A Additional Notations

Given a sub-exponential random variable X, let || X||y, = inf{t > 0 : Elexp(|X|/t)] < 2}.
Similarly, for a sub-Gaussian random variable, let || X ||, = inf{t > 0 : Elexp(X?/t?)] < 2}.

We use the analogous definitions for vectors. In particular, let X € R™ be a random vector, then
1X 0y, = 5Py, = [[u” X[, and [1X Ly, = supyy), - [[u" X[, -

We indicate with C' and c absolute, strictly positive, numerical constants, that do not depend on the

layer widths of the network {nl}fzfol or the number of training samples N. Their value may change
from line to line.

B Some Useful Estimates

Lemma B.1. Under Assumption[2.3] we have that

N -log®ng_1 =o(np_1nr_2), (22)

2 2 _
nr_g-log” N -log“nyp_1 = o(np_1np_s), (23)
np-1-log’ N -log?np_1 = o(np_1ns ), (24)
N -log?np_1 -log* N = o(ng_1nr_s). (25)

Proof. We start by proving (22). If n,_; = O (N?), then
N-log®np_1 =0 (N -log® N) =o(np—1nr_2), (26)
where the last passage follows from (@). Conversely, if nz,_; = Q(N?), then
N-log®n,_1=0 (vno—1- log® np-1) = o(np—1) = o(np—1np—2), 27)
which concludes the proof of (22)).

To obtain (23), we can exploit the second requirement of Assumption[2.5] which implies that log N =
O (logny_1). This readily implies (23)). Notice that (24) naturally follows since ny—1 = O (ng_2)
by Assumption[2.4]

Finally, to obtain (23])), we write
N -lognp_;-log? N =0 (N - log® nL,l) =o(np_1ng_2), (28)
where in the first passage we use that log N = O (logny_1) (from the second requirement of

Assumption [2.3)) and the last passage follows from (22). O

Lemma B.2 (Lipschitz constant of function of the features). For all | € [L — 1], and for every
Lipschitz function @, we have
leCgi(@) I, = O (1), (29)

with probability at least
1 2lexp (—n—1), (30)

over (Wy)L_,. We recall that ¢ is applied component-wise to g,(z), and ¢(g;(z)) : RY — R™ is
intended as a function of .
Proof. Note that p(g;) is a composition of Lipschitz functions. Thus,

-1
||SD(9l)HLip < ||50||Lip ||9l||Lip < ||<PHLip HWZHOP H (”WkHOP H¢||Lip>
k=1

-1

1—
é ||SD||Lip ||V[/l||opM ! H ||Wk||0p7
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where the last step is justified by Assumption[2.3]

Recall that, by the assumption on the initialization of the weights, (W) ; ~i.i.a. N(0, ﬁ,%/nk,l),
for some constant 3, which does not depend on the layer widths. Then, by Theorem 4.4.5 of [65]],
we have that, for any k € [],

Welly < € P (V7 + 20), (32)

k—1

with probability at least 1 — 2 exp (—ny ), C being a numerical constant. By Assumptionon the
topology of the network, we can rewrite this result as

Will,, =0 (1), (33)

with probability at least 1 — 2exp (—nr_1). To conclude, using a union bound over the layers up to
layer [, we have that

||‘P(9l)||Lip =0(1), (34)
with probability at least 1 — 2] exp (—np_1) over (Wy)!_,. O
Lemma B.3. We have that

DLl <lognp—1, (35)

with probability at least 1 — 2 exp(—c log? nr—1) over Wi, where c is a numerical constant.

Proof. Recall that Dj, = diag(W,) contains on the diagonal n;,_; independent Gaussian random
variables (Dy,)i; ~ N(0,3%). Thus, for any i € [nz_1],

P(|(Dy)i| > logni_1) < 2exp(—log? ni_1/(282)), (36)

which gives
P(IDLllop > lognr—1) =P(maxiepn, ) [(Dr)ii| > lognr-1)

<np aP(|(Dp)11| > lognp_1)

(37)
<2exp(logny—1 —log?ni_1/(267))
<2exp(—clog®np_1),

where the second step is a union bound on the entries of Dy . This gives the desired result. O
Lemma B.4. We have that
DL’ (9r-1(2)) |15, = Olog np—1), (38)

with probability at least 1 — 2 exp(—clog®ny_1) — Cexp (—np_1) over (Wy)E_,. We recall that
@' is applied component-wise to g;(x), D¢ (gr.—1(z)) : RY — R"L-1 js intended as a function of
x, and c is a numerical constant.

Proof. We know by composition of Lipschitz functions that

||DL¢/(9L71)||Lip < H‘DLHOp ||¢/(9L*1)||Lip' (39
By Assumption[2.3] ¢ is Lipschitz. Hence, by combining Lemma|[B.2](where we use ¢ = ¢’) and
Lemma|[B.3] the result follows. O

Lemma B.5 (Exponential tails of quadratic forms). Let x ~ Px. Let u : R? — R% and v : R —
R% be mean-0 Lipschitz functions with respect to , i.e., E,[u(z)] = 0, E,[v(z)] = 0, [ully, =1
and ||v||;, = co. Let U be a d,, X d, matrix, and

D(z) = u(z) "Uv(z) - E, [u(x)TUv(x)] . (40)

Then,
T, < CK*|U]lp- (41)

where K = \/C% + c%, and C' is a numerical constant.
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Proof. Consider the function z(z) : R? — R%:+dv obtained by concatenating the vectors u and v,
ie.,

2(2) = [u(x), v(@)] " 42)
One can readily verify that ||z[|;, < /¢f +¢3 := K. Letus set
170 |U
M:_2<U 0). (43)
Then, we have that
F=:"Mz-E, [ Mz]. (44)

Since x satisfies Assumptionand z(x) is Lipschitz, in order to obtain tail bounds on I', we can
apply the version of the Hanson-Wright inequality given by Theorem 2.3 in [[1]:

P(T| > t) =P(|z" Mz —E, [T M2] | > t)

-9 1 12 t
exp [ ——= min ,
C1 K4 | M|3 K2 M|, (45)
<5 1 12 t
<2exp | ——=- min , ,
Ch K4|U|3 K2 U],
where (' is a numerical constant, and in the last step we use that [|M||,, = [|[U]l,, and ||} ||fp =
HU||§; /2 < ||U||§, Thus, by Lemma 5.5 of [61]], we conclude that
IT[l,y, < C2K* U, (46)
for some numerical constant C5, which gives the desired result. O

Lemma B.6. Let u € R and v € R% be two mean-0 sub-Gaussian vectors such that [ully, =c
and ||v|,,, = co. Set Ayyy = E [uv"]. Then,

[Auvllgy < Cler + c2)?, (47)

op —
where C' is a numerical constant.

Proof. Consider the vector

2= [u,v] . (48)
Then, z is sub-Gaussian and, by triangle inequality on the vectors [u, 0] and [0, v], we have that
B4 by < €1+ c2. Since u and v are mean-0, then 2 is also mean-0 and its covariance matrix can be

written as A := E [z |. Furthermore, we can show that
[A-]lgp < Cler + e2)*. (49)
In fact, let w be the unitary eigenvector associated to the maximum eigenvalue of A,. Then,
[Aslly =w" Acw =E [wT22Tw] = E [(w"2)?] . (50)
Furthermore, we have that

1
lzlly, == sup  [[(@) 7], 2 (w2, = FVEIwT2)?), 51)

w’s.t.||w’|[,=1

where C'is a numerical constant, and the last inequality comes from Eq. (2.15) of [65]]. By combining
(0) and (ST) with ||z[[,,, < c1 + c2, (9) readily follows.

Finally, we have that

Au A'U/U
e (e, -
where A, .= E [uuw and A, :=E [UUT]. As A, and A, are PSD, we have that
||A7“)||op S HAZHop' (53)
Hence, the desired result follows from {@9) and (33). O
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Lemma B.7. Let A be an N x n matrix whose rows A; are i.i.d. mean-0 sub-Gaussian random
vectors in R". Let K = ||A;]|,, the sub-Gaussian norm of each row. Then, we have

44T, = K*O (N +n), (54)
with probability at least 1 — 2 exp(—cn), for some numerical constant c.

Proof. Without loss of generality, we can assume K = 1 to simplify the proof. Let 3 be the second
moment matrix of each of the rows of A. Then, ¥ = E [4; A ], since the rows are mean-0. Note
that, as the rows of A are i.i.d., X is independent of 7. Furthermore, Lemma@ implies that the
covariance matrix [E [A,L-Aﬂ has operator norm bounded by a constant, since the sub-Gaussian norm
of the rows is 1. Then, by using Remark 5.40 in [64]], we have that

HATA

T — E S max(& (52)a Where 6 = C\/ﬁ"’ La (55)

VN

with probability at least 1 — 2 exp(—ct?), where ¢ and C' are numerical constants. Setting ¢ = \/n
and using a triangular inequality gives that, with probability at least 1 — 2 exp(—ct?),

HAATHOP = HATA||Op <N |[[Z]|op+max(CVaN +VaN, (Cv/n++v/n)?) = O (N +n), (56)

op

which implies the desired result (after re-scaling by K). O

Lemma B.8. Let F; = F; — E, [F}] € RNX™ be the centered features matrix at layer l. Then, we
have
=0 (N+n), (57)

i
op

with probability at least 1 — C exp (—cny 1) over (W), _, and ()N, ~iiq. Px.

Proof. From Lemma[B.2] we have that
1£u(@)llei, = ©(1), (58)

with probability at least

1—C"exp(—np_1), (59)
over (W)} _,. We condition on this event in the rest of the proof.
Since (Z’z‘)i]\;1 ~iid. Px and Px satisfies Assumption all the rows of Fl are mean-0 sub-
Gaussian vectors, with sub-Gaussian norm bounded by a numerical constant. Here, we fix (Wj,)!_,
s.t. (38) holds, and the “mean-0" and the “sub-Gaussian norm” is intended w.r.t. the probability space
of (xl)fil
An application of Lemma [B.7] gives that
=O(N +ny), (60)

|7FT
op

with probability at least 1 — 2 exp (—cn;) over (z;)¥.; ~iia. Px. Taking into account the previous
conditioning, we conclude that
=0 (N +ny), (61)

s
op

with probability at least 1 — (C’ + 2) exp (—cnp,_1) over (W)t _, and (x;,) | ~i;q Px. O

LemmaBJ.9. Let B, _; = B;_, —E, [Br_1] € RNX"L-1 pe the centered back-propagation matrix
at layer L — 1. Then, we have

fo51.

N =0 ((N +np_1) log? nL,l) , (62)

with probability at least 1 — Cexp (—cny—1) over (Wi)E_, and (x;).| ~ii4. Px.
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Proof. From Lemma|B:4] we have that
1D (9r-1(2) Ly, = Ollognr-1), (63)
with probability at least
1 —Qexp(—clog2 nr_1) — Cexp(—nr_1), (64)
over (Wy)£_ . We condition on this event in the rest of the proof.

Since (%)fil ~iid. Px and Px satisfies Assumption all the rows of B 1—1 are mean-0 sub-
Gaussian vectors, with sub-Gaussian norm O(logny,—1). Here, we fix (Wj)E_ | s.t. (63) holds, and
the “mean-0" and the “sub-Gaussian norm” is intended w.r.t. the probability space of (x;)X;.

An application of Lemma [B.7] gives that

s

o = O (Wt n)log?ni), (65)

with probability at least 1 — 2exp (—cng_1) over (z;)¥.; ~iia Px. Taking into account the
previous conditioning, we conclude that

HBLfléijl =O((N+np_1)log’nr_1), (66)

op

with probability at least 1 — (C’ + 2) exp (—cnp,—1) over (Wi)E_ | and (2;,)Y | ~iiq Px. O

Lemma B.10. Let p be a standard Gaussian random variable, then we have that

p1(c) ==K, [d(cp)] , (67)
and
p2(c) = E, [¢°(cp)] , (68)
are continuous functions in c. Furthermore, ©1(c) is Lipschitz in ¢, and

lpa(c1) — @2(c2)| < Ctler — co| + Calcf — 3, (69)

where Cy and Cy are numerical constants (independent of c1, ¢2).

