
A Additional Notations
Given a sub-exponential random variable X , let ∥X∥ψ1

= inf{t > 0 : E[exp(|X|/t)] ≤ 2}.
Similarly, for a sub-Gaussian random variable, let ∥X∥ψ2 = inf{t > 0 : E[exp(X2/t2)] ≤ 2}.

We use the analogous definitions for vectors. In particular, let X ∈ Rn be a random vector, then
∥X∥ψ2

:= sup∥u∥2=1

∥∥u⊤X∥∥
ψ2

and ∥X∥ψ1
:= sup∥u∥2=1

∥∥u⊤X∥∥
ψ1

.

We indicate with C and c absolute, strictly positive, numerical constants, that do not depend on the
layer widths of the network {nl}L−1

l=0 or the number of training samples N . Their value may change
from line to line.

B Some Useful Estimates
Lemma B.1. Under Assumption 2.5, we have that

N · log8 nL−1 = o(nL−1nL−2), (22)

nL−2 · log2N · log2 nL−1 = o(nL−1nL−2), (23)

nL−1 · log2N · log2 nL−1 = o(nL−1nL−2), (24)

N · log2 nL−1 · log4N = o(nL−1nL−2). (25)

Proof. We start by proving (22). If nL−1 = O
(
N2
)
, then

N · log8 nL−1 = O
(
N · log8N

)
= o(nL−1nL−2), (26)

where the last passage follows from (4). Conversely, if nL−1 = Ω(N2), then

N · log8 nL−1 = O
(√
nL−1 · log8 nL−1

)
= o(nL−1) = o(nL−1nL−2), (27)

which concludes the proof of (22).

To obtain (23), we can exploit the second requirement of Assumption 2.5, which implies that logN =
O (log nL−1). This readily implies (23). Notice that (24) naturally follows since nL−1 = O (nL−2)
by Assumption 2.4.

Finally, to obtain (25), we write

N · log2 nL−1 · log4N = O
(
N · log6 nL−1

)
= o(nL−1nL−2), (28)

where in the first passage we use that logN = O (log nL−1) (from the second requirement of
Assumption 2.5) and the last passage follows from (22).

Lemma B.2 (Lipschitz constant of function of the features). For all l ∈ [L − 1], and for every
Lipschitz function φ, we have

∥φ(gl(x))∥Lip = O (1) , (29)

with probability at least
1− 2l exp (−nL−1), (30)

over (Wk)
l
k=1. We recall that φ is applied component-wise to gl(x), and φ(gl(x)) : Rd → Rnl is

intended as a function of x.

Proof. Note that φ(gl) is a composition of Lipschitz functions. Thus,

∥φ(gl)∥Lip ≤ ∥φ∥Lip ∥gl∥Lip ≤ ∥φ∥Lip ∥Wl∥op

l−1∏
k=1

(
∥Wk∥op ∥ϕ∥Lip

)
≤ ∥φ∥Lip ∥Wl∥op M

l−1
l−1∏
k=1

∥Wk∥op ,

(31)
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where the last step is justified by Assumption 2.3.

Recall that, by the assumption on the initialization of the weights, (Wk)i,j ∼i.i.d. N (0, β2
k/nk−1),

for some constant βk which does not depend on the layer widths. Then, by Theorem 4.4.5 of [65],
we have that, for any k ∈ [l],

∥Wk∥op ≤ C
βk√
nk−1

(
√
nk−1 + 2

√
nk), (32)

with probability at least 1− 2 exp (−nk), C being a numerical constant. By Assumption 2.4 on the
topology of the network, we can rewrite this result as

∥Wk∥op = O (1) , (33)

with probability at least 1− 2 exp (−nL−1). To conclude, using a union bound over the layers up to
layer l, we have that

∥φ(gl)∥Lip = O (1) , (34)

with probability at least 1− 2l exp (−nL−1) over (Wk)
l
k=1.

Lemma B.3. We have that
∥DL∥op ≤ log nL−1, (35)

with probability at least 1− 2 exp(−c log2 nL−1) over WL, where c is a numerical constant.

Proof. Recall that DL = diag(WL) contains on the diagonal nL−1 independent Gaussian random
variables (DL)ii ∼ N (0, β2

L). Thus, for any i ∈ [nL−1],

P(|(DL)ii| > log nL−1) < 2 exp(− log2 nL−1/(2β
2
L)), (36)

which gives
P(∥DL∥op > log nL−1) =P(maxi∈[nL−1] |(DL)ii| > log nL−1)

≤nL−1P(|(DL)11| > log nL−1)

<2 exp(log nL−1 − log2 nL−1/(2β
2
L))

<2 exp(−c log2 nL−1),

(37)

where the second step is a union bound on the entries of DL. This gives the desired result.

Lemma B.4. We have that

∥DLϕ
′(gL−1(x))∥Lip = O(log nL−1), (38)

with probability at least 1− 2 exp(−c log2 nL−1)−C exp (−nL−1) over (Wk)
L
k=1. We recall that

ϕ′ is applied component-wise to gl(x), DLϕ
′(gL−1(x)) : Rd → RnL−1 is intended as a function of

x, and c is a numerical constant.

Proof. We know by composition of Lipschitz functions that

∥DLϕ
′(gL−1)∥Lip ≤ ∥DL∥op ∥ϕ

′(gL−1)∥Lip . (39)

By Assumption 2.3, ϕ′ is Lipschitz. Hence, by combining Lemma B.2 (where we use φ = ϕ′) and
Lemma B.3, the result follows.

Lemma B.5 (Exponential tails of quadratic forms). Let x ∼ PX . Let u : Rd → Rdu and v : Rd →
Rdv be mean-0 Lipschitz functions with respect to x, i.e., Ex[u(x)] = 0, Ex[v(x)] = 0, ∥u∥Lip = c1
and ∥v∥Lip = c2. Let U be a du × dv matrix, and

Γ(x) = u(x)⊤Uv(x)− Ex
[
u(x)⊤Uv(x)

]
. (40)

Then,
∥Γ∥ψ1

< CK2 ∥U∥F . (41)

where K =
√
c21 + c22, and C is a numerical constant.
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Proof. Consider the function z(x) : Rd → Rdu+dv obtained by concatenating the vectors u and v,
i.e.,

z(x) := [u(x), v(x)]⊤. (42)

One can readily verify that ∥z∥Lip ≤
√
c21 + c22 := K. Let us set

M =
1

2

(
0 U
U⊤ 0

)
. (43)

Then, we have that
Γ = z⊤Mz − Ex

[
z⊤Mz

]
. (44)

Since x satisfies Assumption 2.2 and z(x) is Lipschitz, in order to obtain tail bounds on Γ, we can
apply the version of the Hanson-Wright inequality given by Theorem 2.3 in [1]:

P(|Γ| > t) =P(|z⊤Mz − Ex
[
z⊤Mz

]
| > t)

<2 exp

(
− 1

C1
min

(
t2

K4 ∥M∥2F
,

t

K2 ∥M∥op

))

≤2 exp

(
− 1

C1
min

(
t2

K4 ∥U∥2F
,

t

K2 ∥U∥op

))
,

(45)

where C1 is a numerical constant, and in the last step we use that ∥M∥op = ∥U∥op and ∥M∥2F =

∥U∥2F /2 ≤ ∥U∥2F . Thus, by Lemma 5.5 of [61], we conclude that

∥Γ∥ψ1
< C2K

2 ∥U∥F , (46)

for some numerical constant C2, which gives the desired result.

Lemma B.6. Let u ∈ Rdu and v ∈ Rdv be two mean-0 sub-Gaussian vectors such that ∥u∥ψ2
= c1

and ∥v∥ψ2
= c2. Set Auv = E

[
uv⊤

]
. Then,

∥Auv∥op ≤ C(c1 + c2)
2, (47)

where C is a numerical constant.

Proof. Consider the vector
z := [u, v]⊤. (48)

Then, z is sub-Gaussian and, by triangle inequality on the vectors [u, 0] and [0, v], we have that
∥z∥ψ2

≤ c1 + c2. Since u and v are mean-0, then z is also mean-0 and its covariance matrix can be
written as Az := E

[
zz⊤

]
. Furthermore, we can show that

∥Az∥op ≤ C(c1 + c2)
2. (49)

In fact, let w be the unitary eigenvector associated to the maximum eigenvalue of Az . Then,

∥Az∥op = w⊤Azw = E
[
w⊤zz⊤w

]
= E

[
(w⊤z)2

]
. (50)

Furthermore, we have that

∥z∥ψ2
:= sup

w′s.t.∥w′∥2=1

∥∥(w′)⊤z
∥∥
ψ2

≥
∥∥w⊤z

∥∥
ψ2

≥ 1

C

√
E [(w⊤z)2], (51)

where C is a numerical constant, and the last inequality comes from Eq. (2.15) of [65]. By combining
(50) and (51) with ∥z∥ψ2

≤ c1 + c2, (49) readily follows.

Finally, we have that

Az =

(
Au Auv
A⊤
uv Av

)
, (52)

where Au := E
[
uu⊤

]
and Av := E

[
vv⊤

]
. As Au and Av are PSD, we have that

∥Auv∥op ≤ ∥Az∥op . (53)

Hence, the desired result follows from (49) and (53).
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Lemma B.7. Let A be an N × n matrix whose rows Ai are i.i.d. mean-0 sub-Gaussian random
vectors in Rn. Let K = ∥Ai∥ψ2

the sub-Gaussian norm of each row. Then, we have∥∥AA⊤∥∥
op = K2O (N + n) , (54)

with probability at least 1− 2 exp(−cn), for some numerical constant c.

Proof. Without loss of generality, we can assume K = 1 to simplify the proof. Let Σ be the second
moment matrix of each of the rows of A. Then, Σ = E

[
AiA

⊤
i

]
, since the rows are mean-0. Note

that, as the rows of A are i.i.d., Σ is independent of i. Furthermore, Lemma B.6 implies that the
covariance matrix E

[
AiA

⊤
i

]
has operator norm bounded by a constant, since the sub-Gaussian norm

of the rows is 1. Then, by using Remark 5.40 in [64], we have that∥∥∥∥A⊤A

N
− Σ

∥∥∥∥
op

≤ max(δ, δ2), where δ = C

√
n

N
+

t√
N
, (55)

with probability at least 1− 2 exp(−ct2), where c and C are numerical constants. Setting t =
√
n

and using a triangular inequality gives that, with probability at least 1− 2 exp(−ct2),∥∥AA⊤∥∥
op =

∥∥A⊤A
∥∥

op ≤ N ∥Σ∥op+max(C
√
nN+

√
nN, (C

√
n+

√
n)2) = O (N + n) , (56)

which implies the desired result (after re-scaling by K).

Lemma B.8. Let F̃l = Fl − Ex[Fl] ∈ RN×nl be the centered features matrix at layer l. Then, we
have ∥∥∥F̃lF̃⊤

l

∥∥∥
op

= O (N + nl) , (57)

with probability at least 1− C exp (−cnL−1) over (Wk)
l
k=1 and (xi)

N
i=1 ∼i.i.d. PX .

Proof. From Lemma B.2, we have that

∥fl(x)∥Lip = Θ(1), (58)

with probability at least
1− C ′ exp (−nL−1), (59)

over (Wk)
l
k=1. We condition on this event in the rest of the proof.

Since (xi)
N
i=1 ∼i.i.d. PX and PX satisfies Assumption 2.2, all the rows of F̃l are mean-0 sub-

Gaussian vectors, with sub-Gaussian norm bounded by a numerical constant. Here, we fix (Wk)
l
k=1

s.t. (58) holds, and the “mean-0” and the “sub-Gaussian norm” is intended w.r.t. the probability space
of (xi)Ni=1.

An application of Lemma B.7 gives that∥∥∥F̃lF̃⊤
l

∥∥∥
op

= O (N + nl) , (60)

with probability at least 1− 2 exp (−cnl) over (xi)Ni=1 ∼i.i.d. PX . Taking into account the previous
conditioning, we conclude that ∥∥∥F̃lF̃⊤

l

∥∥∥
op

= O (N + nl) , (61)

with probability at least 1− (C ′ + 2) exp (−cnL−1) over (Wk)
l
k=1 and (xi)

N
i=1 ∼i.i.d. PX .

Lemma B.9. Let B̃L−1 = BL−1 −Ex[BL−1] ∈ RN×nL−1 be the centered back-propagation matrix
at layer L− 1. Then, we have∥∥∥B̃L−1B̃

⊤
L−1

∥∥∥
op

= O
(
(N + nL−1) log

2 nL−1

)
, (62)

with probability at least 1− C exp (−cnL−1) over (Wk)
L
k=l and (xi)

N
i=1 ∼i.i.d. PX .
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Proof. From Lemma B.4, we have that

∥DLϕ
′(gL−1(x))∥Lip = O(log nL−1), (63)

with probability at least

1− 2 exp(−c log2 nL−1)− C exp (−nL−1), (64)

over (Wk)
L
k=1. We condition on this event in the rest of the proof.

