture. In particular, combining
vp scheme and UNet structure in frequency domain reduces
error by half compared to the naive T1 approach.

4.1.2 Scaling laws

210 211 212 213
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0.3
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FNO
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Figure 4.2: Scaling laws for N-MSE.

We verify whether the reduction in predictive error of T1
over neural operator baselines is preserved as the size
of training dataset grows. We perform 10 training runs
on the Navier-Stokes ν = 1e−4 experiment, each time
with a larger dataset size, and report the scaling laws in
Fig. 4.2. With additional data, the gaps in test errors nar-
row slightly, with noticeable improvements obtained by
applying the vp scheme to both FNO and T1+.

4.2 Flow Around Airfoils

We investigate the performance of T1 in predicting steady-state solutions of flow around airfoils.

Setup We use data introduced in (Thuerey et al., 2020) in the form of 10000 training pairs of initial
conditions, specifying freestream velocities and the airfoil mask, with the target steady-state velocity
and pressure fields. This task introduces additional complexity in the form of higher resolution input
images (128) and a full k-space due to the discontinuity in the field produced by the mask.

We compare a SOTA UNet architecture (DFPNet) introduced by (Thuerey et al., 2020) to FNOs and
T1 with vp initialization schemes. We perform a search on the most representative hyperparameters
(detailed in the Appendix). Averages for 5 runs are reported in Table 4.3.

Method N-MSE Time (hrs)

DFPNet 0.023 1.3
FNO 0.020 6.0
T1+vp 0.024 1.3

Table 4.3: Test N-MSE and total training time
on the flow around airfoil task.

Results All models are able to accurately predict
steady-state solutions for different airfoils with small
normalized errors. Test N-MSE is comparable as all
models are within a single standard deviation. Train-
ing of T1 is as fast as DFPNets (Thuerey et al., 2020)
and as accurate as FNOs, as evidence of the applicabil-
ity of T1 to tasks with signals that are not band-limited
(in this case due to the airfoil mask).
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4.3 Turbulent Smoke

We investigate the performance of T1 in predicting iterative rollouts from high-resolution video of
real rising smoke plumes.

Ground Truth T1+ T1 FNO

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Density

Ground Truth T1+ T1 FNO

−6 −5 −4 −3 −2 −1 0

log10(|Ŷ|)

Figure 4.3: [Left] 10-step rollout predictions on ScalarFlow. FNOs produce high-frequency, non-physical
artifacts and accumulate error more rapidly in time compared to T1 models [Right] Log-absolute values of
predictions in k-space (DCT-II). Although T1 is limited to m = 512 and T1+ to m = 224 k-space elements,
the predictions are overall more physically accurate in n-space.

Setup We use the ScalarFlow dataset introduced in (Eckert et al., 2019) consisting of 104 se-
quences of 150 frames each collected from video recordings of rising hot smoke plumes. The dataset
consists of raw video data at high-resolution (600 × 1062) collected at 60 fps. This task scales up
complexity by involving real-world high-definition data, capturing highly-turbulent dynamics. We
perform rollouts iteratively based on previous predictions: all models are trained on 3-step rollouts
and evaluated over 10-steps extrapolation to test their generalization in time. We compare FNOs
against T1, T1+ and T1+vp of similar model sizes after performing a search on most representative
hyperparameters (Appendix B).

Method N-MSE Time (hrs)

FNO 0.232 32.4
T1 0.239 8.1
T1+ 0.256 4.7
T1+vp 0.228 4.7

Table 4.4: Test 10-steps rollout n-space pre-
diction errors (N-MSE) and total training time
on the ScalarFlow dataset.

Results Fig. 4.3 provides a sample rollout of different
model predictions in k-space (DCT-II). T1+vp accumu-
lates smaller errors over the rollout and is less prone to
generating non-physical artifacts by performing predic-
tion only on a subset of the k-space (Table 4.4). No-
tably, T1 and T1+ are 4× to 7× faster, providing a re-
duction in training time from 32.4 hours to 4.7. Ap-
pendix B includes additional visualizations, including
averaged prediction errors on k-space.

5 Conclusion

We present a streamlined class of frequency domain models (FDM): Transform Once (T1). T1
models are optimized directly in frequency domain, after a single transform, and achieve similar or
improved predictive performance at a fraction of the computational cost (3x to 10x speedups across
tasks). Further, a simple truncation-aware weight initialization scheme is introduced and shown to
improve the performance of T1 and existing FDMs.

Acknowledgments

This work is supported by NSF (1651565), AFOSR (FA95501910024), ARO (W911NF-21-1-0125),
ONR, DOE, CZ Biohub, Sloan Fellowship and JSPS Kakenhi (21J14546).

References
N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform. IEEE transactions on Comput-

ers, 100(1):90–93, 1974.

F. Berto, S. Massaroli, M. Poli, and J. Park. Neural solvers for fast and accurate numerical optimal
control. In International Conference on Learning Representations, 2022.

10



L. Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/.
Software available from wandb.com.

W. Chen, J. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen. Compressing convolutional neural
networks in the frequency domain. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1475–1484, 2016.

L. Chi, B. Jiang, and Y. Mu. Fast fourier convolution. Advances in Neural Information Processing
Systems, 33:4479–4488, 2020.

R. S. Dumont and P. Brumer. Characteristics of power spectra for regular and chaotic systems. The
Journal of chemical physics, 88(3):1481–1496, 1988.
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