™

Proof. Letp(p) = \/12fe_”2/2. Then, we have

o1(c+e) — (o) < / p(p) [6((c + €)p) — d(cp)| dp

< / p(p) [Mep|dp (70)

= MeE, [|p]]
= Ce,

where in the second line we use that ¢ is M -Lipschitz by Assumption Similarly, we have
pale+2) = 2(| < [ plo) [6*((c+ ) ~ 6 (cp)] dp
= /p(P) [0((c+e)p) — plep)l [o((c +€)p) + d(cp)| dp

< / p(p) | Mep| (216(0)] + M(lc+ <] + e])lpl) dp (1)

= CieE, [|p|] + Coc|c|E, [p?] + C3e°E, [p?]
= Cye + Colcle + C3e?
< Cse+Cs|(c+e)* = 2.
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Lemma B.11. Let p be a standard Gaussian distribution, and ¢ # 0 be an absolute constant. Then,

we have
[E, [¢(cp)]| = O(1). (72)
It also holds
[Ep [¢(cp)]| = O (1). (73)
Proof. For the first statement, we exploit the fact that ¢ is Lipschitz:
[E, [p(cp)] | < E, [[6(0)] + Mlcpl] = [6(0)] + M|c[E, [|p]] = Ci. (74)
The statement on ¢’ is easily derived following the same proof and using that ||¢'[|;;, < M'. O

Lemma B.12. Let p be a standard Gaussian distribution, and ¢ # 0 be an absolute constant. Then,

we have
E, [¢*(cp)] = O(1), (75)
and

E, [(¢/(cp))?] = ©(1). (76)
Proof. For the upper-bound of the first statement, we exploit the fact that ¢ is Lipschitz:

E, [¢*(cp)] < E, [(|6(0)] + Mlepl)?] = ¢%(0) + 2M|cl|6(0)[E, [|p]] + M*E, [p?] = 0(17.7)

For the lower bound, since ¢ is non-zero and continuous, we have that there exist a strictly positive
constant ¢’ > 0 and an interval [cy, co] with ca > ¢1 such that ¢?(z) > ¢ for each z € [c1, ca).
Therefore, we have

E, [¢2(cp)] > dPe1 < ep <) = Os. (78)

The second statements is proved in the same way, as ¢’ is a non-zero Lipschitz function. [

Lemma B.13. Let ¢ : R — R a Lipschitz function, and let x ~ Px. Then,
E2 [p()] > Eq [0(2)?] — cllelisyp (79)

where c is a numerical constant.

Proof. We have

B, [o@?] - [ P (o) - . [p(@)] > vE) d (30)

> [ow?] - [ 2o (-Ctflel,)

=E. [¢(2)?] - 2l¢lts, /C,

where the inequality is a consequence of Assumption 2.2} O

Lemma B.14. Let x ~ Px, and define ¢;(x) = By || fi(x)| / /-

Then, we have

E, [|a(z) — By [@(2)]]] < C”@%" (81)
and )
E, [(Ez(x) —E,; [51(:8)])2} < C”fln”lmp, (82)

where C' is a numerical constant.
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Proof. We have that

—+o0
Eq [|éi(2) — Ee [1(2)]]] =/ P(la(z) — By [a(2)]] > t) di
0
+oo
:/ P ([ fi(2) | = Eq [l fi(2) 1]l > v/rat/B) dt
0
o0 (83)
2 2
< [ 2o (et Il ) at
/2l
-C ip
N
where ¢ and C' are numerical constants, and the third line is justified by Assumption[2.2}
Similarly, we have
2 oo 2
E, [(@(2) - E. [a(@)?] = / P (@) — Eq () > ) dr
0
+oo
=/ P (|f(@)] = Eo [Ifi@)]] > Vmit/Br) dt
0
+o0 (84)
2
< / 2exp (—et/ | ill,) di
_ il
ny

where, again, ¢ and C' are numerical constants and the third line is justified by Assumption[2.2] [J

Lemma B.15. Let py and ps be two standard Gaussian random variables, possibly correlated. Then,
we have

IEp,ps [B(p121)0(p22) — d(p1y1)d(p2y2)]] <

(85)
<O |ry — 1| + O |wa| |21 — 91| + O3 w2 — ya| + Cu lya] |22 — 2l

where C, Cy, C3, Cy are numerical constants (which do not depend on x1,x2,y1,y2). Furthermore,
the same result holds with ¢’ instead of ¢.

Proof. We have

Epips [9(p121)(p222) — d(p1y1)d(p2y2)]]
< Epypo [@(p121)P(p222) — D(p1y1)P(p222)] + Ep, p, [B(p191) P (p222) — d(p1y1) o (p2y2)]|
< Eppo [l9(p121) — d(p1y1)| [9(p222) ] + Ep, p, [|9(p222) — (p2y2)| [¢(p191)]
< Eppo [IMp1(z1 — y1)| (10(0)] + M |p2z2])] + Ep, p, [|M p2(22 — y2)| (|6(0) + M [p1y1])]
< Cilzr =l Ef[p1]] + C2 |2 |21 — ya E[|pa|p2]]

+ Cs z2 — y2| E[|p2|] + Ca|y1| |x2 — 32| E[|p1]lp2]]
< Crlzr =yl + G |zal |1 — yi| + Cs w2 — yo| + Cu|y1| |22 — y2l

~—

(86)
where in third inequality we use that ¢ is M-Lipschitz, and in the last inequality we use that the
quantities E [|p1], E [| p2|] and E [|p1 || p2]|] are all smaller than 1 (regardless of the correlation between
p1 and p2). Since we only used the fact that ¢ is M-Lipschitz, the same result holds with ¢’ in place
of ¢.

O

C Concentration of /5, Norms

In this appendix, we state and prove a number of high-probability estimates on the ¢ norms of feature
and backpropagation vectors. More specifically, our results can be summarized as follows:
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* Lemma [C.1]gives tight bounds on || f;()||,. i.e. the £ norm of the feature vector at layer .
The statement holds with high probability over x and (W)% _;.

* Lemmas anngive tight bounds on E,, {Hfl(a:) Hg} and E; [|| fi(«)]],], respectively.

These quantities represent the expectation with respect to z of the (squared) £5 norm of the
feature vector at layer [. The statements hold with high probability over (Wk)gc:r

* Lemma focuses on the centered feature vector fij(z) — E, [fi(x)], and it gives
tight bounds on (i) its expected (w.r.t. z) squared ¢ norm E, [||fl(a:) —E, [fi (x)]||§},

(ii) its expected (w.r.t. z) ¢y norm E, (|| fi(xz) — Eg [fi(2)]|l5], and (iii) its €2 norm
| fi(x) — Ey [fi(x)]||,- The first two statements hold with high probability over (W), _;,
and the probability in the last statement is also over z.

* LemmalC.5|focuses on the centered backpropagation vector at layer L — 1, and it gives tight
bounds on its ¢, norm || D¢’ (9r—1(x)) — Ey [Dr¢'(9—1(x))]||,. This statement holds
with high probability over z and (W},)} _ ;.

Throughout this appendix, we always assume that Px satisfies Assumptions[2.1)and 2.2] and that the
layer widths satisfy Assumption Furthermore, we use that the activation ¢ and its derivative ¢’
are Lipschitz (see Assumption [2.3)).

Lemma C.1 ({5 norm of features). Let x ~ Px. Then, for every 0 <1 < L — 1,

1£1(@)lly = ©(vm), (87)

with probability at least 1 — C exp(—cny,_1) over x and (Wy,)! _,. As usual, ¢ is applied component-
wise on g(x), and ¢ and C are numerical constants.

Proof. We prove this by induction over [/, and we start with the base case (! = 0). Recall that we have
defined fo(x) := x. As the {5 norm is a 1-Lipschitz function, by Assumption we have that

P (|[lx]ly — Ell|z[ly]] > t) < 27 (88)

Furthermore, Assumptionimplies that E[||z,] = ©(V/d), hence setting t = E[||z]|,]/2 in (88)
proves the desired result for the base case (recalling that ny,_; = O (d) by Assumption[2.4).

By inductive hypothesis, we have
[fi-1(@))ll, = O(Vni-1), (89)
with probability at least 1 — C'exp(—cny_1).

Define ¢ := /3 || fi—1(2)||, /+/ni—1. From now on, we condition on a realization of = and (W)},
such that ¢ = ©(1). By (89), this happens with probability at least 1 — C exp(—cnr_1).

To ease the notation, we use the shorthands f := f;_1(x) and W := W;. Then, we can write

1@, = |6 D, = v %Z¢2<(WT>i:f>. (90)

Recall that (W});, 7 ~iid. N(0, 312 /my—1) and that the Gaussian distribution is rotationally invariant.
Thus, the RHS of (90) has the same distribution as

ny

) = Vi [y, 62 @) + - Y 2 o)
=1

where (p;)it; ~iia. N(0,1) and also independent of f, and we have defined the independent,
mean-0 random variables

Zi = ¢* (epi) — By, [6% (Gp1)] - (92)
Note that, in the definition of Z;, the randomness comes only from p;, since we are conditioning on ¢.
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‘We have that
¢ (pi)lly, < @ (Cpi) —Ep, [¢(€pi)]lly, + IEp, [¢ (€pi)]ll,, < C1+ C2 = Cs, (93)

where the first term is bounded by a constant by Theorem 5.2.2 in [65]], and the bound on the second
term follows from Lemma[B.T1] As a consequence, we have

||Zi||¢1 = ||¢2 (¢pi) — E,, [¢2 (5/’1')] ||,/,1
<Cu |6 @),

=Cy || (ép) I3,
SCEH

(94)

where the inequality in the second line follows from Exercise 2.7.10 of [65]], the equality in the
third line follows from Lemma 2.7.6 of [63]], and the inequality in the last line follows from (93).
Hence, the Z;-s are i.i.d. sub-exponential random variables, with sub-exponential norm bounded by a
numerical constant. An application of Bernstein inequality (cf. Corollary 2.8.3. in [65]]) gives that

P Ly >t] <2exp| —cmi —tQ * 95)
X cmin n 9
062’ CG L

- E Z;
np <
1=1
where ¢, Cy are numerical constants. Furthermore, by Lemma[B.12] we have

Ey, [6° (Gp1)] = ©(1). (96)
By setting t = E,, [¢* (¢p1)] /2 into (93) and using (OT) and (96), we conclude that

leW Pl = ©(v/m), 97
with probability at least 1 — Cexp(—cng_1) — 2exp(—cn;) > 1 — C exp(—cng_1), for some
numerical constant ¢ and C7, which concludes the proof. O

Lemma C.2 (Expected squared ¢5 norm of features). Let x ~ Px. Then, forevery 0 <[l < L —1,
E, [I5i@)I3] = ©u), ©98)

with probability at least 1 — Cexp(—cny_1) over (Wi),_,. As usual, ¢ and C are numerical
constants.

Proof. The argument is by induction over /. The base case is a direct consequence of Assumption
since fo(z) = x.

By inductive hypothesis, we have

E, [ fia@)3] = ©(u-). 99)

with probability at least 1 — C'exp(—cnr—1). Define é(z) := G || fi—1()||5 /\/7i—1. From now on,
we condition on a realization of (Wk)fc_:ll such that E, [¢*(z)] = ©(1). By (99), this happens with
probability at least 1 — C exp(—cnp_1).