Since (xi)
N
i=1 ∼i.i.d. PX and PX satisfies Assumption 2.2, all the rows of B̃L−1 are mean-0 sub-

Gaussian vectors, with sub-Gaussian norm O(log nL−1). Here, we fix (Wk)
L
k=1 s.t. (63) holds, and

the “mean-0” and the “sub-Gaussian norm” is intended w.r.t. the probability space of (xi)Ni=1.

An application of Lemma B.7 gives that∥∥∥B̃L−1B̃
⊤
L−1

∥∥∥
op

= O
(
(N + nL−1) log

2 nL−1

)
, (65)

with probability at least 1 − 2 exp (−cnL−1) over (xi)
N
i=1 ∼i.i.d. PX . Taking into account the

previous conditioning, we conclude that∥∥∥B̃L−1B̃
⊤
L−1

∥∥∥
op

= O
(
(N + nL−1) log

2 nL−1

)
, (66)

with probability at least 1− (C ′ + 2) exp (−cnL−1) over (Wk)
L
k=1 and (xi)

N
i=1 ∼i.i.d. PX .

Lemma B.10. Let ρ be a standard Gaussian random variable, then we have that

φ1(c) := Eρ [ϕ(cρ)] , (67)

and
φ2(c) := Eρ

[
ϕ2(cρ)

]
, (68)

are continuous functions in c. Furthermore, φ1(c) is Lipschitz in c, and

|φ2(c1)− φ2(c2)| ≤ C1 |c1 − c2|+ C2|c21 − c22|, (69)

where C1 and C2 are numerical constants (independent of c1, c2).

Proof. Let p(ρ) = 1√
2π
e−ρ

2/2. Then, we have

|φ1(c+ ε)− φ1(c)| ≤
∫
p(ρ) |ϕ((c+ ε)ρ)− ϕ(cρ)| dρ

≤
∫
p(ρ) |Mερ| dρ

=MεEρ [|ρ|]
= Cε,

(70)

where in the second line we use that ϕ is M -Lipschitz by Assumption 2.3. Similarly, we have

|φ2(c+ ε)− φ2(c)| ≤
∫
p(ρ)

∣∣ϕ2((c+ ε)ρ)− ϕ2(cρ)
∣∣ dρ

=

∫
p(ρ) |ϕ((c+ ε)ρ)− ϕ(cρ)| |ϕ((c+ ε)ρ) + ϕ(cρ)| dρ

≤
∫
p(ρ) |Mερ| (2 |ϕ(0)|+M(|c+ ε|+ |ε|)|ρ|) dρ

= C1εEρ [|ρ|] + C2ε|c|Eρ
[
ρ2
]
+ C3ε

2Eρ
[
ρ2
]

= C4ε+ C2|c|ε+ C3ε
2

≤ C5ε+ C6

∣∣(c+ ε)2 − c2
∣∣ .

(71)
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Lemma B.11. Let ρ be a standard Gaussian distribution, and c ̸= 0 be an absolute constant. Then,
we have

|Eρ [ϕ(cρ)] | = O (1) . (72)
It also holds

|Eρ [ϕ′(cρ)] | = O (1) . (73)

Proof. For the first statement, we exploit the fact that ϕ is Lipschitz:

|Eρ [ϕ(cρ)] | ≤ Eρ [|ϕ(0)|+M |cρ|] = |ϕ(0)|+M |c|Eρ [|ρ|] = C1. (74)

The statement on ϕ′ is easily derived following the same proof and using that ∥ϕ′∥Lip ≤M ′.

Lemma B.12. Let ρ be a standard Gaussian distribution, and c ̸= 0 be an absolute constant. Then,
we have

Eρ
[
ϕ2(cρ)

]
= Θ(1), (75)

and
Eρ
[
(ϕ′(cρ))2

]
= Θ(1). (76)

Proof. For the upper-bound of the first statement, we exploit the fact that ϕ is Lipschitz:

Eρ
[
ϕ2(cρ)

]
≤ Eρ

[
(|ϕ(0)|+M |cρ|)2

]
= ϕ2(0) + 2M |c||ϕ(0)|Eρ [|ρ|] +M2c2Eρ

[
ρ2
]
= C1.

(77)

For the lower bound, since ϕ is non-zero and continuous, we have that there exist a strictly positive
constant c′ > 0 and an interval [c1, c2] with c2 > c1 such that ϕ2(x) ≥ c′ for each x ∈ [c1, c2].
Therefore, we have

Eρ
[
ϕ2(cρ)

]
≥ c′P(c1 ≤ cρ ≤ c2) = C2. (78)

The second statements is proved in the same way, as ϕ′ is a non-zero Lipschitz function.

Lemma B.13. Let φ : Rd → R a Lipschitz function, and let x ∼ PX . Then,

E2
x [φ(x)] ≥ Ex

[
φ(x)2

]
− c ∥φ∥2Lip , (79)

where c is a numerical constant.

Proof. We have

E2
x [φ(x)] = Ex

[
(φ(x))2

]
− Ex

[
(φ(x)− Ex [φ(x)])2

]
= Ex

[
φ(x)2

]
−
∫ +∞

0

P
(
(φ(x)− Ex [φ(x)])2 > t

)
dt

= Ex
[
φ(x)2

]
−
∫ +∞

0

P
(
|φ(x)− Ex [φ(x)]| >

√
t
)
dt

≥ Ex
[
φ(x)2

]
−
∫ +∞

0

2 exp
(
−Ct/ ∥φ∥2Lip

)
dt

= Ex
[
φ(x)2

]
− 2 ∥φ∥2Lip /C,

(80)

where the inequality is a consequence of Assumption 2.2.

Lemma B.14. Let x ∼ PX , and define c̃l(x) = βl ∥fl(x)∥ /
√
nl.

Then, we have

Ex [|c̃l(x)− Ex [c̃l(x)]|] ≤ C
∥fl∥Lip√

nl
, (81)

and

Ex
[
(c̃l(x)− Ex [c̃l(x)])2

]
≤ C

∥fl∥2Lip
nl

, (82)

where C is a numerical constant.
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Proof. We have that

Ex [|c̃l(x)− Ex [c̃l(x)]|] =
∫ +∞

0

P (|c̃l(x)− Ex [c̃l(x)]| > t) dt

=

∫ +∞

0

P (|∥fl(x)∥ − Ex [∥fl(x)∥]| >
√
nlt/βl) dt

≤
∫ +∞

0

2 exp
(
−cnlt2/ ∥fl∥2Lip

)
dt

= C
∥fl∥Lip√

nl
,

(83)

where c and C are numerical constants, and the third line is justified by Assumption 2.2.

Similarly, we have

Ex
[
(c̃l(x)− Ex [c̃l(x)])2

]
=

∫ +∞

0

P
(
(c̃l(x)− Ex [c̃l(x)])2 > t

)
dt

=

∫ +∞

0

P
(
|∥fl(x)∥ − Ex [∥fl(x)∥]| >

√
nlt/βl

)
dt

≤
∫ +∞

0

2 exp
(
−cnlt/ ∥fl∥2Lip

)
dt

= C
∥fl∥2Lip
nl

,

(84)

where, again, c and C are numerical constants and the third line is justified by Assumption 2.2.

Lemma B.15. Let ρ1 and ρ2 be two standard Gaussian random variables, possibly correlated. Then,
we have

|Eρ1ρ2 [ϕ(ρ1x1)ϕ(ρ2x2)− ϕ(ρ1y1)ϕ(ρ2y2)]| ≤
≤ C1 |x1 − y1|+ C2 |x2| |x1 − y1|+ C3 |x2 − y2|+ C4 |y1| |x2 − y2| ,

(85)

where C1, C2, C3, C4 are numerical constants (which do not depend on x1, x2, y1, y2). Furthermore,
the same result holds with ϕ′ instead of ϕ.

Proof. We have

|Eρ1ρ2 [ϕ(ρ1x1)ϕ(ρ2x2)− ϕ(ρ1y1)ϕ(ρ2y2)]|
≤ |Eρ1ρ2 [ϕ(ρ1x1)ϕ(ρ2x2)− ϕ(ρ1y1)ϕ(ρ2x2)] + Eρ1ρ2 [ϕ(ρ1y1)ϕ(ρ2x2)− ϕ(ρ1y1)ϕ(ρ2y2)]|
≤ Eρ1ρ2 [|ϕ(ρ1x1)− ϕ(ρ1y1)| |ϕ(ρ2x2)|] + Eρ1ρ2 [|ϕ(ρ2x2)− ϕ(ρ2y2)| |ϕ(ρ1y1)|]
≤ Eρ1ρ2 [|Mρ1(x1 − y1)| (|ϕ(0)|+M |ρ2x2|)] + Eρ1ρ2 [|Mρ2(x2 − y2)| (|ϕ(0)|+M |ρ1y1|)]
≤ C1 |x1 − y1|E [|ρ1|] + C2 |x2| |x1 − y1|E [|ρ1||ρ2|]

+ C3 |x2 − y2|E [|ρ2|] + C4 |y1| |x2 − y2|E [|ρ1||ρ2|]
≤ C1 |x1 − y1|+ C2 |x2| |x1 − y1|+ C3 |x2 − y2|+ C4 |y1| |x2 − y2| ,

(86)
where in third inequality we use that ϕ is M -Lipschitz, and in the last inequality we use that the
quantities E [|ρ1|], E [|ρ2|] and E [|ρ1||ρ2|] are all smaller than 1 (regardless of the correlation between
ρ1 and ρ2). Since we only used the fact that ϕ is M -Lipschitz, the same result holds with ϕ′ in place
of ϕ.

C Concentration of ℓ2 Norms
In this appendix, we state and prove a number of high-probability estimates on the ℓ2 norms of feature
and backpropagation vectors. More specifically, our results can be summarized as follows:
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• Lemma C.1 gives tight bounds on ∥fl(x)∥2, i.e. the ℓ2 norm of the feature vector at layer l.
The statement holds with high probability over x and (Wk)

l
k=1.

• Lemmas C.2 and C.3 give tight bounds on Ex
[
∥fl(x)∥22

]
and Ex [∥fl(x)∥2], respectively.

These quantities represent the expectation with respect to x of the (squared) ℓ2 norm of the
feature vector at layer l. The statements hold with high probability over (Wk)

l
k=1.

• Lemma C.4 focuses on the centered feature vector fl(x) − Ex [fl(x)], and it gives
tight bounds on (i) its expected (w.r.t. x) squared ℓ2 norm Ex

[
∥fl(x)− Ex [fl(x)]∥22

]
,

(ii) its expected (w.r.t. x) ℓ2 norm Ex [∥fl(x)− Ex [fl(x)]∥2], and (iii) its ℓ2 norm
∥fl(x)− Ex [fl(x)]∥2. The first two statements hold with high probability over (Wk)

l
k=1,

and the probability in the last statement is also over x.

• Lemma C.5 focuses on the centered backpropagation vector at layer L− 1, and it gives tight
bounds on its ℓ2 norm ∥DLϕ

′(gL−1(x))− Ex [DLϕ
′(gL−1(x))]∥2. This statement holds

with high probability over x and (Wk)
l
k=1.

Throughout this appendix, we always assume that PX satisfies Assumptions 2.1 and 2.2, and that the
layer widths satisfy Assumption 2.4. Furthermore, we use that the activation ϕ and its derivative ϕ′
are Lipschitz (see Assumption 2.3).

Lemma C.1 (ℓ2 norm of features). Let x ∼ PX . Then, for every 0 ≤ l ≤ L− 1,

∥fl(x))∥2 = Θ(
√
nl), (87)

with probability at least 1−C exp(−cnL−1) over x and (Wk)
l
k=1. As usual, ϕ is applied component-

wise on gl(x), and c and C are numerical constants.

Proof. We prove this by induction over l, and we start with the base case (l = 0). Recall that we have
defined f0(x) := x. As the ℓ2 norm is a 1-Lipschitz function, by Assumption 2.2, we have that

P (|∥x∥2 − E[∥x∥2]| > t) ≤ 2e−ct
2

. (88)

Furthermore, Assumption 2.1 implies that E[∥x∥2] = Θ(
√
d), hence setting t = E[∥x∥2]/2 in (88)

proves the desired result for the base case (recalling that nL−1 = O (d) by Assumption 2.4).

By inductive hypothesis, we have

∥fl−1(x))∥2 = Θ(
√
nl−1), (89)

with probability at least 1− C exp(−cnL−1).

Define c̃ := βl ∥fl−1(x)∥2 /
√
nl−1. From now on, we condition on a realization of x and (Wk)

l−1
k=1

such that c̃ = Θ(1). By (89), this happens with probability at least 1− C exp(−cnL−1).