To ease the notation, we use the shorthands f := f;_1(x), W := W} and w; = W,;. Then, we can

write
E. [Ifi@)I] = Ex [Jloov™nlf;)
=mn (;;Em [¢2((WT)i:f)]> (100)

=m (Elez [6° (w] £)] + nil Z&) ;
i=1

where we use that the w;-s are equally distributed and we have defined the independent, mean-0

random variables
Z; =B, [¢° (w] f(2))] — Eu,Es [¢° (w] f(2))]- (101)
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Note that, in the definition of Z;, the randomness comes only from w;, since we are conditioning on
-1

(Wk ) k=1"

We have that

1Zilly, <Ex |62 (0] £(@) ~ Eu, [6* (0] F@)]],,]
<&, [01 |6 T 1), ] (102
=CiE, (|| (w] f@)],]

where the first line follows from Jensen’s inequality as [|-||,,, is convex, the inequality in the second

line follows from Exercise 2.7.10 of [65]], and the equality in the third line follows from Lemma 2.7.6
of [63].

Recall that (W) ; ~i.i.a. N(0, 37 /ni—1) and that the Gaussian distribution is rotationally invariant.
Thus, ¢ (w;' f(x)) has the same distribution as ¢ (&(x)p;), where (p;)i"L; ~ii.qa. N'(0,1) and also
independent of &(x). We now condition on a realization of  and (W},),_} and provide an upper
bound on the sub-Gaussian norm ||¢ (w;" f(z))||, ., where the only randomness comes again from
w; (and, hence, from p;). We have that

6 (] F@)Il,,, = 16 E@paly,
< ¢ (e(z)pi) — Ep, [¢ (E(@)pi)lll,y, + [IEp, [¢ (E(@)p)]ll,, (103)
< C1é(x) + Colla) + Cy = Cy(&(x) + 1).

where the first term in the RHS in the second line is bounded by C¢é(x) by Theorem 5.2.2 in [65]],
and the second term is bounded by Cyé(x) + C3 by following the same proof of Lemma as ¢ is

Lipschitz. By combining (102) and (T03)), we get
1Zill, < CIE. [(é(2) +1)°] < Cs, (104)

Hﬂb’

where we use that E, [¢?(z)] = ©(1).

Hence, the Z;-s are i.i.d. sub-exponential random variables, with sub-exponential norm bounded by a
numerical constant. An application of Bernstein inequality (cf. Corollary 2.8.3. in [65]]) gives that

P >t < 2e — i LQ ;t (105)
XPp min
i 1 - C 052 ’ CS nl ’

ng
Bl Z 7
ng —
Let us consider the first term in (T00):
EyEy, [¢2(w1rf)} = E.E,, [¢2 (5(@/’1)] ) (106)

where the equality comes again from the rotational invariance of the Gaussian distribution of w;. We
will show that

where ¢, C are numerical constants.

E.Ey, [¢7 (&(@)p)] = ©(1), (107)
with probability at least 1 — C exp(—cny,_1) over (Wk.)ic_:ll.

The upper bound in (T07)) follows from the same passages in (77), as E,[¢*(z)] = ©(1). We now
prove the lower bound. By Lemma|[C.I] we have that there exist numerical constants ¢ > ¢; > 0

such that &(x) € [e1, co] with probability at least 1 — C'exp(—cny,_1) over x and (W},), . Hence,

with probability at least 1 — 2C exp(—cny,_1) over (Wy,),_', we have that
P.(&(z) € [e1,c0]) > 1/2, (108)

where we use the symbol P, to highlight that this last probability is taken over x. Let us condition on
a realization of (W}, )!—, s.t. (TO8) holds. Then, we have

E.E,, [6*@x)p)] > & inf K, [6 (cp)]. (109)



By Lemma [B.10| we have that ¢(c) = E,, [¢* (cp1)] is continuous in c. Therefore, by Weier-
strass theorem, there exists a strictly positive ¢* € [c1, cz] such that inf e (e, ] Ep, [¢% (cp1)] =
E,, [¢? (c*p1)]. Thus,
- 1 .
E.E,, [¢ @@)on)] > B, [6 (¢ p1)] = O(), (10)

where the last equality is a consequence of Lemma[B.12] This concludes the proof of the lower bound
in (107).
By setting t = E,, [¢* (¢*p1)] /4 into (T03) and using (T07)) and (T00), we conclude that

E. [ A@)5] =€), (a1

with probability at least 1 — C exp(—cny,—1), for some numerical constants C' and ¢, which concludes
the proof. O

Lemma C.3 (Expected /5 norm of features). Let x ~ Px. Then, forevery0 <1 < L —1,

E. [ fi(@)]l,) = ©(vm), (112)

with probability at least 1 — C exp(—cnp_1) over (Wi)!_,. As usual, c and C are numerical
constants.

Proof. We condition on the events

E. [ )[3] = ©(m), (113)

and
fi(@)lolly, = O (1), (114)

which happen with probability at least 1 — C'exp(—cny_1) over (Wy)L_, by Lemma and

The upper bound is a direct consequence of Jensen’s inequality:

B, [1fi(=)lla) < 1/Ea [I£@)13] = ©(v/m0). (115)

For the lower bound, we use Lemma|[B.13} and we obtain
B (1@)la) 2[5 [IA@IE] - A2, = o) (116)
O

Lemma C.4 (/5 norms of centered features). Let x ~ Px. Then, for every 0 < [ < L — 1, the
following results hold.

1. With probability at least 1 — C exp(—cny,_1) over (W)L _,, we have that

E, [Ifi@) - E. (@] = ©(m). (117)

2. With probability at least 1 — C exp(—cny_1) over (W), _,, we have that
Es [l fi(z) = Bz [fu(@)]ll5] = O(v/m). (118)

3. With probability at least 1 — C exp(—cny,_1) over (Wy)L_, and x, we have that

1f1(2) = Ex [fi(@)]ll, = ©(/m).- (119)
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Proof. The argument is by induction over /. The base case for (TT7) follows directly from Assumption
2.1] since fo(x) = . Since the £ norm is a 1-Lipschitz function, from Jensen inequality and Lemma
B.13| we readily obtain the base case for (TT8). Note that |||z — E [2]|,/|;, < 1. Then, the base

case for (TT9) is a direct consequence of Assumption[2.2]on x and of the base case of (TT8), and it
holds with probability at least 1 — C’ exp(—cd) > 1 — C' exp(—cny_1) over x.

By inductive hypothesis, we assume the three statements to be true for layer [ — 1, for [ € [L — 1].
We will now prove (I17) for layer [.

To ease the notation, we use the shorthands f(x) := f_i(x), f [ ()], f(x) = f(x) - f.
W := W and w; = W,;. We also define é(x) = Gy || f(x)]| //mu—1 =E,[¢(z)].

We condition on the following events in the probability space of (Wk)fc_:ll

@ |If(x)|l;;, = O (1), which happens with probability at least 1 — C’ exp(—cnz_1) by
Lemma

(b) &= ©(1), which happens with probability at least 1 — C’ exp(—cnz_1) by Lemmal|C.3]
Notice that by Jensen inequality this also implies || f Hg =0 (n-1).

(c) By inductive hypothesis, we have that, with probability at least 1 — C” exp(—cn,,_1) over x
and (W)LY,

Hf(sc)Hi = O(n_1). (120)

Hence, with probability at least 1 — 2C” exp(—cn,,_1) over (Wj,),_},, we have that

~ 2
P, <clm_1 < i@, < czm_l) >1/2, (121)

for some numerical constants ¢ > ¢; > 0. In (TI2I)), we use the symbol P, to highlight
that this last probability is taken over x. For the rest of the argument, we condition on a

realization of (W), _} s.t. (T21) holds.

By taking a union bound, the events (a)-(c) happen with probability at least 1 — 4C" exp(—cn,,_1)
over (W)L,

Now, we can write

() = Bz [A@]I5] = Ea |60V f(@) ~ Eo [o0WT f())]]5]

(122)
where we use that the w;-s are identically distributed and we have defined the independent, mean-0
random variables

2 2
Zi =B, [(8(w] f(2) — Eq [o(w] £@)])’] = Bupe [(@(w] £(2)) = Ea [o(w] f@))])’].
(123)
As in the proof of LemmaJ@ in the definition of Z;, the randomness comes only from w;, since we
are conditioning on (W)} _.
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‘We have that

1Zill, < Col[Ex [(0w] £(@)) ~ B [otw] s@)))°]|
< G, || (8w 1(0)) = B [otw] 1))’ }
— CuE, [chb (w] f(2)) — Eq [¢(w] f(2) ]Hw] (124)

2
< CUE, (||<z> (w! f@)],, + [Es [o(w] f(2) HW}

< G, [ (ot FMl, + B ot s, ])]

where Cj is a numerical constant, the first inequality follows from Exercise 2.7.10 of [65], the second
line follows from Jensen’s inequality as ||-|[,, is convex, the equality follows from Lemma 2.7.6 of

[65], and the last line follows from Jensen’s inequality as [|-[|,,,, is convex.

Recall that (W); j ~ii.a. N'(0, 32 /nz—1) and that the Gaussian distribution is rotationally invariant.
Thus, ¢’ (w,” f(z)) has the same distribution as ¢’ (¢(z)p;), where (p;);"1" ~;i;.4. N(0,1) and also
independent of é(x). Therefore,
[ (w" F@)l,,, = ll¢ (E()p:) Hw
< ll¢ (&(x)pi) — Ep, [ (e(x)pi)llly, + 1By, [¢ (e(z)pi)lll,, (125)
< Ché(x) + C’gc(a:) + C3 < Cyle(z) + 1),

where the first term in the RHS in the second line is bounded by Cé(x) for Theorem 5.2.2 in [65]],
and the second term is bounded by C2¢&(x) + Cs by following the same proof of Lemmam

Merging together (123)) and (124) we get

1Zilly, <Co [(Cai() + Caé+ C)*

=CsE,[(¢(x) — 5)2] + 048 + Cré + Cs (126)
=CsO (nl_l) + C4&% + Cré+ Cy
SCQa

where in the third line we use Lemma [B.14]

Hence, the Z;-s are i.i.d. sub-exponential random variables, with sub-exponential norm bounded by a
numerical constant. An application of Bernstein inequality (cf. Corollary 2.8.3. in [65]) gives that

P Ly >t| <2exp min (. 127)
— e —cmin ( —, = | n /
ny — czc))

e

where ¢, C are numerical constants. We recall that this probability is intended over W;.

Let’s now focus on the first term in the last line of (I22)), using the shorthand w = wj, to ease the
notation. We can rewrite this term as

By [Ey [0 (w f(2))] — By [¢< Tf( Ne(w’ f(y))]]
=E,E, [¢*(w' f(2))] = EwyEy [¢(w f(2))o(w f(y))] -

The aim of this part of the proof is to show that the quantity in (I28) is ©(1)

(128)

Recall that (W;); j ~i.i.a. N(0, ﬁf /m—1) and that the Gaussian distribution is rotationally invariant.
Thus, ¢ (w" f(x)) has the same distribution as ¢ (¢(x)p), where p ~ N(0, 1) is independent of ¢(z).
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‘We therefore have

E,E, {df (w'f(2) - ¢* (wa (@) é(i))] ’
= [E.E, [¢*(pé(x)) — ¢*(p0)]|

< E, [C1|e — &(z)| + Co | — &(x)?|] (129)
< E, [C1]¢ — &(z)| + C2(¢ — &(x))? + 2Ca¢ |é — &(z)]]
—0 (n;11/2) ’

where the third line follows from Lemma [B:10] and the last passage follows from Lemma [B:T4]
Similarly, we have

B [0 10w 0) 0 (0710025 ) o (w0025 )|

&(x) (y)
= [EayEp, p, [¢(p18(2)) 0 (p2E(y)) — d(p10)¢(p20)]] (130)
< Eqy [Cr]e(x) — ¢ + Cacly) |e(x) — ¢ + Cs |é(y) — ¢ + Cac|e(y) — €]
-0 (”1111/2) ’

where p; and po indicate two standard Gaussian random variables with correlation
F@)T @) /(£ @) £ ()]), the third line follows from [B.15} and the last passage follows from
Lemma [B.14] By combining (I129) and (I30), we have that

[Eu [Ex [62(w” £(@)] = Eay [6(w” f@)ow f@)]] - €| = 0 (n2{?) (131)

with

B [0 (s )] Bk o (w5 ) o (o )]
=By, [6%(01)] — Eay [Epups [0(0)3(r2)] ]

where we have set ¢(t) = ¢(¢t). Hence, in order to obtain that the quantity in (T28) is ©(1), it
suffices to prove that £ = O(1).