To ease the notation, we use the shorthands f := fl−1(x) and W :=Wl. Then, we can write

∥fl(x)∥2 =
∥∥ϕ(W⊤f)

∥∥
2
=

√
nl

√√√√ 1

nl

nl∑
i=1

ϕ2((W⊤)i:f). (90)

Recall that (Wl)i,j ∼i.i.d. N (0, β2
l /nl−1) and that the Gaussian distribution is rotationally invariant.

Thus, the RHS of (90) has the same distribution as

√
nl

√√√√ 1

nl

nl∑
i=1

ϕ2 (c̃ρi) =
√
nl

√√√√Eρ1 [ϕ2 (c̃ρ1)] +
1

nl

nl∑
i=1

Zi, (91)

where (ρi)
nl
i=1 ∼i.i.d. N (0, 1) and also independent of f , and we have defined the independent,

mean-0 random variables
Zi = ϕ2 (c̃ρi)− Eρ1

[
ϕ2 (c̃ρ1)

]
. (92)

Note that, in the definition of Zi, the randomness comes only from ρi, since we are conditioning on c̃.
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We have that

∥ϕ (c̃ρi)∥ψ2
≤ ∥ϕ (c̃ρi)− Eρi [ϕ (c̃ρi)]∥ψ2

+ ∥Eρi [ϕ (c̃ρi)]∥ψ2
≤ C1 + C2 = C3, (93)

where the first term is bounded by a constant by Theorem 5.2.2 in [65], and the bound on the second
term follows from Lemma B.11. As a consequence, we have

∥Zi∥ψ1
=
∥∥ϕ2 (c̃ρi)− Eρi

[
ϕ2 (c̃ρi)

]∥∥
ψ1

≤C4

∥∥ϕ2 (c̃ρi)∥∥ψ1

=C4 ∥ϕ (c̃ρi)∥2ψ2

≤C5,

(94)

where the inequality in the second line follows from Exercise 2.7.10 of [65], the equality in the
third line follows from Lemma 2.7.6 of [65], and the inequality in the last line follows from (93).
Hence, the Zi-s are i.i.d. sub-exponential random variables, with sub-exponential norm bounded by a
numerical constant. An application of Bernstein inequality (cf. Corollary 2.8.3. in [65]) gives that

P

(∣∣∣∣∣ 1nl
nl∑
i=1

Zi

∣∣∣∣∣ > t

)
≤ 2 exp

(
−cmin

(
t2

C2
6

,
t

C6

)
nl

)
, (95)

where c, C6 are numerical constants. Furthermore, by Lemma B.12, we have

Eρ1
[
ϕ2 (c̃ρ1)

]
= Θ(1). (96)

By setting t = Eρ1
[
ϕ2 (c̃ρ1)

]
/2 into (95) and using (91) and (96), we conclude that∥∥ϕ(W⊤f)

∥∥
2
= Θ(

√
nl), (97)

with probability at least 1 − C exp(−cnL−1) − 2 exp(−cnl) ≥ 1 − C1 exp(−cnL−1), for some
numerical constant c and C1, which concludes the proof.

Lemma C.2 (Expected squared ℓ2 norm of features). Let x ∼ PX . Then, for every 0 ≤ l ≤ L− 1,

Ex
[
∥fl(x)∥22

]
= Θ(nl), (98)

with probability at least 1 − C exp(−cnL−1) over (Wk)
l
k=1. As usual, c and C are numerical

constants.

Proof. The argument is by induction over l. The base case is a direct consequence of Assumption
2.1, since f0(x) = x.

By inductive hypothesis, we have

Ex
[
∥fl−1(x))∥22

]
= Θ(nl−1), (99)

with probability at least 1− C exp(−cnL−1). Define c̃(x) := βl ∥fl−1(x)∥2 /
√
nl−1. From now on,

we condition on a realization of (Wk)
l−1
k=1 such that Ex

[
c̃2(x)

]
= Θ(1). By (99), this happens with

probability at least 1− C exp(−cnL−1).

To ease the notation, we use the shorthands f := fl−1(x), W := Wl and wi = W:i. Then, we can
write

Ex
[
∥fl(x))∥22

]
= Ex

[∥∥ϕ(W⊤f)
∥∥2
2

]
= nl

(
1

nl

nl∑
i=1

Ex
[
ϕ2((W⊤)i:f)

])

= nl

(
Ew1

Ex
[
ϕ2(w⊤

1 f)
]
+

1

nl

nl∑
i=1

Zi

)
,

(100)

where we use that the wi-s are equally distributed and we have defined the independent, mean-0
random variables

Zi = Ex
[
ϕ2
(
w⊤
i f(x)

)]
− Ewi

Ex
[
ϕ2
(
w⊤
i f(x)

)]
. (101)

22



Note that, in the definition of Zi, the randomness comes only from wi, since we are conditioning on
(Wk)

l−1
k=1.

We have that
∥Zi∥ψ1

≤Ex
[∥∥ϕ2 (w⊤

i f(x)
)
− Ewi

[
ϕ2
(
w⊤
i f(x)

)]∥∥
ψ1

]
≤Ex

[
C1

∥∥ϕ2 (w⊤
i f(x)

)∥∥
ψ1

]
=C1Ex

[∥∥ϕ (w⊤
i f(x)

)∥∥2
ψ2

]
,

(102)

where the first line follows from Jensen’s inequality as ∥·∥ψ1
is convex, the inequality in the second

line follows from Exercise 2.7.10 of [65], and the equality in the third line follows from Lemma 2.7.6
of [65].

Recall that (Wl)i,j ∼i.i.d. N (0, β2
l /nl−1) and that the Gaussian distribution is rotationally invariant.

Thus, ϕ
(
w⊤
i f(x)

)
has the same distribution as ϕ (c̃(x)ρi), where (ρi)

nl
i=1 ∼i.i.d. N (0, 1) and also

independent of c̃(x). We now condition on a realization of x and (Wk)
l−1
k=1 and provide an upper

bound on the sub-Gaussian norm
∥∥ϕ (w⊤

i f(x)
)∥∥
ψ2

, where the only randomness comes again from
wi (and, hence, from ρi). We have that∥∥ϕ (w⊤

i f(x)
)∥∥
ψ2

= ∥ϕ (c̃(x)ρi)∥ψ2

≤ ∥ϕ (c̃(x)ρi)− Eρi [ϕ (c̃(x)ρi)]∥ψ2
+ ∥Eρi [ϕ (c̃(x)ρi)]∥ψ2

≤ C1c̃(x) + C2c̃(x) + C3 = C4(c̃(x) + 1).

(103)

where the first term in the RHS in the second line is bounded by C1c̃(x) by Theorem 5.2.2 in [65],
and the second term is bounded by C2c̃(x) +C3 by following the same proof of Lemma B.11 as ϕ is
Lipschitz. By combining (102) and (103), we get

∥Zi∥ψ1
≤ C2

4Ex
[
(c̃(x) + 1)2

]
≤ C5, (104)

where we use that Ex
[
c̃2(x)

]
= Θ(1).

Hence, the Zi-s are i.i.d. sub-exponential random variables, with sub-exponential norm bounded by a
numerical constant. An application of Bernstein inequality (cf. Corollary 2.8.3. in [65]) gives that

P

(∣∣∣∣∣ 1nl
nl∑
i=1

Zi

∣∣∣∣∣ > t

)
≤ 2 exp

(
−cmin

(
t2

C2
5

,
t

C5

)
nl

)
, (105)

where c, C5 are numerical constants.

Let us consider the first term in (100):

ExEw1

[
ϕ2(w⊤

1 f)
]
= ExEρ1

[
ϕ2 (c̃(x)ρ1)

]
, (106)

where the equality comes again from the rotational invariance of the Gaussian distribution of w1. We
will show that

ExEρ1
[
ϕ2 (c̃(x)ρ1)

]
= Θ(1), (107)

with probability at least 1− C exp(−cnL−1) over (Wk)
l−1
k=1.

The upper bound in (107) follows from the same passages in (77), as Ex[c̃2(x)] = Θ(1). We now
prove the lower bound. By Lemma C.1, we have that there exist numerical constants c2 > c1 > 0
such that c̃(x) ∈ [c1, c2] with probability at least 1− C exp(−cnL−1) over x and (Wk)

l−1
k=1. Hence,

with probability at least 1− 2C exp(−cnL−1) over (Wk)
l−1
k=1, we have that

Px(c̃(x) ∈ [c1, c2]) ≥ 1/2, (108)

where we use the symbol Px to highlight that this last probability is taken over x. Let us condition on
a realization of (Wk)

l−1
k=1 s.t. (108) holds. Then, we have

ExEρ1
[
ϕ2 (c̃(x)ρ1)

]
≥ 1

2
inf

c∈[c1,c2]
Eρ1

[
ϕ2 (cρ1)

]
. (109)
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By Lemma B.10, we have that φ(c) = Eρ1
[
ϕ2 (cρ1)

]
is continuous in c. Therefore, by Weier-

strass theorem, there exists a strictly positive c∗ ∈ [c1, c2] such that infc∈[c1,c2] Eρ1
[
ϕ2 (cρ1)

]
=

Eρ1
[
ϕ2 (c∗ρ1)

]
. Thus,

ExEρ1
[
ϕ2 (c̃(x)ρ1)

]
≥ 1

2
Eρ1

[
ϕ2 (c∗ρ1)

]
= Θ(1), (110)

where the last equality is a consequence of Lemma B.12. This concludes the proof of the lower bound
in (107).

By setting t = Eρ1
[
ϕ2 (c∗ρ1)

]
/4 into (105) and using (107) and (100), we conclude that

Ex
[
∥fl(x))∥22

]
= Θ(nl), (111)

with probability at least 1−C exp(−cnL−1), for some numerical constants C and c, which concludes
the proof.

Lemma C.3 (Expected ℓ2 norm of features). Let x ∼ PX . Then, for every 0 ≤ l ≤ L− 1,

Ex [∥fl(x)∥2] = Θ(
√
nl), (112)

with probability at least 1 − C exp(−cnL−1) over (Wk)
l
k=1. As usual, c and C are numerical

constants.

Proof. We condition on the events

Ex
[
∥fl(x)∥22

]
= Θ(nl), (113)

and
∥∥fl(x)∥2∥Lip = O (1) , (114)

which happen with probability at least 1− C exp(−cnL−1) over (Wk)
l
k=1 by Lemma C.2 and B.2.

The upper bound is a direct consequence of Jensen’s inequality:

Ex [∥fl(x)∥2] ≤
√

Ex
[
∥fl(x)∥22

]
= Θ(

√
nl). (115)

For the lower bound, we use Lemma B.13, and we obtain

Ex [∥fl(x)∥2] ≥
√
Ex
[
∥fl(x)∥22

]
− c ∥∥fl(x)∥2∥

2
Lip

= Θ(
√
nl). (116)

Lemma C.4 (ℓ2 norms of centered features). Let x ∼ PX . Then, for every 0 ≤ l ≤ L − 1, the
following results hold.

1. With probability at least 1− C exp(−cnL−1) over (Wk)
l
k=1, we have that

Ex
[
∥fl(x)− Ex [fl(x)]∥22

]
= Θ(nl). (117)

2. With probability at least 1− C exp(−cnL−1) over (Wk)
l
k=1, we have that

Ex [∥fl(x)− Ex [fl(x)]∥2] = Θ(
√
nl). (118)

3. With probability at least 1− C exp(−cnL−1) over (Wk)
l
k=1 and x, we have that

∥fl(x)− Ex [fl(x)]∥2 = Θ(
√
nl). (119)
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Proof. The argument is by induction over l. The base case for (117) follows directly from Assumption
2.1, since f0(x) = x. Since the ℓ2 norm is a 1-Lipschitz function, from Jensen inequality and Lemma
B.13 we readily obtain the base case for (118). Note that ∥∥x− Ex[x]∥2∥Lip ≤ 1. Then, the base
case for (119) is a direct consequence of Assumption 2.2 on x and of the base case of (118), and it
holds with probability at least 1− C ′ exp(−cd) ≥ 1− C ′ exp(−cnL−1) over x.

By inductive hypothesis, we assume the three statements to be true for layer l − 1, for l ∈ [L− 1].
We will now prove (117) for layer l.

To ease the notation, we use the shorthands f(x) := fl−1(x), f = Ex[f(x)], f̃(x) = f(x) − f ,
W :=Wl and wi =W:i. We also define c̃(x) = βl ∥f(x)∥ /

√
nl−1 and c̃ = Ex[c̃(x)].

We condition on the following events in the probability space of (Wk)
l−1
k=1:

(a) ∥f(x)∥Lip = O (1), which happens with probability at least 1 − C ′ exp(−cnL−1) by
Lemma B.2.

(b) c̃ = Θ(1), which happens with probability at least 1 − C ′ exp(−cnL−1) by Lemma C.3.
Notice that by Jensen inequality this also implies ∥f∥22 = O (nl−1).

(c) By inductive hypothesis, we have that, with probability at least 1−C ′ exp(−cnn−1) over x
and (Wk)

l−1
k=1, ∥∥∥f̃(x)∥∥∥2

2
= Θ(nl−1). (120)

Hence, with probability at least 1− 2C ′ exp(−cnn−1) over (Wk)
l−1
k=1, we have that

Px
(
c1nl−1 ≤

∥∥∥f̃(x)∥∥∥2
2
≤ c2nl−1

)
≥ 1/2, (121)

for some numerical constants c2 > c1 > 0. In (121), we use the symbol Px to highlight
that this last probability is taken over x. For the rest of the argument, we condition on a
realization of (Wk)

l−1
k=1 s.t. (121) holds.

By taking a union bound, the events (a)-(c) happen with probability at least 1− 4C ′ exp(−cnn−1)

over (Wk)
l−1
k=1.

Now, we can write

Ex
[
∥fl(x)− Ex [fl(x)]∥22

]
= Ex

[∥∥ϕ(W⊤f(x))− Ex
[
ϕ(W⊤f(x))

]∥∥2
2

]
= nl

(
1

nl

nl∑
i=1

Ex
[(
ϕ((W⊤)i:f(x))− Ex

[
ϕ((W⊤)i:f(x))

])2])

= nl

(
Exw1

[(
ϕ(w⊤

1 f(x))− Ex
[
ϕ(w⊤

1 f(x))
])2]

+
1

nl

nl∑
i=1

Zi

)
,

(122)
where we use that the wi-s are identically distributed and we have defined the independent, mean-0
random variables

Zi = Ex
[(
ϕ(w⊤

i f(x))− Ex
[
ϕ(w⊤

i f(x))
])2]− Ew1x

[(
ϕ(w⊤

1 f(x))− Ex
[
ϕ(w⊤

1 f(x))
])2]

.

(123)
As in the proof of Lemma C.2, in the definition of Zi, the randomness comes only from wi, since we
are conditioning on (Wk)

l−1
k=1.
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We have that

∥Zi∥ψ1
≤ C0

∥∥∥Ex [(ϕ(w⊤
i f(x))− Ex

[
ϕ(w⊤

i f(x))
])2]∥∥∥

ψ1

≤ C0Ex
[∥∥∥(ϕ(w⊤

i f(x))− Ex
[
ϕ(w⊤

i f(x))
])2∥∥∥

ψ1

]
= C0Ex

[∥∥ϕ(w⊤
i f(x))− Ex

[
ϕ(w⊤

i f(x))
]∥∥2
ψ2

]
≤ C0Ex

[(∥∥ϕ(w⊤
i f(x))

∥∥
ψ2

+
∥∥Ex [ϕ(w⊤

i f(x))
]∥∥
ψ2

)2]
≤ C0Ex

[(∥∥ϕ(w⊤
i f(x))

∥∥
ψ2

+ Ex
[∥∥ϕ(w⊤

i f(x))
∥∥
ψ2

])2]
,

(124)

where C0 is a numerical constant, the first inequality follows from Exercise 2.7.10 of [65], the second
line follows from Jensen’s inequality as ∥·∥ψ1

is convex, the equality follows from Lemma 2.7.6 of
[65], and the last line follows from Jensen’s inequality as ∥·∥ψ2

is convex.

Recall that (W )i,j ∼i.i.d. N (0, β2
l /nL−1) and that the Gaussian distribution is rotationally invariant.

Thus, ϕ′
(
w⊤
i f(x)

)
has the same distribution as ϕ′ (c̃(x)ρi), where (ρi)

nL−1

i=1 ∼i.i.d. N (0, 1) and also
independent of c̃(x). Therefore,∥∥ϕ (w⊤

i f(x)
)∥∥
ψ2

= ∥ϕ (c̃(x)ρi)∥ψ2

≤ ∥ϕ (c̃(x)ρi)− Eρi [ϕ (c̃(x)ρi)]∥ψ2
+ ∥Eρi [ϕ (c̃(x)ρi)]∥ψ2

≤ C1c̃(x) + C2c̃(x) + C3 ≤ C4(c̃(x) + 1),

(125)

where the first term in the RHS in the second line is bounded by C1c̃(x) for Theorem 5.2.2 in [65],
and the second term is bounded by C2c̃(x) + C3 by following the same proof of Lemma B.11.

Merging together (125) and (124) we get

∥Zi∥ψ1
≤C0Ex

[
(C4c̃(x) + C4c̃+ C5)

2
]

=C6Ex[(c̃(x)− c̃)2] + C4c̃
2 + C7c̃+ C8

=C6O
(
n−1
l

)
+ C4c̃

2 + C7c̃+ C8

≤C9,

(126)

where in the third line we use Lemma B.14.

Hence, the Zi-s are i.i.d. sub-exponential random variables, with sub-exponential norm bounded by a
numerical constant. An application of Bernstein inequality (cf. Corollary 2.8.3. in [65]) gives that

P

(∣∣∣∣∣ 1nl
nl∑
i=1

Zi

∣∣∣∣∣ > t

)
≤ 2 exp

(
−cmin

(
t2

C2
,
t

C

)
nl

)
, (127)

where c, C are numerical constants. We recall that this probability is intended over Wl.

Let’s now focus on the first term in the last line of (122), using the shorthand w = w1, to ease the
notation. We can rewrite this term as

Ew
[
Ex
[
ϕ2(w⊤f(x))

]
− Exy

[
ϕ(w⊤f(x))ϕ(w⊤f(y))

]]
= ExEw

[
ϕ2(w⊤f(x))

]
− ExyEw

[
ϕ(w⊤f(x))ϕ(w⊤f(y))

]
.

(128)

The aim of this part of the proof is to show that the quantity in (128) is Θ(1).

Recall that (Wl)i,j ∼i.i.d. N (0, β2
l /nl−1) and that the Gaussian distribution is rotationally invariant.

Thus, ϕ
(
w⊤f(x)

)
has the same distribution as ϕ (c̃(x)ρ), where ρ ∼ N (0, 1) is independent of c̃(x).

26



We therefore have ∣∣∣∣ExEw [ϕ2 (w⊤f(x)
)
− ϕ2

(
w⊤f(x)

c̃

c̃(x)

)]∣∣∣∣
=
∣∣ExEρ [ϕ2(ρc̃(x))− ϕ2(ρc̃)

]∣∣
≤ Ex

[
C1|c̃− c̃(x)|+ C2

∣∣c̃2 − c̃(x)2
∣∣]

≤ Ex
[
C1|c̃− c̃(x)|+ C2(c̃− c̃(x))2 + 2C2c̃ |c̃− c̃(x)|

]
= O

(
n
−1/2
l−1

)
,

(129)

where the third line follows from Lemma B.10, and the last passage follows from Lemma B.14.
Similarly, we have∣∣∣∣ExyEw [ϕ(w⊤f(x))ϕ(w⊤f(y))− ϕ

(
w⊤f(x)

c̃

c̃(x)

)
ϕ

(
w⊤f(y)

c̃

c̃(y)

)]∣∣∣∣
= |ExyEρ1ρ2 [ϕ(ρ1c̃(x))ϕ(ρ2c̃(y))− ϕ(ρ1c̃)ϕ(ρ2c̃)]|
≤ Exy [C1 |c̃(x)− c̃|+ C2c̃(y) |c̃(x)− c̃|+ C3 |c̃(y)− c̃|+ C4c̃ |c̃(y)− c̃|]

= O
(
n
−1/2
l−1

)
,

(130)

where ρ1 and ρ2 indicate two standard Gaussian random variables with correlation
f(x)⊤f(y)/(∥f(x)∥ ∥f(y)∥), the third line follows from B.15, and the last passage follows from
Lemma B.14. By combining (129) and (130), we have that∣∣Ew [Ex [ϕ2(w⊤f(x))

]
− Exy

[
ϕ(w⊤f(x))ϕ(w⊤f(y))

]]
− ξ
∣∣ = O

(
n
−1/2
l−1

)
, (131)

with

ξ :=ExEw
[
ϕ2
(
w⊤f(x)

c̃

c̃(x)

)]
− ExyEw

[
ϕ

(
w⊤f(x)

c̃

c̃(x)

)
ϕ

(
w⊤f(y)

c̃

c̃(y)

)]
=Eρ1

[
ϕ̃2(ρ1)

]
− Exy

[
Eρ1ρ2

[
ϕ̃(ρ1)ϕ̃(ρ2)

]]
,

(132)

where we have set ϕ̃(t) = ϕ(c̃t). Hence, in order to obtain that the quantity in (128) is Θ(1), it
suffices to prove that ξ = Θ(1).

As ϕ is Lipschitz and c̃ is Θ(1), ϕ̃ is also Lipschitz, which readily implies that ξ = O (1). We now
prove that ξ = Ω(1). By exploiting the Hermite expansion of ϕ̃, we have that

ξ =

∞∑
i=0

µ2
i

(
1− Exy

[(
f(x)⊤f(y)

∥f(x)∥ ∥f(y)∥

)i])
, (133)

where µi is the i-th Hermite coefficient of ϕ̃. Note that, since we conditioned on c̃ = Θ(1), these
coefficients are numerical constants. As ϕ (and therefore ϕ̃) is non constant, there exist j > 0
such that µj ̸= 0. Furthermore, we have that the sum in (133) contains only positive terms, as
|f(x)⊤f(y)| ≤ ∥f(x)∥ · ∥f(y)∥ by Cauchy-Schwarz. Therefore, in order to show that ξ = Ω(1), it
suffices to prove that, for all j > 0,

Exy

( ∣∣f(x)⊤f(y)∣∣
∥f(x)∥ ∥f(y)∥

)j ≤ C0 < 1, (134)

where C0 is an absolute constant strictly smaller than 1. Furthermore, (134) is implied by the
following:

Pxy

( ∣∣f(x)⊤f(y)∣∣
∥f(x)∥ ∥f(y)∥

≤ C1

)
≥ c1, (135)

where C1 < 1 and c1 > 0 are numerical constants.
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By writing f(x) as f̃(x) + f and f(y) as f̃(y) + f , we have∣∣f(x)⊤f(y)∣∣
∥f(x)∥ ∥f(y)∥

=

∣∣∣(f̃(x) + f)⊤(f̃(y) + f)
∣∣∣∥∥∥f̃(x) + f

∥∥∥∥∥∥f̃(y) + f
∥∥∥

≤

∣∣∣f̃(x)⊤(f̃(y) + f)
∣∣∣+ ∣∣∣f⊤f̃(y)∣∣∣+ ∥f∥2

minz∈{x,y}

∥∥∥f̃(z) + f
∥∥∥2

≤

∣∣∣f̃(x)⊤f(y)∣∣∣+ ∣∣∣f⊤f̃(y)∣∣∣+ ∥f∥2

minz∈{x,y}

(∥∥∥f̃(z)∥∥∥2 − 2
∣∣∣f⊤f̃(z)∣∣∣)+ ∥f∥2

.

(136)

Let us provide bounds on the various terms appearing in (136):

(i) Part (d) of the conditioning (cf. (121)) gives that

Pxy
(
minz∈{x,y}

∥∥∥f̃(z)∥∥∥2
2
≥ cnl−1

)
≥ 1

4
, (137)

for some numerical constant c > 0.

(ii) Part (b) of the conditioning gives that

∥f∥22 ≤ C ′nl−1. (138)

(iii) Part (a) of the conditioning gives that ∥fl−1(x)∥Lip = O (1), and part (b) of the conditioning
gives that Ey [∥fl−1(y)∥] = Θ(

√
nl−1). Hence, as y ∼ PX , Assumption 2.2 implies that

∥fl−1(y)∥ = Θ(
√
nl−1), (139)

with probability at least 1− 2 exp(−cnl−1) over y, where c is a numerical constant. Fur-
thermore, by recalling that Ex[f̃(x)] = 0 and using again Assumption 2.2, we have that, for
any fixed vector u,

Px(|f̃(x)⊤u| > t) ≤ 2e−c0t
2/∥u∥2

2 , (140)
where c0 is another numerical constant. Since x and y are independent, (140) implies that

Px(|f̃(x)⊤f(y)| > n
3/4
l−1) ≤ 2e−c0n

3/2
l−1/∥f(y)∥

2
2 ≤ 2e−c2n

1/2
l−1 , (141)

where the first inequality holds for every y, and the second inequality holds with probability
at least 1− 2 exp(−cnl−1) over y by (139). As a result, we have

Pxy(|f̃(x)⊤f(y)| > n
3/4
l−1) ≤ 2e−c2

√
nl−1 + 2e−cnl−1 ≤ 4e−c3

√
nl−1 . (142)

(iv) By setting t = n
3/4
l−1 and u = f into (140), we obtain

Py(|f̃(y)⊤f | > n
3/4
l−1) ≤ 2e−c4

√
nl−1 , (143)

where c4 is a numerical constant and we have also used (138).