As ¢ is Lipschitz and ¢ is ©(1), ¢ is also Lipschitz, which readily implies that £ = O (1). We now
prove that £ = 2(1). By exploiting the Hermite expansion of ¢, we have that

ey (@ Y
5_2“0 M’Mmmﬂm)b’ (133)

where p; is the ¢-th Hermite coefficient of é Note that, since we conditioned on ¢ = ©(1), these

coefficients are numerical constants. As ¢ (and therefore (,Z;) is non constant, there exist j > 0
such that p; # 0. Furthermore, we have that the sum in (I33) contains only positive terms, as

If ()T f(y)| < |If(@)] - ||f(y)| by Cauchy-Schwarz. Therefore, in order to show that £ = Q(1), it
suffices to prove that, for all j > 0,

B, (!f(:v)Tf(y))|”> “Cy e, 130

1F @)y

where Cj is an absolute constant strictly smaller than 1. Furthermore, (134) is implied by the

following:
@)1 )]
P, <Cy| >a, 135
4fmwmn<l>“ (13

where C; < 1 and ¢; > 0 are numerical constants.
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By writing f(z) as f(x) + f and f(y) as f(y) + f, we have

F@Tfw)| @+ HTEG) + 5]

@M ™ )+ 1[[[Fa+ 1]
_@TGw+ ]+ | iw)] + e

< : - > (136)
MmN, ez 4} Hf(Z) =+ fH
F@)T £)|+ |17 Fw)| + 1717
i - 2 - M
winecgo (|7 = 2|77} + 11
Let us provide bounds on the various terms appearing in (I36):
(i) Part (d) of the conditioning (cf. (IZI))) gives that
<2 1
P., (minze{x,y} |7, = cnll) > (137)
for some numerical constant ¢ > 0.
(ii) Part (b) of the conditioning gives that
115 < C'rucs. (138)

(iii) Part (a) of the conditioning gives that || f;—1 () ||Lip = O (1), and part (b) of the conditioning
gives that E, [|| fi—1(v)||] = ©(y/m—1). Hence, as y ~ Px, Assumptionimplies that

i)l = ©(/mi-1), (139)
with probability at least 1 — 2 exp(—cn;_1) over y, where c is a numerical constant. Fur-

thermore, by recalling that E,.[f(z)] = 0 and using again Assumption we have that, for
any fixed vector u,

P, (|f(2) Tul > t) < 2e=0t/Ilullz, (140)
where ¢ is another numerical constant. Since = and y are independent, (T40) implies that

P, (1 f(2)T f(y)] > nd/h) < 2e oD/ WIS < gl (141)

where the first inequality holds for every y, and the second inequality holds with probability
atleast 1 — 2 exp(—cny—1) over y by (139). As a result, we have

ny(|f(x)—rf(y)| > n?ﬁ) < 2e7RVM-L L DT M-l L feT BV (142)

(iv) By setting t = nlgf  and u = f into (T40), we obtain

P, (1f(9)"f1 > m) < 2eme0vm, (143)
where ¢4 is a numerical constant and we have also used (I38).

(v) Finally, as = and y are independent, (T43) implies that
Boy(maxse o) [F(2) | > nil)) < demevmT, (144)

By plugging into (T36)) the bounds (I137), (T42), (143) and (T44), we obtain that
3/4
po (L@l 2
@I~ en_y — 2024 + 11112

By using also (I38), we have that (I35) readily follows from (I45). From (I33), we have that
& = O(1). Hence, the quantity in (128) is ©(1) and in particular it is lower bounded by a numerical
constant, call it Cy.

) > 1/4 — 10e~ VT, (145)
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By setting t = Cy/2 in (127), we conclude that
E. (@) - E. [h(@)I13] = ©(m), (146)

with probability at least 1 — 2 exp(—cn;_1) over W}, where c is an absolute constant. By taking into
account the conditioning made at the beginning of the proof over the space (Wk)ﬁc;ll, we obtain that
(T46) holds with probability at least 1 —5C” exp(—cng,—1) —2exp(—cn,—1) > 1—C exp(—cn,_1)
over (Wy,)! _,, where C is a numerical constant, which concludes the proof of (TT7).

Finally, we prove (T18) and (T19), again for layer [. By Lemma we have that || fi(z)][ 15, = O (1),

with probability at least 1 — C’ exp(—cny,_1) over (W), _,. By conditioning on this event, we
also have that ||[| fi(z) — Ex[fi(2)][5];, = O (1). Furthermore, we condition on a realization of

(Wp)! _, such that (TT7) holds.
To obtain (TT8), we apply Jensen’s inequality and Lemma [B.13] which give that
Ex [1/i(z) — Eo[fi(@)]ll5] = ©(Vm), (147)

with probability at least 1 — C' exp(—cnr_1) — 5C’ exp(—cnp—1) — 2exp(—cnp_1) > 1 —
C exp(—cny,—1) over (W)t _,.

To obtain (TT9), we condition on a realization of (Wj)j,_, such that [[[| fi(z) — Ex[fi(z)][l3ll;, =
O (1) and (TT8) holds. Then, by Assumption[2.2] we have that

Py ([11(2) = Eo[fu(@)]lly = Ba [ fi(2) = Ex[fi(2)la]| > Be [l fi(2) = B[ fi(2)]]l5] /2)

14
< 2exp(—cim) < 2exp(—cnp 1), (149)
where c is a numerical constant. This gives that
1fi(z) = Ex[fu(2)]] = ©(v/m1), (149)
with probability at least 1 — 6C" exp(—cn,—1) — 2exp(—cn,—1) — 2exp(—cnp—1) > 1 —
C exp(—cny—1) over z and (Wk)ﬁczl, which concludes the proof. O

Lemma C.5 (¢; norms of centered backpropagation). Let x ~ Px. Then, we have

1D26(911(2)) — B (D1 (g1 ()], = ©(yAT ), (150)
with probability at least 1 — 10 exp(—clog®ny,_1) — Cexp(—cng_1) over x and (Wy)k_, over
(W)t _, and x.

Proof. An application of Lemma[C.4|for | = L — 2 gives that
1o 2(@) — B [f1_2(@)]ll; = ©(yAT2). (st

with probability at least 1 — C” exp(—cny_1) over (W,)E=2 and .

To ease the notation, we use the shorthands f(x) := fr_o(x), f = E.[f(z)], f(z) = f(x) — f,
W := Wy_1 and w; = W.;. We also define ¢(x) = £ || f(2)|| //7—1 and ¢ = E, [¢(z)].

As in Lemma|C.4] we condition on the 3 events (a)-(c), which jointly happen with probability at least
1 — 4C" exp(—cnp_1) over (W) EZZ. Note that, to condition on the event (c), we use ([31)).

Now, we can write

E, (1016 (91-1(2)) ~ Ex [Drd' (921 ()]

=B, [[DLd/ W f1 ()~ Ex Do/ (W fr2(@)][3]

=n< N (DE [(¢ ] f(@) ~ B [ (0] <x>>]>2}>

nr-1 i1
1 nr—1 , , 1 nr—1i
=npa (n E:j (D23, (9] f(@) = Ex [0/ (] F(@))])"] + ; 7 )
(152)
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where we use that the w;-s are identically distributed and we have defined the independent, mean-0
random variables

2 =(DL2E. (¢ (w] f(2) — B, [¢/(w] f(@))])’]
— (DL)3Eu,a [(¢/(w] f(2) — Bq [0/ (w] f2)])°]

Note that in the definition of Z; the randomness comes only from w; and (Dp);;, since we are
conditioning on (Wj,) £ 7.
If we fix the (D7, );;-s and follow the same argument in (T24)-(T26) (cf. the proof of Lemma|C.4),
we have

(153)

1Zil,, < Co(DL); (154)

%)
where C is a numerical constant and we have used that ¢’ is Lipschitz. Let &;,,4 be the event s.t.
max;(Dyp)? > log? .z, 1. Then, by following the same argument as in Lemma we have that

P(gbad) < 2€Xp(—010g2 TLL_l). (155)

Hence, by conditioning on £, , we have that

max; || Z;|,, < Co log® np_1. (156)
By applying Bernstein inequality (cf. Corollary 2.8.3. in [65])), we get
1 S 1 nr-1
P Zi| > & <2exp | —c—rH—— ), (157)
( o 2 | e bad) g < log n)

for some numerical constant c. By combining (I53) and (I57), we obtain that

1 & 1 VA1
P Z Zi| > < 2exp (—CZLLI) + 2exp (—clog2 nL,l)
nL-1 = AT log™nr_1 (158)

<4exp (—clog2 nL,l) ,
where this probability is over Wy, _; and W7,

Let’s now focus on the first term in the last line of (T52). In particular, we have that

§ = By, [ (¢ (w] f(2)) — B [ (w] £(2))])"] = O(). (159)

This can be proven by following the same argument in (129)-(T43) (cf. the proof of Lemma[C.4), as
¢’ is Lipschitz and non-constant.

Next, we re-write (I52) as

E, (1016 (91-1(2)) ~ Ex [Drd' (921 ()]

n< T (DB, (6] F@) ~ B [ ] F@)))] Zj’)

nr—
L-1 = i=1

nL-—1 (fEWL (D)) +¢ : 2 Zi + 17 2 Zi)

nr—i

Il
3
h
L
/N
s
=
N
+
I
‘H
-

. 3
ivgl;
NZ
+

3
b
L
N
~__—

(160)
where we have defined the independent, mean-0, sub-exponential random variables

Z; = (Dp)}, —Ew, [(DL)}] - (1e1)

Since the (Dy,);;-s are standard Gaussian, we have

" < ||(DL)121'||¢1 = ||(DL)z'z‘||12¢,2 = Ch. (162)

30



Hence, another application of Bernstein inequality (cf. Corollary 2.8.3. in [65]) allows us to conclude
that

nL—1

> Zi| =

nLli:

0 (n1'). (163

with probability at least 1 — 2 exp(—c,/np_1) over Wp.

Thus, by using (T58) and (T63), and taking into account the initial conditioning over (W}, )£_2, we
conclude that

B, [I1D26 (91 1(2)) — Ea [D1d (911 (2))] 3] = Oz 1), (164)

with probability at least 1 — 6 exp(—clog®nz_1) — 60" exp(—cnz_1) over (Wy)E_,.
Proceeding in a similar fashion as in Lemma [C.4] we apply Lemma [B:4] which glves that
[Dré'(9r-1(2))llry, = O(lognp—1), with probability at least 1 — 2exp(— clogng_1) —

C'exp(—np—1) over (W)L By conditioning on this event, we also have that
NDL¢' (gr—1(z)) — [DLd) (gL 1(@)]ll2ll5, = O (log np—1). Furthermore, we condition on a

realization of (W}, )E_, such that (T64) holds.
We can now apply Jensen’s inequality and Lemma|[B.13] to obtain that

E, [[|D1¢'(9-1(2)) — Bz [Dr¢ (gr-1(2))]llo] = O(vm1), (165)
with probability at least 1 — 8 exp(—clog®nr_1) — 7C" exp(—cny_1) over (Wy)E_,

Finally, we condition  on a  realization of Wik, such  that

I1DL¢'(gr—1(x)) = Eo [Drd’(9r—1(2))]l5llp;, = O (lognr—1) and (165) hold. Then, by
Assumption 2.2} we have that

P ([[|1DLd' (9r-1(2)) = Ex [Drd' (9r-1(2))]lly — Eo [|1DLe (9-1(2)) — Ex [Drd' (gr—1(2))]]l,|
E. (D¢ (9r-1(x)) — Ex [Dr' (gr—1(x))][l5] /2)

< Qexp( —cng_1).
(166)
This gives that

D¢’ (90-1(2)) — Eq [Drd' (gr—1(2))]ll, = O(/nL—1), (167)

with probability at least 1 — 10 exp(—clog®ny,_1) — 8C" exp(—cnr,_;) over x and (Wy)E_,. This
concludes the proof. O

D Proofs for Part 1: Centering

D.1 Step (a): Centering F;,_- and By,

Lemma D.1 (Centering F,_5 and By, _1). Consider the setting ofTheorem. let Fr_5 € RNXno—2
be the feature matrix at layer L —2, and let By, contain the backpropagation terms from layer L —1,

ie. (BL 1) = DL([) (gL 1(551)) Let JL 2JL 9 = FL 2FL QOBL 1B 1ClndJFBJFB =

FL QFL OBL 1BL 1 whereFL 2 = FL Q—Ex[FL 2] andBL 1 = BL 1—Ex[BL 1].
Then, we have that

Amin (J=2J1_3) > Amin (jFBj;B) —o(np_1nr—2), (168)

with probability at least 1 — Cexp(—cnp_1) — 4exp(—clog? N) — 8exp(—clog®ny_1) over
(Wi)E_, and (z;)N., ~ii.a. Px, where c and C are numerical constants.