(v) Finally, as x and y are independent, (143) implies that

Pxy(maxz∈{x,y} |f̃(z)⊤f | > n
3/4
l−1) ≤ 4e−c4

√
nl−1 . (144)

By plugging into (136) the bounds (137), (142), (143) and (144), we obtain that

Px,y

( ∣∣f(x)⊤f(y)∣∣
∥f(x)∥ ∥f(y)∥

≤
2n

3/4
l−1 + ∥f∥22

c nl−1 − 2n
3/4
l−1 + ∥f∥22

)
≥ 1/4− 10e−c5

√
nl−1 . (145)

By using also (138), we have that (135) readily follows from (145). From (135), we have that
ξ = Θ(1). Hence, the quantity in (128) is Θ(1) and in particular it is lower bounded by a numerical
constant, call it C0.
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By setting t = C0/2 in (127), we conclude that

Ex
[
∥fl(x)− Ex [fl(x)]∥22

]
= Θ(nl), (146)

with probability at least 1− 2 exp(−cnl−1) over Wl, where c is an absolute constant. By taking into
account the conditioning made at the beginning of the proof over the space (Wk)

l−1
k=1, we obtain that

(146) holds with probability at least 1−5C ′ exp(−cnn−1)−2 exp(−cnn−1) ≥ 1−C exp(−cnn−1)
over (Wk)

l
k=1, where C is a numerical constant, which concludes the proof of (117).

Finally, we prove (118) and (119), again for layer l. By Lemma B.2, we have that ∥fl(x)∥Lip = O (1),
with probability at least 1 − C ′ exp(−cnL−1) over (Wk)

l
k=1. By conditioning on this event, we

also have that ∥∥fl(x)− Ex[fl(x)]∥2∥Lip = O (1). Furthermore, we condition on a realization of
(Wk)

l
k=1 such that (117) holds.

To obtain (118), we apply Jensen’s inequality and Lemma B.13, which give that

Ex [∥fl(x)− Ex[fl(x)]∥2] = Θ(
√
nl), (147)

with probability at least 1 − C ′ exp(−cnL−1) − 5C ′ exp(−cnn−1) − 2 exp(−cnn−1) ≥ 1 −
C exp(−cnn−1) over (Wk)

l
k=1.

To obtain (119), we condition on a realization of (Wk)
l
k=1 such that ∥∥fl(x)− Ex[fl(x)]∥2∥Lip =

O (1) and (118) holds. Then, by Assumption 2.2, we have that

Px (|∥fl(x)− Ex[fl(x)]∥2 − Ex [∥fl(x)− Ex[fl(x)]∥2]| > Ex [∥fl(x)− Ex[fl(x)]∥2] /2)
≤ 2 exp(−c1nl) ≤ 2 exp(−cnL−1),

(148)

where c is a numerical constant. This gives that

∥fl(x)− Ex[fl(x)]∥ = Θ(
√
nl), (149)

with probability at least 1 − 6C ′ exp(−cnn−1) − 2 exp(−cnn−1) − 2 exp(−cnn−1) ≥ 1 −
C exp(−cnn−1) over x and (Wk)

l
k=1, which concludes the proof.

Lemma C.5 (ℓ2 norms of centered backpropagation). Let x ∼ PX . Then, we have

∥DLϕ
′(gL−1(x))− Ex [DLϕ

′(gL−1(x))]∥2 = Θ(
√
nL−1), (150)

with probability at least 1 − 10 exp(−c log2 nL−1) − C exp(−cnL−1) over x and (Wk)
L
k=1 over

(Wk)
l
k=1 and x.

Proof. An application of Lemma C.4 for l = L− 2 gives that

∥fL−2(x)− Ex [fL−2(x)]∥2 = Θ(
√
nL−2). (151)

with probability at least 1− C ′ exp(−cnL−1) over (Wk)
L−2
k=1 and x.

To ease the notation, we use the shorthands f(x) := fL−2(x), f = Ex[f(x)], f̃(x) = f(x) − f ,
W :=WL−1 and wi =W:i. We also define c̃(x) = βl ∥f(x)∥ /

√
nl−1 and c̃ = Ex[c̃(x)].

As in Lemma C.4, we condition on the 3 events (a)-(c), which jointly happen with probability at least
1− 4C ′ exp(−cnL−1) over (Wk)

L−2
k=1 . Note that, to condition on the event (c), we use (151).

Now, we can write

Ex
[
∥DLϕ

′(gL−1(x))− Ex [DLϕ
′(gL−1(x))]∥

2
2

]
= Ex

[∥∥DLϕ
′(W⊤fL−2(x))− Ex

[
DLϕ

′(W⊤fL−2(x))
]∥∥2

2

]
= nL−1

(
1

nL−1

nL−1∑
i=1

(DL)
2
iiEx

[(
ϕ′(w⊤

i f(x))− Ex
[
ϕ′(w⊤

i f(x))
])2])

= nL−1

(
1

nL−1

nL−1∑
i=1

(DL)
2
iiExw1

[(
ϕ′(w⊤

1 f(x))− Ex
[
ϕ′(w⊤

1 f(x))
])2]

+
1

nL−1

nL−1∑
i=1

Zi

)
,

(152)
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where we use that the wi-s are identically distributed and we have defined the independent, mean-0
random variables

Zi =(DL)
2
iiEx

[(
ϕ′(w⊤

i f(x))− Ex
[
ϕ′(w⊤

i f(x))
])2]

− (DL)
2
iiEw1x

[(
ϕ′(w⊤

1 f(x))− Ex
[
ϕ′(w⊤

1 f(x))
])2]

.
(153)

Note that in the definition of Zi the randomness comes only from wi and (DL)ii, since we are
conditioning on (Wk)

L−2
k=1 .

If we fix the (DL)ii-s and follow the same argument in (124)-(126) (cf. the proof of Lemma C.4),
we have

∥Zi∥ψ1
≤ C0(DL)

2
ii, (154)

where C0 is a numerical constant and we have used that ϕ′ is Lipschitz. Let Ebad be the event s.t.
maxi(DL)

2
ii > log2 nL−1. Then, by following the same argument as in Lemma B.3, we have that

P(Ebad) ≤ 2 exp(−c log2 nL−1). (155)

Hence, by conditioning on Ecbad, we have that

maxi ∥Zi∥ψ1
≤ C0 log

2 nL−1. (156)

By applying Bernstein inequality (cf. Corollary 2.8.3. in [65]), we get

P

(∣∣∣∣∣ 1

nL−1

nL−1∑
i=1

Zi

∣∣∣∣∣ > 1
4
√
nL−1

∣∣∣∣∣ Ecbad
)

≤ 2 exp

(
−c

√
nL−1

log4 nL−1

)
, (157)

for some numerical constant c. By combining (155) and (157), we obtain that

P

(∣∣∣∣∣ 1

nL−1

nL−1∑
i=1

Zi

∣∣∣∣∣ > 1
4
√
nL−1

)
≤ 2 exp

(
−c

√
nL−1

log4 nL−1

)
+ 2 exp

(
−c log2 nL−1

)
≤ 4 exp

(
−c log2 nL−1

)
,

(158)

where this probability is over WL−1 and WL.

Let’s now focus on the first term in the last line of (152). In particular, we have that

ξ = Exw1

[(
ϕ′(w⊤

1 f(x))− Ex
[
ϕ′(w⊤

1 f(x))
])2]

= Θ(1). (159)

This can be proven by following the same argument in (129)-(145) (cf. the proof of Lemma C.4), as
ϕ′ is Lipschitz and non-constant.

Next, we re-write (152) as

Ex
[
∥DLϕ

′(gL−1(x))− Ex [DLϕ
′(gL−1(x))]∥

2
2

]
= nL−1

(
1

nL−1

nL−1∑
i=1

(DL)
2
iiExw1

[(
ϕ′(w⊤

1 f(x))− Ex
[
ϕ′(w⊤

1 f(x))
])2]

+
1

nL−1

nL−1∑
i=1

Zi

)

= nL−1

(
ξEWL

[
(DL)

2
11

]
+ ξ

1

nL−1

nL−1∑
i=1

Z̃i +
1

nL−1

nL−1∑
i=1

Zi

)

= nL−1

(
ξβ2
L + ξ

1

nL−1

nL−1∑
i=1

Z̃i +
1

nL−1

nL−1∑
i=1

Zi

)
,

(160)
where we have defined the independent, mean-0, sub-exponential random variables

Z̃i = (DL)
2
ii − EWL

[
(DL)

2
11

]
. (161)

Since the (DL)ii-s are standard Gaussian, we have∥∥∥Z̃i∥∥∥
ψ1

≤
∥∥(DL)

2
ii

∥∥
ψ1

= ∥(DL)ii∥2ψ2
= C1. (162)
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Hence, another application of Bernstein inequality (cf. Corollary 2.8.3. in [65]) allows us to conclude
that ∣∣∣∣∣ 1

nL−1

nL−1∑
i=1

Z̃i

∣∣∣∣∣ = O
(
n
−1/4
L−1

)
, (163)

with probability at least 1− 2 exp(−c√nL−1) over WL.

Thus, by using (158) and (163), and taking into account the initial conditioning over (Wk)
L−2
k=1 , we

conclude that

Ex
[
∥DLϕ

′(gL−1(x))− Ex [DLϕ
′(gL−1(x))]∥

2
2

]
= Θ(nL−1), (164)

with probability at least 1− 6 exp(−c log2 nL−1)− 6C ′ exp(−cnL−1) over (Wk)
L
k=1.

Proceeding in a similar fashion as in Lemma C.4, we apply Lemma B.4, which gives that
∥DLϕ

′(gL−1(x))∥Lip = O (log nL−1), with probability at least 1 − 2 exp(−c log2 nL−1) −
C ′ exp (−nL−1) over (Wk)

L
k=1. By conditioning on this event, we also have that

∥∥DLϕ
′(gL−1(x))− Ex [DLϕ

′(gL−1(x))]∥2∥Lip = O (log nL−1). Furthermore, we condition on a
realization of (Wk)

L
k=1 such that (164) holds.

We can now apply Jensen’s inequality and Lemma B.13, to obtain that

Ex [∥DLϕ
′(gL−1(x))− Ex [DLϕ

′(gL−1(x))]∥2] = Θ(
√
nl), (165)

with probability at least 1− 8 exp(−c log2 nL−1)− 7C ′ exp(−cnL−1) over (Wk)
L
k=1.

Finally, we condition on a realization of (Wk)
L
k=1 such that

∥∥DLϕ
′(gL−1(x))− Ex [DLϕ

′(gL−1(x))]∥2∥Lip = O (log nL−1) and (165) hold. Then, by
Assumption 2.2, we have that

Px
(
|∥DLϕ

′(gL−1(x))− Ex [DLϕ
′(gL−1(x))]∥2 − Ex [∥DLϕ

′(gL−1(x))− Ex [DLϕ
′(gL−1(x))]∥2]|

> Ex [∥DLϕ
′(gL−1(x))− Ex [DLϕ

′(gL−1(x))]∥2] /2
)

≤ 2 exp( −cnL−1).
(166)

This gives that
∥DLϕ

′(gL−1(x))− Ex [DLϕ
′(gL−1(x))]∥2 = Θ(

√
nL−1), (167)

with probability at least 1− 10 exp(−c log2 nL−1)− 8C ′ exp(−cnL−1) over x and (Wk)
L
k=1. This

concludes the proof.

D Proofs for Part 1: Centering
D.1 Step (a): Centering FL−2 and BL−1

Lemma D.1 (Centering FL−2 andBL−1). Consider the setting of Theorem 3.1, let FL−2 ∈ RN×nL−2

be the feature matrix at layer L−2, and letBL−1 contain the backpropagation terms from layer L−1,
i.e. (BL−1)i: = DLϕ

′(gL−1(xi)). Let JL−2J
⊤
L−2 = FL−2F

⊤
L−2 ◦ BL−1B

⊤
L−1 and J̃FB J̃⊤

FB =

F̃L−2F̃
⊤
L−2 ◦ B̃L−1B̃

⊤
L−1, where F̃L−2 = FL−2 − EX [FL−2] and B̃L−1 = BL−1 − EX [BL−1].

Then, we have that

λmin

(
JL−2J

⊤
L−2

)
≥ λmin

(
J̃FB J̃

⊤
FB

)
− o(nL−1nL−2), (168)

with probability at least 1 − C exp(−cnL−1) − 4 exp(−c log2N) − 8 exp(−c log2 nL−1) over
(Wk)

L
k=1 and (xi)

N
i=1 ∼i.i.d. PX , where c and C are numerical constants.

Proof. By Lemma B.2 and Lemma B.4, we have that ∥fL−2∥Lip = O (1) and
∥DLϕ

′(gL−1(x))∥Lip = O (log nL−1) with probability 1−C exp(−nL−1)− 2 exp(−c log2 nL−1)

over (Wk)
L
k=1. We will condition on these events for the rest of the proof.
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Let’s define J̃F J̃⊤
F = F̃L−2F̃

⊤
L−2 ◦ BL−1B

⊤
L−1. We can now re-write the quantity JL−2J

⊤
L−2 as

follows:
JL−2J

⊤
L−2 = J̃F J̃

⊤
F + E[FL−2]E[FL−2]

⊤ ◦BL−1B
⊤
L−1

+
(
(FL−2 − E[FL−2])E[FL−2]

⊤ + E[FL−2](FL−2 − E[FL−2])
⊤) ◦BL−1B

⊤
L−1

= J̃F J̃
⊤
F + ∥ν∥22BL−1B

⊤
L−1 +

(
Λ11⊤ + 11⊤Λ

)
◦BL−1B

⊤
L−1

= J̃F J̃
⊤
F +

(
∥ν∥2 1+

Λ1

∥ν∥2

)(
∥ν∥2 1+

Λ1

∥ν∥2

)⊤

◦BL−1B
⊤
L−1

− Λ11⊤Λ

∥ν∥22
◦BL−1B

⊤
L−1

⪰ J̃F J̃
⊤
F − Λ11⊤Λ

∥ν∥22
◦BL−1B

⊤
L−1,

(169)

where ν = Exi
[(FL−2)i:] ∈ RnL−2 (independent on i, since the xi-s are i.i.d.), Λ is a diagonal matrix

such that Λii = ν⊤(FL−2)i: − ∥ν∥22 =: µ(xi), and 1 ∈ RN is a vector full of ones. The last step is
justified since the Hadamard product of PSD matrices is PSD by the Schur product theorem. Notice
that we are assuming ∥ν∥2 ̸= 0. In fact, if ∥ν∥2 = 0, then we immediately have that J = J̃F .

Expanding in an analogous way the term J̃F J̃
⊤
F , we get

JL−2J
⊤
L−2 ⪰ J̃F J̃

⊤
F − Λ11⊤Λ

∥ν∥22
◦BL−1B

⊤
L−1

= J̃FB J̃
⊤
FB +

(
∥η∥2 1+

Γ1

∥η∥2

)(
∥η∥2 1+

Γ1

∥η∥2

)⊤

◦ F̃L−2F̃
⊤
L−2

− Γ11⊤Γ

∥η∥22
◦ F̃L−2F̃

⊤
L−2 −

Λ11⊤Λ

∥ν∥22
◦BL−1B

⊤
L−1

⪰ J̃FB J̃
⊤
FB +

(
∥η∥2 1+

Γ1

∥η∥2

)(
∥η∥2 1+

Γ1

∥η∥2

)⊤

◦ F̃L−2

(
νν⊤

∥ν∥22

)
F̃⊤
L−2

− Γ11⊤Γ

∥η∥22
◦ F̃L−2F̃

⊤
L−2 −

Λ11⊤Λ

∥ν∥22
◦BL−1B

⊤
L−1

(170)

where η = Exi
[(BL−1)i:] ∈ RnL−1 (independent on i, since the xi-s are i.i.d.), Γ is a diagonal matrix

such that Γii = η⊤(BL−1)i: − ∥η∥22 =: ζ(xi). The last step is justified by the fact that the following
matrix is PSD (

∥η∥2 1+
Γ1

∥η∥2

)(
∥η∥2 1+

Γ1

∥η∥2

)⊤

◦ F̃L−2

(
I − νν⊤

∥ν∥22

)
F̃⊤
L−2,

since it is the Hadamard product of two PSD matrices. Notice that we are assuming ∥η∥2 ̸= 0. In
fact, if ∥η∥2 = 0, then we immediately have that J̃F = J̃FB .

Taking into account the following relations
Λ1 = F̃L−2ν, Γ1 = B̃L−1η, EX [BL−1] = 1η⊤, (171)

we can simplify the second and the fourth term of the RHS of equation (170) as follows(
∥η∥2 1+

Γ1

∥η∥2

)(
∥η∥2 1+

Γ1

∥η∥2

)⊤

◦ F̃L−2

(
νν⊤

∥ν∥22

)
F̃⊤
L−2 −BL−1B

⊤
L−1 ◦

Λ11⊤Λ

∥ν∥22

=

(
∥η∥2 1+

Γ1

∥η∥2

)(
∥η∥2 1+

Γ1

∥η∥2

)⊤

◦ Λ11⊤Λ

∥ν∥22

−
(
1η⊤ + B̃L−1

)(
1η⊤ + B̃L−1

)⊤
◦ Λ11⊤Λ

∥ν∥22

=

(
Γ11⊤Γ

∥η∥22
− B̃L−1B̃

⊤
L−1

)
◦ Λ11⊤Λ

∥ν∥22
⪰ −B̃L−1B̃

⊤
L−1 ◦

Λ11⊤Λ

∥ν∥22
.

(172)
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Merging this last relation with (170) we get

JL−2J
⊤
L−2 ⪰ J̃FB J̃

⊤
FB − Γ11⊤Γ

∥η∥22
◦ F̃L−2F̃

⊤
L−2 −

Λ11⊤Λ

∥ν∥22
◦ B̃L−1B̃

⊤
L−1

= J̃FB J̃
⊤
FB −

(
Γ

∥η∥2
F̃L−2

)(
Γ

∥η∥2
F̃L−2

)⊤

−
(

Λ

∥ν∥2
B̃L−1

)(
Λ

∥ν∥2
B̃L−1

)⊤

.

(173)

Note that ∥µ∥Lip ≤ ∥fL−2∥Lip ∥ν∥2, and that Exi [µ(xi)] = 0 for all i ∈ [N ]. Thus, by using
Assumption 2.2 on xi and exploiting the initial conditioning on the weights, we have that

P(|µ(xi)|/ ∥ν∥2 > t) < 2 exp(−ct2), (174)

where the probability is intended over xi ∼ PX . Thus, following the same argument of Lemma B.3,
the last relation implies that

∥Λ/ ∥ν∥2∥op = O (logN) , (175)

with probability at least 1− 2 exp(−c log2N), where c is a numerical constant, and the probability
is intended over {xi}Ni=1. This implies that∥∥∥∥∥
(

Λ

∥ν∥2
B̃L−1

)(
Λ

∥ν∥2
B̃L−1

)⊤
∥∥∥∥∥

op

≤
∥∥∥∥ Λ

∥ν∥2

∥∥∥∥2
op

∥∥∥B̃L−1B̃
⊤
L−1

∥∥∥
op

= O
(
(N + nL−1) · log2N · log2 nL−1

)
= o(nL−2nL−1),

(176)
where the second equality is justified by Lemma B.9, and the last by Lemma B.1. This result holds
with probability 1 − C exp(−cnL−1) − 2 exp(−c log2N) − 4 exp(−c log2 nL−1) over (Wk)

L
k=1

and (xi)
N
i=1.

Note that ∥ζ∥Lip ≤ ∥DLϕ
′(gL−1(x))∥Lip ∥η∥2, and that Exi [ζ(xi)] = 0 for all i ∈ [N ]. Thus, by

using Assumption 2.2 on xi and exploiting the initial conditioning on the weights, we have that

P(|ζ(xi)|/ ∥η∥2 > t · log nL−1) < 2 exp(−ct2), (177)

where the probability is intended over xi ∼ PX . Thus, following the same argument of Lemma B.3,
the last relation implies that

∥Γ/ ∥η∥2∥op = O (logN · log nL−1) , (178)

with probability at least 1− 2 exp(−c log2N), where c is a numerical constant, and the probability
is intended over {xi}Ni=1. This implies that∥∥∥∥∥
(

Γ

∥η∥2
F̃L−2

)(
Γ

∥η∥2
F̃L−2

)⊤
∥∥∥∥∥

op

≤
∥∥∥∥ Γ

∥η∥2

∥∥∥∥2
op

∥∥∥F̃L−2F̃
⊤
L−2

∥∥∥
op

= O
(
(N + nL−2) · log2N · log2 nL−1

)
= o(nL−2nL−1),

(179)
where the second equality is justified by Lemma B.8, and the last by Lemma B.1. This result holds
with probability 1 − C exp(−cnL−1) − 2 exp(−c log2N) − 4 exp(−c log2 nL−1) over (Wk)

L
k=1

and (xi)
N
i=1.

By merging (176) and (179) with (173), we readily obtain the desired result.

D.2 Step (b): Centering everything
Lemma D.2 (Centering everything). Consider the setting of Theorem 3.1, let FL−2 ∈ RN×nL−2 be
the feature matrix at layer L − 2, and let BL−1 contain backpropagation terms from layer L − 1,
i.e. (BL−1)i: = DLϕ

′(gL−1(xi)). Let J̃FB J̃⊤
FB = F̃L−2F̃

⊤
L−2 ◦ B̃L−1B̃

⊤
L−1 and J̃L−2J̃

⊤
L−2 =

33



F̃L−2F̃
⊤
L−2 ◦ B̃L−1B̃

⊤
L−1 − EX [F̃L−2F̃

⊤
L−2 ◦ B̃L−1B̃

⊤
L−1], where F̃L−2 = FL−2 − EX [FL−2] and

B̃L−1 = BL−1 − EX [BL−1]. Then, we have that

λmin

(
J̃FB J̃

⊤
FB

)
≥ λmin

(
J̃L−2J̃

⊤
L−2

)
− o(nL−1nL−2), (180)

with probability at least 1 − C exp(−nL−1) − 2 exp(−c log2 nL−1) − 2 exp(−c log2N) over
(Wk)

L
k=1 and (xi)

N
i=1.

Proof. Note that the i-th row of J̃FB is now in the form

(J̃FB)i: = f̃L−2(xi)⊗ (DLϕ̃′(gL−1(xi))), (181)

where we recall that f̃L−2(xi) = fL−2(xi)− Exi
[fL−2(xi)] and ϕ̃′(gL−1(xi)) = ϕ′(gL−1(xi))−

E[ϕ′(gL−1(xi))]. Furthermore, (J̃L−2)i: = (J̃FB)i: − Exi
[(J̃FB)i:]. Then, by following similar

passages as in (169), we have

J̃FB J̃
⊤
FB = J̃L−2J̃

⊤
L−2 + E[J̃FB ]E[J̃FB ]⊤

+ (J̃FB − E[J̃FB ])E[J̃FB ]⊤ + E[J̃FB ](J̃FB − E[J̃FB ])⊤

= J̃L−2J̃
⊤
L−2 + ∥A∥2F 11⊤ + Λ11⊤ + 11⊤Λ

= J̃L−2J̃
⊤
L−2 +

(
∥A∥F 1+

Λ1

∥A∥F

)(
∥A∥F 1+

Λ1

∥A∥F

)⊤

− Λ11⊤Λ

∥A∥2F

⪰ J̃L−2J̃
⊤
L−2 −

Λ11⊤Λ

∥A∥2F
,

(182)

where we have defined
A = Exi

[
f̃L−2(xi)(DLϕ̃′(gL−1(xi)))

⊤
]
, (183)

which is independent on i (as the xi-s are i.i.d.), and Λ is a diagonal matrix that contains in the i-th
position

Λii = f̃L−2(xi)
⊤A(DLϕ̃′(gL−1(xi)))− Exi

[
f̃L−2(xi)

⊤A(DLϕ̃′(gL−1(xi)))
]
. (184)

The last passage of (182) is true since we are subtracting a PSD matrix.

An application of Lemma B.2 gives that ∥fL−2(xi)∥Lip and ∥ϕ′(gL−1(xi))∥Lip are upper bounded
by a numerical constant both with probability at least 1 − C exp(−nL−1) over (Wk)

L−1
k=1 . Let us

condition on this event on the probability space of (Wk)
L−1
k=1 . Then, we can apply Lemma B.5 with

u(x) := f̃L−2(x) and v(x) := ϕ̃′(gL−1(x)), which implies that

∥Λii∥ψ1
< C ∥ADL∥F ≤ C ∥A∥F ∥DL∥op = O (log nL−1) ∥A∥F . (185)

In (185), C is a numerical constant and the last equality holds with probability at least 1 −
2 exp(−c log2 nL−1) over WL by Lemma B.3. Thus,

P(|Λii|/ ∥A∥F > t · log nL−1) < 2 exp(−ct), (186)

where the probability is intended over xi ∼ PX and c is a numerical constant. Thus, following the
same argument of Lemma B.3, the last relation implies that

∥Λ/ ∥A∥F ∥op = O
(
log2N · log nL−1

)
, (187)

with probability at least 1− 2 exp(−c log2N), where c is a numerical constant, and the probability
is intended over {xi}Ni=1.