Proof. By Lemma and Lemma we have that [[frof;, = O(1) and
[Drd'(gr—1(2))l;, = O (log np—1) with probability 1 — C'exp(—ng_1) — 2exp(—clog®ny_1)
over (W)£_ . We will condition on these events for the rest of the proof.
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Let’s define JpJ = Fr_oF , 0 By, 1B] . We can now re-write the quantity .J; »J; , as
follows:

Jp-aJi_o=JpJp +E[FL )E[F, 5] o By 1B]_,
+ ((FrL—2 —E[FL_a))E[FL_o]" +E[F_o](FrL—2 —E[F1_s])") o B,_1B;] _,
= Jpdp + |3 BL_lBI_1 +(A11T +11TA) 0o By B]

- N .
:JFJF iy 1+ —— ) (¥l 1+ 7—— | °Br-1By_, (169)
|| ||2 [l

11l
where v = E,, [(F,_2);.] € R™~2 (independent on ¢, since the x;-s are i.i.d.), A is a diagonal matrix
such that A;; = v (Fp_2);. — ||1/||§ =: p(x;), and 1 € RY is a vector full of ones. The last step is
justified since the Hadamard product of PSD matrices is PSD by the Schur product theorem. Notice
that we are assuming ||v||, # 0. In fact, if ||v/||, = 0, then we immediately have that J = Jp.

Expanding in an analogous way the term Jr j;, we get

S A11TA
Jp2J] o= JpJp — ——5—oBr 1B} _,

V11

.
~ ~ I'1 I'1 ~ ~
:JFBJIIB—F (||77||21+ H H ) (||77||21+ H77H ) OFL*QFI:Z2

2 2

rii'r . - A11TA
g o Pl - —— o BBl (170)
7115 4]
T T
N - I'l I'l 2% ~
= Jendfs + (Il 1+ ) (Il 1+ ) o Fua (255 ) AL
H77H2 H77H2 HV||2
T T
_ g Fr 2_2 _ M o L—le—l
7115 vl

where ) = E,,[(Br—1):] € R™:-1 (independent on 4, since the x;-s are i.i.d.), I is a diagonal matrix

such that T'y; = ' (Bp_1)i: — ||n||§ =: ((z;). The last step is justified by the fact that the following
matrix is PSD

rr\' - T -
<nll21+ ><|n||21+> N LA b
|| ||2 ||77||2 ||V||2

since it is the Hadamard product of two PSD matrices. Notice that we are assuming ||7||, # 0. In
fact, if ||n||, = 0, then we immediately have that Jp = Jpp.

Taking into account the following relations
Al=Fp v, T1=Byn  Ex[B,i]=1p', (171)
we can simplify the second and the fourth term of the RHS of equation (170) as follows

T T T

Il Il - VU Al11'A
<|n||21+ ><|n||21+) oy Py, — BBl o MLA
Tl Tl 2 ok

(||n| 14 11 ) (||n| 1 1 )TOA”TA
2 ) e 2+ e ) e = e

- - T A11TA
- (177T + BL—l) (177T + BL—l) o W
2

rii’'r - N A11TA N N A11TA
= < 7 — br- E—l) — = 1B ;o0 —_—
Imll5 vl vl

(172)
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Merging this last relation with (T70) we get

- rii'r - - A11TA - -
JL—2J2_2 t JFBJFB - T2 OFL—2F;_2 - T2 OBL—IBz_l
Iile [v][5
T T
L~ r - T - A A -
= JrpJpp — (FL2> (FL2) ( Br_ 1) (BLI) .
5\l 71l (41 (41

(173)

Note that [|uly;, < [[fr—2llp ]|y, and that Eg, [u(z;)] = 0 for all ¢ € [N]. Thus, by using
Assumption 2.2]on z; and exploiting the initial conditioning on the weights, we have that

P(|u(z:)l/ vl > t) < 2exp(—ct?), (174)

where the probability is intended over x; ~ Px. Thus, following the same argument of Lemma
the last relation implies that
A/ vl = O (log N), (175)

with probability at least 1 — 2 exp(—c log® N ), where c is a numerical constant, and the probability
is intended over {z;} ¥ ;. This implies that

A - A - T
< BL—l) <BL—1>
o, v, .

HBL IBL 1H op =0 ((N + anl) . 10g2 N - 10g2 anl) = O(’I’LL,QTLL,l)7

(176)
where the second equality is justified by Lemma|[B.9] and the last by Lemma BT} This result holds
with probability 1 — C'exp(—cny_1) — 2exp(—clog® N) — dexp(—clog® ny,_1) over (Wi)k_,
and (z;)};.

Note that [|C|l;, < [[Dr¢'(gr-1(2))||1i, [I0]l2, and that Ey, [¢(z;)] = 0 for all i € [N]. Thus, by
using Assumption[2.2]on x; and exploiting the initial conditioning on the weights, we have that

P(IC(2)|/ Inlly > t-logng_1) < 2exp(—ct?), (177)

where the probability is intended over z; ~ Px. Thus, following the same argument of Lemma[B.3]
the last relation implies that

||V||2 op

T/ Mnllally, = O (log N -logng—1), (178)

with probability at least 1 — 2 exp(—c log® N ), where c is a numerical constant, and the probability
is intended over {z;} Y ;. This implies that

r - r - T
<FL—2> (FL—Q)
71, H77H2
op
(179)

ot
op

where the second equality is justified by Lemma|[B.8] and the last by Lemma BT} This result holds
with probability 1 — C'exp(—cny_1) — 2exp(—clog® N) — dexp(—clog® ny,_1) over (Wy)k_,
and (z;)N ;.

By merging (T76) and (T79) with (T73), we readily obtain the desired result. O

H ||17|| op =0 ((N + nLiQ) ’ 10g2 N- 10g2 nL*l) = 0(nL72nL71),
2

D.2 Step (b): Centering everything

Lemma D.2 (Centering everything). Consider the setting of Theorem. 3.1| let F,_o € RNXnL-2 pe
the feature matrix at layer L — 2, and let By, contain backpropagation terms from layer L — 1,

Le. (BL 1)2_ = DL¢ (gL 1(581)) Let JFBJFB = FL QFL QOBL 1BL 1 and JL 2JL 9 =
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}?Lfgﬁilz 9 BL,1B271 - EX[FL72FLT,2 o BLfl.Bzil], where FL,Q = FL,Q — Ex[FL,Q] and
By_1 = Br_1 — Ex[Br_1]. Then, we have that

Amin (jFBj;B) Z >\min (jL—2jj:_,r_2> - O(RL—lnL—Z); (180)
with probability at least 1 — Cexp(—ng_1) — 2exp(—clog®ng_1) — 2exp(—clog® N) over
(Wi)jizy and ()]

Proof. Note that the i-th row of J B is now in the form
(Jr)i = fr—a(i) ® (DL (g9r-1(x:))), (181)

where we recall that f1,_»(z;) = fr—2(z;) — By, [fr—2(x;)] and ¢ (gr-1(xi)) = ¢'(gr-1(z;)) —
E[¢'(9r—1(x;))]. Furthermore, (Jr—2);: = (Jrp)i: — Es,[(JrB)i:]. Then, by following similar
passages as in (I69), we have

Jrpdpg = Ji—oJ] o+ E[Jrp]E[Jrp] "
+ (Jrp — E[Jrs))E[Jrs]) " + E[Jrs](Jrs — E[Jrp]) "
= JpoJ] o+ [|AF 11T £ A11T + 11T A

L Al AL \"  A11TA (182)
A (||A||F1+) (||A||F1+ )

4]l 1Al Al
S A11TA
= Jpad] s — ——,
Al %
where we have defined . ~
A=E,, [fra@)(Drd(gr1(2:))T ], (183)

which is independent on i (as the x;-s are i.i.d.), and A is a diagonal matrix that contains in the i-th
position
Nis = foa(@) TADLY (g1-1())) = B, [o2(e) T ADLH (gra@))] . (184
The last passage of (I82) is true since we are subtracting a PSD matrix.
An application of Lemma B.2] gives that || f_2(2;)||Lip and ||¢’(gz—1(2:))||Lip are upper bounded
by a numerical constant both with probability at least 1 — C'exp(—nr_1) over (Wj)r_,. Let us
condition on this event on the probability space of (Wk)ﬁj Then, we can apply Lemma with
u(x) := fr—o(z) and v(x) := ¢’ (gr,—1(x)), which implies that
[Aiilly, <ClIADLp < CllAllg (DLl = O (ognr—1) [|All - (185)
In (I83), C' is a numerical constant and the last equality holds with probability at least 1 —
2exp(—c log2 nr_1) over Wr, by Lemma Thus,
P(Aul/ | Ally > ¢ -logng_1) < 2exp(—ct), (186)

where the probability is intended over z; ~ Px and c is a numerical constant. Thus, following the
same argument of Lemma [B.3] the last relation implies that

1A/ 1Al £ ll,, = © (log? N -log 1) , (187)

with probability at least 1 — 2 exp(—clog2 N), where ¢ is a numerical constant, and the probability
is intended over {z;} ;.
Thus, with probability 1 —C exp(—ny,_1)—2exp(—clog® ny_1)—2exp(—clog® N) over (W) E_,
and (z;)Y ,, we have
A11TA
2
1Al

2

A
=0 (N : 10g4 N - 10g2 nL_l) = O(TZL_QnL_l), (188)

= || Hop Al
. AT Ny

where the last equality is a consequence of Lemma BT}

The desired result follows from merging (T88) with (182). O
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E Proofs for Part 2: Bounding the Centered Jacobian
E.1 /5 and sub-exponential norms of centered Jacobian

We start by providing an upper bound on the quantity E, [fL,Q(x)(DLQE’(gL,l(x)))q. This

preliminary result will be useful when bounding the £ norm of the rows of the centered Jacobian.

Lemma E.1. Consider the setting of Theorem[3.1] let x ~ Px, and let A be defined as

=B, [f12(a) (D1 (91-1(=)) ] (189)
Then, we have
|Allp = O (y/nr—1log(nz-1)) . (190)

with probability at least 1 — 2 exp(—clog®ny,_1) — Cexp(—cnp_1) over (Wy)E_ |, where cis an
absolute constant.

Proof. We condition on || fr.—2(2)|1,, = O (1) and on [[¢(9z-1(2))|l5, = O (1). By Lemma[B.2}
these two conditions hold with probability at least 1 — C’ exp(—cnr,_;) over (Wy,)£_;. Then, as

Py satisfies Assumption we have that HfL_Q(ac) e O (1) and ‘ &' (gr_1(x)) H =0(1).
Hence, an application of Lemma[B.6| gives that ’

B [fra@)d (o @)T]| <, (191

op
where C is a numerical constant.
The following chain of inequalities holds:
Al < ] E, [fo-2(@)d(g1-1)7] |, ||DL||0P
nr—1 [fL 2 ) (QL 1 }H ||DL||op (192)

< Ciynp—1 || Drll,,
=0 (Vnr—1log(nr-1)),

where the third line uses (T9T), and the last holds with probability 1 — 2 exp(—clog® nz_1) over Wi,
because of Lemma[B.3] Taking into account the initial conditioning, we get the desired result. ~ [J

The next two results provide bounds on the £ norm and on the sub-exponential ¢); norm of the rows
of Jr_a, respectively.

Lemma}E.Z (¢2 norm of rows of centered Jacobian). Consider the setting of Theorem let x ~ Px,
and let J,, be defined as

Jo = fua(@) © (D1 (g11(2)) = [fooa(@) © Drdl (g ()] (193)

Then, we have

with probability at least 1 — C exp(—cny,_1) — 12exp(—clog® ny,_1) over x and (Wy)E_ | and .

Jz|| = O(y/nL-inr—2), (194)

2

Proof. We have that

| 7], = || Fo-a(2) © (DL (911 (@) ~ s [fis(@) @ Did (g1 )]
=Hﬁ_2 2)(D1'(g1-1(2)) T ~ By [fuoa(@)(Ded(gra@))T]| . (195)
—HfL 2( DL¢'(9L 1(z) —AHF
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where A is defined in (T89). The second equality is justified by the identity [lu @ v]|, = [juv ||,
that holds for any vectors u, v. An application of the triangle inequality gives that

=A< | L, <ntlAlp. witin = ||foa(@)] ||DLd (g, (%)
Lemma [C.4] gives that
Hf:sz(x) )= [ fr—2(z) — Ey [fr—2(2)]ll, = O(y/nL—2), (197)

with probability at least 1 — C’ exp(—cny,_1) over (Wy)E_, and z. Furthermore, Lemma gives
that

| DL (g1 @))||, = IDL (¢ (92-1(2)) = Eo [6/ (g1 (@)Dl = O(ATD),  (198)

with probability at least 1 — 10 exp(—clog®ny,_;) — C” exp(—cny_1) over z and (Wy)E_,. By
combining (T96)), (I97), (198) and the bound on || A|| . provided by Lemma [E.1] we conclude that

‘ )= O(y/nrL—1inrL—2), (199)

1 —C"exp(—cnp_1) — 10exp(—clog®ny_1)

T

with probability at least

— C"exp(—ceng_1) — 2exp(—clog®ng_1) — C" exp(—cng_1) (200)
>1—Cexp(—cnp_1) — 12 exp(fclog;2 nr_1),

over x and (Wj)£_,, which gives the desired result. O

Lemma E.3 (Sub-exponential norm of rows of centered Jacobian). Consider the setting of Theorem
let * ~ Px, and let J, be defined as in (193). Fix a realization of (Wy)k_,. Then, with
probability at least 1 — 2 exp(—clog® ny_1) — Cexp(—cnp_1) over this realization (c being a
numerical constant), we have that

Proof. We condition on || fr.—2()||;, = O (1) and on [|¢'(9—1(2))||;, = O (1). By Lemma|B.2}

these two conditions hold with probability at least 1 — C exp(—cny,_1) over (Wy)=_}. Then, we
have

|-

T

" O (logng_1). (201)

= sup Hu—rjz

Y1 wst flull,=1
S e @U DL (g11(@) ~ s [fuma@U DL (g1-10)]|

< Cy sup |UDg|| -
Ust [U]| p=1

< Co [IDLllp
< Cologny_q,

Y1

1

(202)
where the third line follows from Lemma [B.5]and the last inequality holds with probability at least
1-2 exp(—clog2 ng_1) over Wi, by Lemma Taking into account the initial conditioning, we
get the desired result. O

E.2 Proof of Proposition[3.3]
Proof of Proposition[3.3] Following the notation in [2], we define

N
E 23 J:
i=1

1
2 2

N . 9
2

2 i=1

B := sup (203)

Z€RN:||z]|,=1
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Then, for any z € RY with unit norm, we have that

2 N >N 2 XN 2 2
J H - Tl =S 22| .2’ o\l > ming || 7] — B2 204
Hz2 HZZJ Zzl J'2+ZZZ Ji2 min; ||J;. B~ (204)
i=1 2 =1 =1
which implies that

- ~o2 _o2
Amin (JJT) — inf HJZH > min, || 7| = B2 (205)

Z€RN:||z][,=1 2 2

In our case, ji: € R™L—2nL-1_Notice that this dimension is indicated with n in Theorem 3.2 of [2]. In
the statement of the mentioned Theorem, let’s fix r = 1, m = N, and § = (N/(TLL_lnL_Q))l/4 <
1/4. Then, we have that the condition required to apply Theorem 3.2 is satisfied, i.e.

N log? (2,4/ ”“j\;“*) < +/Nnp_oni_1, (206)

where the inequality follows from Assumption[2.5] By combining (203)) with the upper bound on B
given by Theorem 3.2 of [2], the desired result readily follows. O

E.3 Proof of Theorem 3.4

Proof of Theorem3.4] By Lemma [E3] we have that, with probability at least 1 —
2exp(—clog®ny_1) — C" exp(—cny_1) over (W)E_,, the rows of .J are sub-exponential (with
respect to the randomness in (x;)X,). In particular, we have that

¥ 1= max; ||J;. . < Cilogny_1. 207)
1
Furthermore, by Lemma|E.2] we have that
|72, = etvaz=znz), (208)

with probability at least 1 — p over z; and (W}, )L_,, where to ease the notation we have defined
p = C'exp(—conr—1) + 12 exp(—cy log? nr—1). Hence, with probability at least 1 — ,/p over
(Wk)E_,, we have that

P, (CI\/nL—2nL—1 < ’ ) < CQ\/”L—QTLL—l) >1—./p, (209)

for some numerical constants co > ¢ > 0. In (209), we use the symbol P, to highlight that this
probability is taken over z;. For the rest of the argument, we condition on a realization of (Wj,)E_,
s.t. (207) and (209) hold. Then, by performing a union bound over the samples, we have that

ji:

Nmin = ming || Ji.|| > e1/nL_2nr 1, (210)
2
and
Nmax = Max; ||J;:. ) < coy/Np_anp_i, (211)

with probability at least 1 — N /p over (z;);.
Next, we apply Propositionwith K=1,K =cyand
A =C (YK + K')2NY4(np_yng_o)%/*
< 02 10g2 nL_1N1/4(nL_1nL_2)3/4 (212)

=o(np_1nr—2).

Note that 22) in Lemmagives that N'/4 - log? ny_1 = o((ng_1nr_2)"/*), which justifies the
last line. Thus, (T3) implies that

Amin (jjT> > n2in — A > cing_onp_1 —o(np_1np_2) = O(np_snp_1), (213)
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with probability at least
1— exp (—cK\/Nlog (2”“N"L2)> — P (o > K' /L _1772)
21— exp (=eVN) =P (x> co/AL 177 3) 214)
>1—exp (—C\/N) — Ny/p,

where the last inequality follows from (2IT)). By taking into account the conditioning over (Wk)é:1
made in order to guarantee (207) and (209), we conclude that Ay (J J T) = Q(ngp_1ng_o) with
probability at least

1 —exp (—C\/N) ~ Np—/p—2exp(—clog®ny_1) — C" exp(—cnp_1)

=1—exp (—C\/N) —(N+ 1)\/0’ exp(—cong_1) + 12exp(—colog>ny_1)

— 2exp(—clog®ng_1) — C' exp(—cnp_1)
>1—exp ( ) (N+1) (\/ C" exp(—conr_1/2) + V12 exp(—co log? nL,1/2))

—2exp(—clog®ng_1) — C' exp(—cnp_1)
>1—exp|—c ) C"N exp(—ci1ng_1) — C" N exp(—clog®np_1),
(

215)
over (z;)¥; and (Wj,)E_ |, which gives the desired result. O

F Proof of the Upper Bound|[7|

Before giving the proof of the upper bound [/} we provide again its statement for the reader’s
convenience.

Lemma F.1 (Upper bound on the smallest NTK eigenvalue). Consider the setting of Theorem|3.])
and let K be the NTK Gram matrix (3). Then, we have

)\min (K) = O(danl), (216)
with probability at least 1—C exp(—cny,_1) over (z;) ¥, and (Wy,)E_,, where c and C are numerical
constants.

Proof. By using the expression in (8], we have that

L-1

Amin (K) = Amin (JJT) < (JJT)H = Z ||(Fz)1||§ H(BlJrl)I:“g' (217)
=0

An application of Lemma [C.I] gives that
IF)w:ll = [1fi(21) 15 = ©(m), (218)

with probability at least 1 — C’ exp(—cn r—1) over (Wy)L_, and z;. We condition on the event such
that (218) holds for all [ € {0, . L—1}. This happens with probability at least 1 —C" exp(—cnp—1)
over (Wx)E_, and 1.

By definition, we have that || Bz ||, = 1 and that, for [ € [L — 1],

2

L—1
IB)1: N5 = || T] Zr(z0)Wiess (219)
k=l 9
Since Xy, (1) = diag([¢'(gr,; (z1))]7%,), by Assumption we have that
1Bk (@)l < (220)
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Let us now condition on the following two events: (i) [Wkl|,, = ©(1), for all k € [L — 1] (this

happens with probability at least 1 — C” exp(—cny,_1) over (Wk)ﬁz_ll, see in the proof of Lemma
B.2), and (i) || WL |, = ©(,/nz_1) (this happens with probability at least 1 — exp(—cn_1) over
W1, by Theorem 3.1.1 in [65]]). Then, we readily get

I(B)1:ll5 = O (np-1). 221)
Taking the intersection of all the events over which we conditioned, we finally obtain
L-1 L—1
D IE) LIS I(Bin)ell; = O ("L—l > nz) =0 (dnp-1), (222)
1=0 1=0

with probability at least 1 — (1 + C’ + C") exp(—cny,—1) over (Wi)E_ | and 1, where in the last
step we have used Assumption[2.4] By combining and (222), the desired result follows. [
G Proof of Corollary @.1]

Proof of Corollary@d.1} By Theorem we have that the smallest eigenvalue of J.J | is bounded
away from zero with probability at least 1 — p over (z;)¥ ; and (W},)L_,, where

p:=C Neclog’nio1 _ gp=clog’ N, (223)

Hence, with probability at least 1 — p over (;)_;, there exists a set of parameters 6 such that .J(6)
has a right inverse. Thus, forall Y € RY there exists 8’ such that

sy = 2720

0 =Y. (224)
=0,

This can also be written, for all i € [N], as

0, z; 0o + ho',x;) — fr.(0, z;
ZzafL(,T/) 0 — Tim IACORE fL(Of)' (225)
00 =0, h—0 h
Then, for all € > 0, there exists h* such that, for all ¢ € [N],
€
i — [ ()] <€ —=, 226
lyi — [ ()] Wi (226)
where o 1 hrg! p
F ) = fr(bo + ,;:) — fi( 07%‘). 227)
Finally, the desired result follows by noticing that f* can be implemented by a network with the same
depth and twice more neurons at every hidden layer. O

H Proof of Theorem 4.2

Notation for this appendix. In this appendix, we use J(6) to denote the Jacobian of the network
output F', evaluated in §. We recall that J(6) is a matrix with N rows and ZZL:_OS nni41 +
2ny_onr—1 + 2nr,_1 columns (for the optimization result, we assume that the (L — 1)-th layer
has an even number of neurons and denote its width as 2ny,_;). Let K(6) = J()(J(#)) " be the
associated empirical NTK Gram matrix, and let §; be the initialization defined in @I) We also make
the dependence on 6 explicit for feature vectors and backpropagation terms: the feature vector at
the {-th layer with input z; and network parameter 6 is denoted by f;(6, x;), and the corresponding
backpropagation term is denoted by b;(0, x;), where b;(0, z;) = (B;(0));.. Finally, we use W;(0) to
denote the weights of the [-th layer evaluated at the parameter 6.