Thus, with probability 1−C exp(−nL−1)−2 exp(−c log2 nL−1)−2 exp(−c log2N) over (Wk)
L
k=1

and (xi)
N
i=1, we have∥∥∥∥∥Λ11⊤Λ

∥A∥2F

∥∥∥∥∥
op

≤ ∥11∥op

∥∥∥∥ Λ

∥A∥F

∥∥∥∥2
op

= O
(
N · log4N · log2 nL−1

)
= o(nL−2nL−1), (188)

where the last equality is a consequence of Lemma B.1.

The desired result follows from merging (188) with (182).
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E Proofs for Part 2: Bounding the Centered Jacobian
E.1 ℓ2 and sub-exponential norms of centered Jacobian

We start by providing an upper bound on the quantity Ex
[
f̃L−2(x)(DLϕ̃′(gL−1(x)))

⊤
]
. This

preliminary result will be useful when bounding the ℓ2 norm of the rows of the centered Jacobian.

Lemma E.1. Consider the setting of Theorem 3.1, let x ∼ PX , and let A be defined as

A = Ex
[
f̃L−2(x)(DLϕ̃′(gL−1(x)))

⊤
]
. (189)

Then, we have
∥A∥F = O

(√
nL−1 log(nL−1)

)
, (190)

with probability at least 1− 2 exp(−c log2 nL−1)− C exp(−cnL−1) over (Wk)
L
k=1, where c is an

absolute constant.

Proof. We condition on ∥fL−2(x)∥Lip = O (1) and on ∥ϕ′(gL−1(x))∥Lip = O (1). By Lemma B.2,
these two conditions hold with probability at least 1 − C ′ exp(−cnL−1) over (Wk)

L−1
k=1 . Then, as

PX satisfies Assumption 2.2, we have that
∥∥∥f̃L−2(x)

∥∥∥
ψ2

= O (1) and
∥∥∥ϕ̃′(gL−1(x))

∥∥∥
ψ2

= O (1).

Hence, an application of Lemma B.6 gives that∥∥∥Ex [f̃L−2(x)ϕ̃′(gL−1(x))
⊤
]∥∥∥

op
≤ C1, (191)

where C1 is a numerical constant.

The following chain of inequalities holds:

∥A∥F ≤
∥∥∥Ex [f̃L−2(x)ϕ̃′(gL−1(x))

⊤
]∥∥∥
F
∥DL∥op

≤ √
nL−1

∥∥∥Ex [f̃L−2(x)ϕ̃′(gL−1(x))
⊤
]∥∥∥

op
∥DL∥op

≤ C1
√
nL−1 ∥DL∥op

= O
(√
nL−1 log(nL−1)

)
,

(192)

where the third line uses (191), and the last holds with probability 1−2 exp(−c log2 nL−1) over WL,
because of Lemma B.3. Taking into account the initial conditioning, we get the desired result.

The next two results provide bounds on the ℓ2 norm and on the sub-exponential ψ1 norm of the rows
of J̃L−2, respectively.

Lemma E.2 (ℓ2 norm of rows of centered Jacobian). Consider the setting of Theorem 3.1, let x ∼ PX ,
and let J̃x be defined as

J̃x = f̃L−2(x)⊗ (DLϕ̃′(gL−1(x)))− Ex
[
f̃L−2(x)⊗DLϕ̃′(gL−1(x))

]
. (193)

Then, we have ∥∥∥J̃x∥∥∥
2
= Θ(

√
nL−1nL−2), (194)

with probability at least 1− C exp(−cnL−1)− 12 exp(−c log2 nL−1) over x and (Wk)
L
k=1 and x.

Proof. We have that∥∥∥J̃x∥∥∥
2
=
∥∥∥f̃L−2(x)⊗ (DLϕ̃′(gL−1(x)))− Ex

[
f̃L−2(x)⊗DLϕ̃′(gL−1(x))

]∥∥∥
2

=
∥∥∥f̃L−2(x)(DLϕ̃′(gL−1(x)))

⊤ − Ex
[
f̃L−2(x)(DLϕ̃′(gL−1(x)))

⊤
]∥∥∥
F

=
∥∥∥f̃L−2(x)

⊤(DLϕ̃′(gL−1(x)))−A
∥∥∥
F
,

(195)
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where A is defined in (189). The second equality is justified by the identity ∥u⊗ v∥2 =
∥∥uv⊤∥∥

F
that holds for any vectors u, v. An application of the triangle inequality gives that

η − ∥A∥F ≤
∥∥∥J̃x∥∥∥

2
≤ η + ∥A∥F , with η =

∥∥∥f̃L−2(x)
∥∥∥
2

∥∥∥DLϕ̃′(gL−1(x))
∥∥∥
2
. (196)

Lemma C.4 gives that∥∥∥f̃L−2(x)
∥∥∥
2
= ∥fL−2(x)− Ex [fL−2(x)]∥2 = Θ(

√
nL−2), (197)

with probability at least 1− C ′ exp(−cnL−1) over (Wk)
L
k=1 and x. Furthermore, Lemma C.5 gives

that ∥∥∥DLϕ̃′(gL−1(x))
∥∥∥
2
= ∥DL (ϕ′(gL−1(x))− Ex [ϕ′(gL−1(x))])∥2 = Θ(

√
nL−1), (198)

with probability at least 1 − 10 exp(−c log2 nL−1) − C ′ exp(−cnL−1) over x and (Wk)
L
k=1. By

combining (196), (197), (198) and the bound on ∥A∥F provided by Lemma E.1, we conclude that∥∥∥J̃x∥∥∥
2
= Θ(

√
nL−1nL−2), (199)

with probability at least

1− C ′ exp(−cnL−1)− 10 exp(−c log2 nL−1)

− C ′ exp(−cnL−1)− 2 exp(−c log2 nL−1)− C ′ exp(−cnL−1)

≥ 1− C exp(−cnL−1)− 12 exp(−c log2 nL−1),

(200)

over x and (Wk)
L
k=1, which gives the desired result.

Lemma E.3 (Sub-exponential norm of rows of centered Jacobian). Consider the setting of Theorem
3.1, let x ∼ PX , and let J̃x be defined as in (193). Fix a realization of (Wk)

L
k=1. Then, with

probability at least 1 − 2 exp(−c log2 nL−1) − C exp(−cnL−1) over this realization (c being a
numerical constant), we have that ∥∥∥J̃x∥∥∥

ψ1

= O (log nL−1) . (201)

Proof. We condition on ∥fL−2(x)∥Lip = O (1) and on ∥ϕ′(gL−1(x))∥Lip = O (1). By Lemma B.2,
these two conditions hold with probability at least 1 − C exp(−cnL−1) over (Wk)

L−1
k=1 . Then, we

have∥∥∥J̃x∥∥∥
ψ1

= sup
u s.t. ∥u∥2=1

∥∥∥u⊤J̃x∥∥∥
ψ1

= sup
U s.t. ∥U∥F=1

∥∥∥f̃L−2(x)U(DLϕ̃′(gL−1(x)))− Ex
[
f̃L−2(x)UDLϕ̃′(gL−1(x))

]∥∥∥
ψ1

≤ C0 sup
U s.t. ∥U∥F=1

∥UDL∥F

≤ C0 ∥DL∥op

≤ C0 log nL−1,
(202)

where the third line follows from Lemma B.5 and the last inequality holds with probability at least
1− 2 exp(−c log2 nL−1) over WL by Lemma B.3. Taking into account the initial conditioning, we
get the desired result.

E.2 Proof of Proposition 3.3
Proof of Proposition 3.3. Following the notation in [2], we define

B := sup
z∈RN :∥z∥2=1

∣∣∣∣∣∣
∥∥∥∥∥
N∑
i=1

ziJ̃i:

∥∥∥∥∥
2

2

−
N∑
i=1

z2i

∥∥∥J̃i:∥∥∥2
2

∣∣∣∣∣∣
1
2

. (203)
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Then, for any z ∈ RN with unit norm, we have that

∥∥∥J̃z∥∥∥2
2
=

∥∥∥∥∥
N∑
i=1

ziJ̃i:

∥∥∥∥∥
2

2

−
N∑
i=1

z2i

∥∥∥J̃i:∥∥∥2
2
+

N∑
i=1

z2i

∥∥∥J̃i:∥∥∥2
2
≥ mini

∥∥∥J̃i:∥∥∥2
2
−B2, (204)

which implies that

λmin

(
J̃ J̃⊤

)
= inf
z∈RN :∥z∥2=1

∥∥∥J̃z∥∥∥2
2
≥ mini

∥∥∥J̃i:∥∥∥2
2
−B2. (205)

In our case, J̃i: ∈ RnL−2nL−1 . Notice that this dimension is indicated with n in Theorem 3.2 of [2]. In
the statement of the mentioned Theorem, let’s fix r = 1, m = N , and θ = (N/(nL−1nL−2))

1/4 <
1/4. Then, we have that the condition required to apply Theorem 3.2 is satisfied, i.e.

N log2
(
2 4

√
nL−2nL−1

N

)
≤
√
NnL−2nL−1, (206)

where the inequality follows from Assumption 2.5. By combining (205) with the upper bound on B
given by Theorem 3.2 of [2], the desired result readily follows.

E.3 Proof of Theorem 3.4
Proof of Theorem 3.4. By Lemma E.3, we have that, with probability at least 1 −
2 exp(−c log2 nL−1) − C ′ exp(−cnL−1) over (Wk)

L
k=1, the rows of J̃ are sub-exponential (with

respect to the randomness in (xi)
N
i=1). In particular, we have that

ψ := maxi

∥∥∥J̃i:∥∥∥
ψ1

≤ C1 log nL−1. (207)

Furthermore, by Lemma E.2, we have that∥∥∥J̃i:∥∥∥
2
= Θ(

√
nL−2nL−1), (208)

with probability at least 1 − p over xi and (Wk)
L
k=1, where to ease the notation we have defined

p := C ′ exp(−c0nL−1) + 12 exp(−c0 log2 nL−1). Hence, with probability at least 1 − √
p over

(Wk)
L
k=1, we have that

Pxi

(
c1
√
nL−2nL−1 ≤

∥∥∥J̃i:∥∥∥
2
≤ c2

√
nL−2nL−1

)
≥ 1−√

p, (209)

for some numerical constants c2 > c1 > 0. In (209), we use the symbol Pxi
to highlight that this

probability is taken over xi. For the rest of the argument, we condition on a realization of (Wk)
L
k=1

s.t. (207) and (209) hold. Then, by performing a union bound over the samples, we have that

ηmin = mini

∥∥∥J̃i:∥∥∥
2
≥ c1

√
nL−2nL−1, (210)

and
ηmax = maxi

∥∥∥J̃i:∥∥∥
2
≤ c2

√
nL−2nL−1, (211)

with probability at least 1−N
√
p over (xi)Ni=1.

Next, we apply Proposition 3.3 with K = 1, K ′ = c2 and

∆ = C1(ψK +K ′)2N1/4(nL−1nL−2)
3/4

≤ C2 log
2 nL−1N

1/4(nL−1nL−2)
3/4

= o(nL−1nL−2).

(212)

Note that (22) in Lemma B.1 gives that N1/4 · log2 nL−1 = o((nL−1nL−2)
1/4), which justifies the

last line. Thus, (13) implies that

λmin

(
J̃ J̃⊤

)
≥ η2min −∆ ≥ c1nL−2nL−1 − o(nL−1nL−2) = Θ(nL−2nL−1), (213)
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with probability at least

1− exp

(
−cK

√
N log

(
2nL−1nL−2

N

))
− P

(
ηmax ≥ K ′√nL−1nL−2

)
≥ 1− exp

(
−c

√
N
)
− P

(
ηmax ≥ c2

√
nL−1nL−2

)
≥ 1− exp

(
−c

√
N
)
−N

√
p,

(214)

where the last inequality follows from (211). By taking into account the conditioning over (Wk)
L
k=1

made in order to guarantee (207) and (209), we conclude that λmin

(
J̃ J̃⊤

)
= Ω(nL−1nL−2) with

probability at least

1− exp
(
−c

√
N
)
−N

√
p−√

p− 2 exp(−c log2 nL−1)− C ′ exp(−cnL−1)

= 1− exp
(
−c

√
N
)
− (N + 1)

√
C ′ exp(−c0nL−1) + 12 exp(−c0 log2 nL−1)

− 2 exp(−c log2 nL−1)− C ′ exp(−cnL−1)

≥ 1− exp
(
−c

√
N
)
− (N + 1)

(√
C ′ exp(−c0nL−1/2) +

√
12 exp(−c0 log2 nL−1/2)

)
− 2 exp(−c log2 nL−1)− C ′ exp(−cnL−1)

≥ 1− exp
(
−c

√
N
)
− C ′′N exp(−c1nL−1)− C ′′N exp(−c log2 nL−1),

(215)
over (xi)Ni=1 and (Wk)

L
k=1, which gives the desired result.