A straightforward application of Theorem 2.1 in [49]] gives the following proposition.

Proposition H.1. Consider solving the least-squares optimization problem

: 1.
ming £(0) = 5 ming || F1,(0) - Y2, (228)
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by running gradient descent updates of the form 0,11 = 0, — nV L(0,), with some initialization 0o.
Assume there exists «, 8 € R, such that, if we define D = B(0y, R) as the {5 ball centered in 6y with
radius R, with

_ Al -],

R 5 (229)
the following holds
VO ED: a< omn(J(0) < [T, < B, (230)
o2

V91,92 eD: HJ(91)7J(02)||OP§ ﬁ (231)

Then, by setting n < 1/(23%), we have that, for all t > 1,

na?\'

L(0) < |1- 5 L(6). (232)

In order to apply this proposition with initialization 6o = 6y, we need to prove that the necessary
assumptions hold. We will do so by showing the following intermediate results:

. Lemma shows that, at the initial point 8y, the network output is 0 and the smallest NTK
eigenvalue is lower bounded.

* Lemma gives a tight estimate on the operator norm of the weights inside a ball D
centered at 6y and with radius R = o(1).

* Lemma[H.4] gives an upper bound on the distance between a feature vector in D and the
feature vector at 6.

* Lemma[H.5| gives upper bounds on the ¢, norm and the ¢ distance between feature vectors
in D.

* Lemmas|H.6]and [H.7] give upper bounds on the £ norm and the £ distance of backpropaga-
tion terms in D, respectively.

* Lemma[H.8|gives an upper bound on the difference in operator norm between Jacobians in

* Finally, Lemma[H.9] gives upper and lower bounds on the NTK spectrum in D.

Lemma H.2 (Network output and smallest NTK eigenvalue at initialization). Let 6y be defined in
@). Then, we have that, for all x € R4,

fr(x,00) = 0. (233)
Furthermore, we have that
Omin(J(60)) > cr/Anr—2nr—1), (234)

. R — 2 — 2
with probability at least 1 — C Ne=¢108" nL—1 _ Ce=clog” N pyep (xl)fil ~iida. Px and 0y, where
¢, c1 and C are numerical constants.

Proof. By definition (T8) of the initialization 6, we have that

Fi(@,80) = (WL (00)) "o (WY (80)T fr—2(60, 2))
+ (W2 (00)) TS ((WED 1 (00)) T Fr—2(00, 2))
= (WP (00) "o (WY, (00)7 fr—2(f0, 2)) (235)
+ (=W (00) T o (WY (80)T fL—2(00, )
=0,

where in the second equality we use that Wf)l (0o) = WSJI (fp) and that WL(Q) (0o) = —WS) (09).

This proves (233).
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Let us now compute the Jacobian at initialization J(6). For [ € [L — 2], we have that

ofr(z) T0frL—2(0,2)
O(Wi)ij OW)ij  p—s,

9—90>>
+0frL—2(0,x)
OWi)ij  lo—s,
)

(236)
where in the second equality we use again that Wf_)l(@o) = Wél_)l(ﬁo) and that Wf)(@o) =

~wiV (6).

= <W£”<9o>f(¢' ((WE2100) f-2(60,)) <<W£”1<eo>>

6=060

+ (W 00)" <¢/ ((Wéa(eo))Tfoz(Qo,m)) <(W£2)1(90))T8f’32(0’$)

O(W1)4j

= (WS’(eo))T(sb' (WE21(00)T f1-2(00,2)) ((Wé”lwo))

T0fr—2(0,2)

— (WP (00)" <¢’ (L2100 Fr-2(60.2)) <(W£1)1(90)) O(W1)ij

:O7

Let us define fé@l(&x) = qb((ng)l(G))TfL,g(G, z)) for k € {1,2}. Then, for the (L — 1)-th

layer, by isolating the computation over WL(ljl, we have that

af1(0, af, (0, 012,60,
PLC | e D] )T
O(WLZ1)ij lo=6 O(WrpZ1)ij lo=0, AW 21)ig lo=o,
oi (o (237)
_ (WL(l)(go))TfL%()x)
OWLZ1)ij lo=00
= J(l)(00)7

where we use that f £221 (0, x) does not depend on the parameters Wéljl Proceeding in the same way
and using that WL(le (60) = Wélzl (0p) and Wf) (60) = —WS) (6o), we also obtain that

ofr(0,x)

ST = Mgy, (238)
oW )i

6=060

Finally, by observing that f7(0,z) = (Wél))Tfélzl(G, x)+ (Wéz))—r £221(97 x), we deduce
0f1(6,7)
o)
Hence, the NTK at initialization K (6,) can be expressed as
K (o) = T (00)(JM (00) " + TP (86) (T (60))
+ F01(00) (FL2 (00)) T+ Fi2 (80) (L2 60)) "

= (/12100 )) . fork e {1,2). (239)
0=0, i

(240)

Note that, by construction, J 1) (6p) has the same distribution of J,_5, whose rows are given by (]'115[)
Therefore, by combining the results from Theorem [3.2]and Theorem [3.4] we conclude that

min(J(00)) > 2¢/YOmin(JL—2) > c1/ANL—2nL—1, (241)
with probability at least 1 — C' Ne—¢lg" ne—1 — Ce=¢108” N gver (2,)Y | and 6, where ¢;, C are
numerical constants. This proves (234), and concludes the proof of the lemma. O

Lemma H.3 (Operator norm of weights in D). Let 0y be defined in (18), let D = B(6y, R) and
assume that R = o(1). Then, for anyl € [L — 1],

sup [[Wi(0)ll,, = O (1), (242)
6D

with probability at least 1 — 2 exp(—cny,_1) over Wi(6p).
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Proof. By Weyl’s theorem, we have that, for all [ € [L — 2],
sup [Wi(0) [Wi(60)llop + sup [Wi(6) — Wi(00)]lop
€

llop <

< Wi (60) lop +Sup||Wz() Wi (o)l

< [IWi(00)llop + sup 10— 6ol (243)
= [[Wi(6o)lop (1)
=0(1),

where in the fourth line we use that R = o(1), and the result of the last line holds with probability at
least 1 — 2 exp(—cny,_1) over W;(6y) by Theorem 4.4.5 of [65]. By following the same argument,
we have that, with probability at least 1 — 2 exp(—cny,_1) over Wy _1(6p),

sup [Wi, )| =0, forke (1,2}, (244)
0eD op
which readily implies that supgep [[Wr-1(0)|,, = O (1) and concludes the proof. O

Lemma H.4 (Distance of features in D from initialization). Let 6y be defined in (I8), © ~ Px,
D = B(bo, R) and assume that R = o(1). Then, forany 0 <1 < L — 1, we have

Sug”fl(evm)_fl(e(lvx)Hz < C RV, (245)
S

with probability at least 1 — C exp(—cny,_1) over (Wi (0o)),_, and x, where c,C are numerical
constants.

Proof. We prove the claim by induction over [. For the base case, we have fo(0,z) = fo(6o, x),
hence (243) holds with probability 1.

For the induction case, let [ > 0. Then,
sup 1f1(6, ) — fi(6o, x) (W(0)T fizr(8,2)) — & (Wi(60)) T fi=1(60,2)) |,

<M sup H(Wl(a))TfZ—l(@af) — (Wi(60)) " fi-1(00, )

[#
< MSUP [(Wi(0)) T fi-1(8,2) = (Wi(0)) T fi-1(60, )|,
+MSUP|| (Wi(0))" fi1(60, ) — (Wi(60)) " fi1(60, 2)]],
< M sup [[W,(0 )||Op sup || fi-1(0, ) — fi—1(60, )],
0eD 0eD

+ Msug [Wi(6) — Wi(00)lop [If1—1 (00, 2)][ -
S

(246)
By Lemma[H:3] we have that
sup [Wi(0)llep = O (1), (247)
€

with probability at least 1 — 2 exp(—cny,_1) over W; (). By inductive hypothesis, we have
sup || fi-1(0,2) = fi-1(60,2)l, < C RVd, (248)
€
with probability at least 1 — C exp(—cnp,_1) over (W (6p)),—}, and z. Clearly, we also have that
sup [[Wy(0) — Wi(6o)ll,, < sup [Wi(0) — Wi(0o)llp < sup [0 — O]l < R.  (249)
6eD €D 0eD

Furthermore, an application of Lemma[C.T| gives that

[ fi-1(00,2)|l, = O(y/mi—1) = O (\/8) , (250)
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with probability at least 1 — C'exp(—cnz_1) over (W (6p))._}, and x. By combining (246), 47),

([248), (249) and (230), we obtain that
sup [1/i(6,2) = fi(bo, @)l < C RVd, 251)
€

with probability at least 1 — C exp(—cnp,_1) over (W (6p)),_, and z, which completes the proof.
O

Lemma H.5 ({2 norm and ¢ distance of features in D). Let 6y be defined in (I8), © ~ Px,
D = B(0o, R) and assume that R = o(1). Then, for any 0 <1 < L — 1, we have

sup || fi(6, z)[l, = O (\/3) ; (252)
6D

with probability at least 1 — C exp(—cny_1) over (Wy(0))L_, and x, where ¢, C are numerical
constants. Furthermore,

sup || fi(61,x) — fi(fa,2)|, < C RV, (253)

01,02€D

with probability at least 1 — C exp(—cny,_1) over (Wi (0)),_, and z.

Proof. The first statement follows from the chain of inequalities below:

sup || £(6,2), < [1fi(0o. 2) 1, + sup [ fi(0) = fi(6o)ll, < Cv/m +CRVA,  (254)
9eD 0D
where the second inequality holds with probability at least 1 — C exp(—cnr,—1) over (W (6o)),_,
and = by combining Lemma|[C.I|and Lemma [H:4]

We prove the second statement by induction over [. For the base case, we have fo(61,2) = fo(62, ),
hence (253) holds with probability 1.

For the induction case, let [ > 0. Then,

sup || fi(01, 2)— fi(02, 7)[|,= SUPD||¢ (Wi(61)) T fi-1(61,2)) = (Wi(82)) T fi-1(62,2)) |,

61,0.€D 01,02€
<M sup H(Wz(91))Tflf1(91,$) - (VVI(92))T]C171(027$)||2

91,92€D
< Me SglpD |(W2(00)) " froa (61, 2) — (VVl(91))szf1(92,$)||2
1,02€
+ M@ sup [(Wi(61) " fio1(02,2) — (Wi(82)) " fio1 (62, )|,
1,02€
< M sup [Wi(01)llop, sup |l fi—1(61, %) — fi1(02,2)[],
0,€D 01,02€D
+M sup [[Wi(61) — Wi(62)ll,, sup [ fi-1(02,2)ll; -
917926D 0,eD
(255)
By Lemma|[H.3] we have that
OSU%HWl(@l)Hop =0(1), (256)
1€

with probability at least 1 — 2 exp(—cny,_1) over W;(6). By inductive hypothesis, we have

, S;IPD | fic1(61,2) — fi1 (02, )|, < C RV4d, (257)
1,02€

with probability at least 1 — C exp(—cnr,—1) over (W (69))4_", and z. Clearly, we also have that
sup [[Wi(01) — Wi(02)l,, < sup [[Wi(61) — Wi(62)]r < sup 161 — 62| < R. (258)

1,02€D 1,02€ 1,02
Furthermore, by using (252)), we have that
sup || fi—1(02,2)||, < CRV4d, (259)
02€D
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with probability at least 1 — C'exp(—cnz_1) over (W (6p))._}, and x. By combining (233), (236),

[57), (258) and (239), we obtain that

sup | fu(61,2) — filfa, )|, < C RV, (260)

01,02€D

with probability at least 1 — C exp(—cn,_1) over (W (6)),_, and z, which completes the proof.
O

Lemma H.6 (> norm of backpropagation in D). Let 0 be defined in (I8), x ~ Px, and D =
B(0y, R). Assume that R = o(1) and that v > 1. Then, for any | € [L], we have

sup 00(0, )|, < C\/y-nr_1, (261)
c

with probability at least 1 — C'exp(—cng_1) over (Wi (00))f—, 41, where ¢, C are numerical con-
stants.

Proof. We prove the claim by inductionon ! € {L,L —1,...,1}. For the base case, we have that
lbL (0, )|, = 1, hence (261) clearly holds.

For the induction case, pick [ € [L — 1]. Then,

sup [[b;(6, )|, = sup
0eD 0eD

L2
(H (0, ﬂf)WkH(g)) Yp-1(6,2)Wr(0)

k=l

2

< sup
0D

( 1:[ Sk (0, 1)W1 (9)> Yr-1(0,2)
op

k=l

sup [[Wr(0)ll,
0eD

L-2
<H Sup |2k (0 2)llop $uD [|W-+1(6 )||0p> sup [| 5210, ) op sup [Wr(6)]],
k 196 0D 0€D

gMLl< 1l sup [We(6)], >(||WL<90>||2+;gg||WL<e>WLwo)llz)

k= l+1
< C M (WL (6o)ll, + sup (|6 — boll,)
0eD

<CMM N\ Anp+ sup 16— 0oll,)
€

=Cynr—1. 262)

Here, the fourth line follows from Assumption . which gives bupeeD 1Xk(0, ), < M; the fifth

line holds with probability 1 — C'exp(—cny,_1) over (W (6o))r_} 1 by Lemma|H.3} the sixth line

holds with probability at least 1 — exp(—cny,—1) over W, (6y) by Theorem 3.1.1 in [65], and the last
line follows from R = o(1). Taking the intersection of these events gives the desired result. O

Lemma H.7 (¢, distance of backpropagation in D). Let 0y be defined in (18), x ~ Px, and
D = B(0o, R). Assume that R = o(1) and that vy > 1. Then, for any l € [L], we have

sup ||bl(917 ) (927 ||2 < CR V ")/dnL 1 (263)

01,02€D

with probability at least 1 — C'exp(—cnp_1) over (Wi (0o))k_,., and x, where c,C are numerical
constants.
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Proof. We prove the claim by inductionon ! € {L,L — 1,...,1}. For the base case, by, (6, z) does
not depend on 6, hence (263) clearly holds. For the induction case, pick [ € [L — 1]. Then,

sup ||by(61,2) — bi(02, )],

91,92€D
=, s 121(01, 2)Wit1(01)b141(01, ) — 5i(02, 2) Wit 1(02)biy1(62, )],
1,02€
< , 5P 13001, 2)Wig1(01)bi1 (601, ©) — X4 (01, ) Wit 1(01) b1 (62, 7) ||,
1,02€
+sup 1Z0(61, 2) W1 (01)bi41(02, ) — Zy(02, 2)Wi1(02)bi41 (02, )],
1,02€
< sup 12001, 2) |, Sup [Wis1(61)lop , S 1br1(61,2) = bipa (B2, 2)ll, (264
+ sup [|5(01, 2)Wig1(01) — Zi(02, 2)Wis1(02) o sup [[bi41(02, )],
91,02€D 6D
< sup 501, 7)o, sup [Wig1(01)llop sup |[bi1(61,2) — bisa (62, 2],
6,€D 0.€D 91,9262)
+ sup [[(E(01,2) — Zi(02, ) Wig1(62)lop sup [be+1(02,2) |5
61,02€D 62D
+ sup |50z, ) (Wig1(01) — Wisa(62))lop sup [[b141(02, ) -
61,02€D 0,€D

Furthermore, we have that the following results hold.

(i) By Assumption [2.3]and Lemma [H.3]
sup |01, 7)o, sup [[Wig1(61)]l,, = O (1),
6,€D 6,€D

with probability 1 — 2 exp(—cnr_1) over Wi1(0o);
(i) By inductive hypothesis,

sup  ||bi41(01, ) — biy1(62,2) ||, < CRA/ydng_1,

01,02€D

with probability at least 1 — C exp(—cng_1) over (Wi (6o))f_,; o and z;
(iii) By the same argument of the second statement in Lemma[H.3]and again Lemma[H.3]

sup |[(5,(01, @) — (02, 7)) Wip1(62) ],

1,02€
< sup |97 (qu(01, %)) — ¢ (91(02,2)) |y sup [[Wis1(62)ll,,
61,0o€D 0,eD
< CRV4,

with probability at least 1 — C'exp(—cny,_1) over (Wy(6p))4 and =;

(iv) By Lemma[H.6]
sup br41(02,2)|l, < C\/AnL—1,

PIS

with probability at least 1 — C exp(—cnp_1) over (Wi (6o))f—; 41
(v) By Assumption 23]

sup [[2y(02, 2) (Wis1(61) — Wig1(62))ll,, < C R.
01,926D

By combining (i)-(v) with (264)), we conclude that
sup |[bi(01, ) — bi(02, )|l < C R+/vdnp_y, (265)

01,02€D

with probability at least 1 — C'exp(—cny,_1) over z and (Wj(6p))E_,, which concludes the proof.
O
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Lemma H.8 (Difference of Jacobians in D). Let 0y be defined in (I8), x ~ Px, and D = B(6y, R).
Assume that R = o(1) and that ~y > 1. Then, we have

sup ||J(01) — J(02) ||Op < CRdy/ynp_1N, (266)

1,02€D

with probability at least 1 — CN exp(—cny_1) over (z;), and 0y, where c,C are numerical
constants.

Proof. Pick i € [N]. Then, we have
sup [[(J(61))i: = (J(62))i: I3
01,02€D
L—1

<D sup [[(Fi(01): ® (B (01)a — (Fi(62))a ® (Braa (62)):ll3
£ 91.0.€D

L-1

- Z <0 b;lpD 1f1(01, %) @ b (01, 22) — fi(02,7:) @ biyr (02, 7:) 5
1,02€

L-1

Sgefetirépll(fz(%xz) Fi(02,21)) @ bryr (01, 7)1 o6

L—-1

+Z sup || 1(02,75) ® (buy1 (61, 2:) — bia (01, 7:))13

o 01,02€D

<Z sup_[|fu(By,2:) = fi(02, i) I sup b2 (6,
1€

1=0 01,0o€D
L—1
+ > sup [ ful2,@)ll; sup [lbisr (01, @) = by (01, 24)][5
1=0 2D 01,0o€D
Since x; ~ Px, we can merge together the results from Lemmas [H.6|and [H.7) and obtain
2
sup [|(J(61))i: — (J(02))cll; < CyR*d*np 1, (268)
01,02€D

with probability at least 1 — C' exp(—cnp_1) over x; and 6.
Therefore, we have
sup [ J(61) = J(02)[lgp < sup [[J(61) = J(62)]

01,02€D 61,02€D
N
<D0 swp (00— (JO:))ill 269
£ 6,,6,€D
< CRd\/yn; 1N,
with probability 1 — C'N exp(—cn,_1) over (z;)¥_; and 6. O

Lemma H.9 (NTK spectrum in D). Let 0 be defined in (I8), x ~ Px, and D = B(0y, R). Assume
that R = o(1) and that -y > 1. Then, we have

sup || K (0) CyNdnp_1, (270)
0D

llop <

with probability at least 1 — C' N exp(—cny_1) over 6y and (x;)Y_,, where ¢,C are numerical
constants. Furthermore,

inf onin(J(0)) > c1/Anp—anr—1 — C1 Rdy/ynp—1N, (271)

0eD

. .7 —_ 2 —_
with probability at least 1 — C' Ne clog?nr—1 _ Cg=clog’ N pp 0o and (x )fv 1» where ¢, Cy are
also numerical constants.
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Proof. We have
L—1

> F(0)F(8) o Biy1 ()B4 (6)

sup || K (0)]],, = sup
9€D 0D || 155

op

IN

> sup [|Fi ()R (6) © Bry (6) Bk ()],

IA

Z sup || Ei(0)F," (6)]],,, sup max;e|w) 1(Bi1(0)),.115 (272)
96D 0D

IA

2
Zsuplle ||FSupmaXze N b1 (6, 23) [l

L—-1 N
< Z (Z sup || f1(0, x1)||2> SUP max; [|bit1(0, z; )Hz

1=0 \i=1Y€P
2 . o
By Lemma we have that supgep | f1(6, ;) ||5 < C d with probability at least 1 —C exp(—cnr_1)
over (Wy(6o))._, and z;, forany 0 <! < L — 1 and i € [N]. By Lemma we have that

supgep ||0:(0, xz)||§ < Cynp,—1 with probability at least 1 — C'exp(—cnr,_1) over (V[/k(é‘o)),C 1410
forany [ € [L] and ¢ € [N]. Therefore, we obtain

K@), < CyNdng, (273)

with probability at least 1 — C' N exp(—cny,_1) over g and (z;)~_;, which gives the first statement
of the lemma.

By using Weyl!’s inequality, we get
inf omin(J(0)) = omin(J(00)) — sup [[J(01) — T (60)ll,,
6D 9eD

> ciy/ynp—anp—1 — Ci Rd\/ynp-1 N,
where the last inequality follows from Lemma [H.2]and Lemma[H.8] and it holds with probability

1 — C Neclog®ni—1 _ Ce=clog” N gver (;)N | and 6. This gives the second statement of the
lemma and concludes the proof. O

(274)

Armed with Proposition and the intermediate estimates of Lemmas iH.9] we are finally ready
to prove Theorem4.2]

Proof of Theorem We show that there exist two absolute constants ¢ and C' such that

o =¢y/ynp_anp_1 (275)
B =Cy/vNdny_; (276)

satisfy the two assumptions in Proposition with initialization 6y := 6, where 6, is defined in
(T8). This holds with probability at least 1 — C' Ne~¢lo&” ni—1 — Ce=¢log” N over (z,)N | and 6.

Recall from Proposition that R is defined as 4 || F1,(6y) — Y|, /a, since we have set fy = 6.

For the moment, we assume that
/ N
R=0 ( ) , 277)
ynL—2nr—1

and we will verify that this is the case later. Note that v = d>N? > 1 and, hence, (277) and
Assumption [2.5|imply that R = o(1). Thus, we can apply Lemma and obtain

gélg Omin(J(0)) > c1y/nr—anp—1 — C1 Rd\/ynp_1N > é&\/ynp_ang_1, (278)

and
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with probability at least 1 — C' Ne~¢log” ni—1 — Ce=¢1o8’ N gyer (z;,)N | and 6, where the last
inequality uses (277). This shows that the lower bound in (230) holds.

Now, by using (278), we verify that (277) holds. Recall that, by assumption of the theorem, ||Y||, =
O(v/'N). Furthermore, by Lemma F1.(09) is a vector of all zeros. Then,

41|Fr(60) =Y 41y N
o 4FL60) Y, _ 4] 2:O< / ) 279)
Q « ynL—2Nr—1

By Lemma[H.9] we have that

sup [|J(0)l,, < CV/yNdnp-1, (280)

0D

with probability at least 1 — C' N exp(—cng_1) over 6. Thus, by our choice of 3, we obtain
that the upper bound in (230) holds.

Next, we verify the second assumption of Proposition[H:I] To do so, let us write

2

~2
@ c"np—a2nr—17y

3~ W = Q(y/nr—2Nd), (281)
where we have used Assumption[2.5] Thus,
sup[1J(01) — J(B)llyy < C Rdy/Ang 1N = O ( N ) <2 sy
01,02€D VihL—2 23

with probability at least 1 — C' N exp(—cny_1) over (x;)~ , and 6. Here, the first passage follows
from Lemma [H.8] in the second passage we use (277), and in the last one we use (28T). This
completes the proof of (231) and also of the theorem, since the desired claim follows from an
application of Proposition [H.1] O
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