F Proof of the Upper Bound 7
Before giving the proof of the upper bound 7, we provide again its statement for the reader’s
convenience.

Lemma F.1 (Upper bound on the smallest NTK eigenvalue). Consider the setting of Theorem 3.1,
and let K be the NTK Gram matrix (3). Then, we have

λmin (K) = O (dnL−1) , (216)

with probability at least 1−C exp(−cnL−1) over (xi)Ni=1 and (Wk)
L
k=1, where c andC are numerical

constants.

Proof. By using the expression in (8), we have that

λmin (K) = λmin

(
JJ⊤) ≤ (JJ⊤)11 =

L−1∑
l=0

∥(Fl)1:∥22 ∥(Bl+1)1:∥22 . (217)

An application of Lemma C.1 gives that

∥(Fl)1:∥22 = ∥fl(x1)∥22 = Θ(nl), (218)

with probability at least 1−C ′ exp(−cnL−1) over (Wk)
l
k=1 and x1. We condition on the event such

that (218) holds for all l ∈ {0, . . . , L−1}. This happens with probability at least 1−C ′′ exp(−cnL−1)
over (Wk)

L
k=1 and x1.

By definition, we have that ∥BL∥2 = 1 and that, for l ∈ [L− 1],

∥(Bl)1:∥22 =

∥∥∥∥∥
L−1∏
k=l

Σk(x1)Wk+1

∥∥∥∥∥
2

2

. (219)

Since Σk(x1) = diag([ϕ′(gk,j(x1))]
nk
j=1), by Assumption 2.3, we have that

∥Σk(x1)∥op ≤M. (220)
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Let us now condition on the following two events: (i) ∥Wk∥op = Θ(1), for all k ∈ [L − 1] (this
happens with probability at least 1−C ′ exp(−cnL−1) over (Wk)

L−1
k=1 , see (33) in the proof of Lemma

B.2), and (ii) ∥WL∥2 = Θ(
√
nL−1) (this happens with probability at least 1− exp(−cnL−1) over

WL, by Theorem 3.1.1 in [65]). Then, we readily get

∥(Bl)1:∥22 = O (nL−1) . (221)

Taking the intersection of all the events over which we conditioned, we finally obtain

L−1∑
l=0

∥(Fl)1:∥22 ∥(Bl+1)1:∥22 = O

(
nL−1

L−1∑
l=0

nl

)
= O (dnL−1) , (222)

with probability at least 1− (1 + C ′ + C ′′) exp(−cnL−1) over (Wk)
L
k=1 and x1, where in the last

step we have used Assumption 2.4. By combining (217) and (222), the desired result follows.

G Proof of Corollary 4.1
Proof of Corollary 4.1. By Theorem 3.1, we have that the smallest eigenvalue of JJ⊤ is bounded
away from zero with probability at least 1− p over (xi)Ni=1 and (Wk)

L
k=1, where

p := C Ne−c log
2 nL−1 − Ce−c log

2N . (223)

Hence, with probability at least 1− p over (xi)Ni=1, there exists a set of parameters θ0 such that J(θ0)
has a right inverse. Thus, for all Y ∈ RN , there exists θ′ such that

J(θ0)θ
′ =

∂FL(θ)

∂θ

∣∣∣∣
θ=θ0

θ′ = Y. (224)

This can also be written, for all i ∈ [N ], as

yi =
∂fL(θ, xi)

∂θ

∣∣∣∣⊤
θ=θ0

θ′ = lim
h→0

fL(θ0 + hθ′, xi)− fL(θ0, xi)

h
. (225)

Then, for all ε > 0, there exists h∗ such that, for all i ∈ [N ],

|yi − f∗(xi)| ≤
ε√
N
, (226)

where

f∗(xi) :=
fL(θ0 + h∗θ′, xi)− fL(θ0, xi)

h∗
. (227)

Finally, the desired result follows by noticing that f∗ can be implemented by a network with the same
depth and twice more neurons at every hidden layer.

H Proof of Theorem 4.2
Notation for this appendix. In this appendix, we use J(θ) to denote the Jacobian of the network
output FL, evaluated in θ. We recall that J(θ) is a matrix with N rows and

∑L−3
l=0 nlnl+1 +

2nL−2nL−1 + 2nL−1 columns (for the optimization result, we assume that the (L − 1)-th layer
has an even number of neurons and denote its width as 2nL−1). Let K(θ) = J(θ)(J(θ))⊤ be the
associated empirical NTK Gram matrix, and let θ0 be the initialization defined in (18). We also make
the dependence on θ explicit for feature vectors and backpropagation terms: the feature vector at
the l-th layer with input xi and network parameter θ is denoted by fl(θ, xi), and the corresponding
backpropagation term is denoted by bl(θ, xi), where bl(θ, xi) = (Bl(θ))i:. Finally, we use Wl(θ) to
denote the weights of the l-th layer evaluated at the parameter θ.

A straightforward application of Theorem 2.1 in [49] gives the following proposition.

Proposition H.1. Consider solving the least-squares optimization problem

minθ L(θ) :=
1

2
minθ ∥FL(θ)− Y ∥22 , (228)
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by running gradient descent updates of the form θt+1 = θt − η∇L(θt), with some initialization θ̃0.
Assume there exists α, β ∈ R, such that, if we define D = B(θ̃0, R) as the ℓ2 ball centered in θ̃0 with
radius R, with

R :=
4
∥∥∥FL(θ̃0)− Y

∥∥∥
2

α
, (229)

the following holds
∀θ ∈ D : α ≤ σmin(J(θ)) ≤ ∥J(θ)∥op ≤ β, (230)

∀θ1, θ2 ∈ D : ∥J(θ1)− J(θ2)∥op ≤ α2

2β
. (231)

Then, by setting η ≤ 1/(2β2), we have that, for all t ≥ 1,

L(θt) ≤
(
1− ηα2

2

)t
L(θ̃0). (232)

In order to apply this proposition with initialization θ̃0 = θ0, we need to prove that the necessary
assumptions hold. We will do so by showing the following intermediate results:

• Lemma H.2 shows that, at the initial point θ0, the network output is 0 and the smallest NTK
eigenvalue is lower bounded.

• Lemma H.3 gives a tight estimate on the operator norm of the weights inside a ball D
centered at θ0 and with radius R = o(1).

• Lemma H.4 gives an upper bound on the distance between a feature vector in D and the
feature vector at θ0.

• Lemma H.5 gives upper bounds on the ℓ2 norm and the ℓ2 distance between feature vectors
in D.

• Lemmas H.6 and H.7 give upper bounds on the ℓ2 norm and the ℓ2 distance of backpropaga-
tion terms in D, respectively.

• Lemma H.8 gives an upper bound on the difference in operator norm between Jacobians in
D.

• Finally, Lemma H.9 gives upper and lower bounds on the NTK spectrum in D.

Lemma H.2 (Network output and smallest NTK eigenvalue at initialization). Let θ0 be defined in
(18). Then, we have that, for all x ∈ Rd,

fL(x, θ0) = 0. (233)

Furthermore, we have that
σmin(J(θ0)) ≥ c1

√
γnL−2nL−1), (234)

with probability at least 1− C Ne−c log
2 nL−1 − Ce−c log

2N over (xi)Ni=1 ∼i.i.d. PX and θ0, where
c, c1 and C are numerical constants.

Proof. By definition (18) of the initialization θ0, we have that

fL(x, θ0) = (W
(1)
L (θ0))

⊤ϕ((W
(1)
L−1(θ0))

⊤fL−2(θ0, x))

+ (W
(2)
L (θ0))

⊤ϕ((W
(2)
L−1(θ0))

⊤fL−2(θ0, x))

= (W
(1)
L (θ0))

⊤ϕ((W
(1)
L−1(θ0))

⊤fL−2(θ0, x))

+ (−W (1)
L (θ0))

⊤ϕ((W
(1)
L−1(θ0))

⊤fL−2(θ0, x))

= 0,

(235)

where in the second equality we use that W (2)
L−1(θ0) =W

(1)
L−1(θ0) and that W (2)

L (θ0) = −W (1)
L (θ0).

This proves (233).
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Let us now compute the Jacobian at initialization J(θ0). For l ∈ [L− 2], we have that

∂fL(x)

∂(Wl)ij

∣∣∣∣
θ=θ0

= (W
(1)
L (θ0))

⊤

(
ϕ′
(
(W

(1)
L−1(θ0))

⊤fL−2(θ0, x)
)(

(W
(1)
L−1(θ0))

⊤ ∂fL−2(θ, x)

∂(Wl)ij

∣∣∣∣
θ=θ0

))

+ (W
(2)
L (θ0))

⊤

(
ϕ′
(
(W

(2)
L−1(θ0))

⊤fL−2(θ0, x)
)(

(W
(2)
L−1(θ0))

⊤ ∂fL−2(θ, x)

∂(Wl)ij

∣∣∣∣
θ=θ0

))

= (W
(1)
L (θ0))

⊤

(
ϕ′
(
(W

(1)
L−1(θ0))

⊤fL−2(θ0, x)
)(

(W
(1)
L−1(θ0))

⊤ ∂fL−2(θ, x)

∂(Wl)ij

∣∣∣∣
θ=θ0

))

− (W
(1)
L (θ0))

⊤

(
ϕ′
(
(W

(1)
L−1(θ0))

⊤fL−2(θ0, x)
)(

(W
(1)
L−1(θ0))

⊤ ∂fL−2(θ, x)

∂(Wl)ij

∣∣∣∣
θ=θ0

))
= 0,

(236)
where in the second equality we use again that W (2)

L−1(θ0) = W
(1)
L−1(θ0) and that W (2)

L (θ0) =

−W (1)
L (θ0).

Let us define f (k)L−1(θ, x) := ϕ((W
(k)
L−1(θ))

⊤fL−2(θ, x)) for k ∈ {1, 2}. Then, for the (L − 1)-th

layer, by isolating the computation over W (1)
L−1, we have that

∂fL(θ, x)

∂(W
(1)
L−1)ij

∣∣∣∣
θ=θ0

= (W
(1)
L (θ0))

⊤ ∂f
(1)
L−1(θ, x)

∂(W
(1)
L−1)ij

∣∣∣∣
θ=θ0

+ (W
(2)
L (θ0))

⊤ ∂f
(2)
L−1(θ, x)

∂(W
(1)
L−1)ij

∣∣∣∣
θ=θ0

= (W
(1)
L (θ0))

⊤ ∂f
(1)
L−1(θ, x)

∂(W
(1)
L−1)ij

∣∣∣∣
θ=θ0

=: J (1)(θ0),

(237)

where we use that f (2)L−1(θ, x) does not depend on the parameters W (1)
L−1. Proceeding in the same way

and using that W (2)
L−1(θ0) =W

(1)
L−1(θ0) and W (2)

L (θ0) = −W (1)
L (θ0), we also obtain that

∂fL(θ, x)

∂(W
(2)
L−1)ij

∣∣∣∣
θ=θ0

= −J (1)(θ0). (238)

Finally, by observing that fL(θ, x) = (W
(1)
L )⊤f

(1)
L−1(θ, x) + (W

(2)
L )⊤f

(2)
L−1(θ, x), we deduce

∂fL(θ, x)

∂(W
(k)
L )i

∣∣∣∣
θ=θ0

=
(
f
(k)
L−1(θ0, x)

)
i
, for k ∈ {1, 2}. (239)

Hence, the NTK at initialization K(θ0) can be expressed as

K(θ0) = J (1)(θ0)(J
(1)(θ0))

⊤ + J (1)(θ0)(J
(1)(θ0))

⊤

+ F
(1)
L−1(θ0)(F

(1)
L−1(θ0))

⊤ + F
(2)
L−1(θ0)(F

(2)
L−1(θ0))

⊤.
(240)

Note that, by construction, J (1)(θ0) has the same distribution of JL−2, whose rows are given by (10).
Therefore, by combining the results from Theorem 3.2 and Theorem 3.4, we conclude that

σmin(J(θ0)) ≥ 2
√
γσmin(JL−2) ≥ c1

√
γnL−2nL−1, (241)

with probability at least 1 − C Ne−c log
2 nL−1 − Ce−c log

2N over (xi)Ni=1 and θ0, where c1, C are
numerical constants. This proves (234), and concludes the proof of the lemma.

Lemma H.3 (Operator norm of weights in D). Let θ0 be defined in (18), let D = B(θ0, R) and
assume that R = o(1). Then, for any l ∈ [L− 1],

sup
θ∈D

∥Wl(θ)∥op = O (1) , (242)

with probability at least 1− 2 exp(−cnL−1) over Wl(θ0).
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Proof. By Weyl’s theorem, we have that, for all l ∈ [L− 2],

sup
θ∈D

∥Wl(θ)∥op ≤ ∥Wl(θ0)∥op + sup
θ∈D

∥Wl(θ)−Wl(θ0)∥op

≤ ∥Wl(θ0)∥op + sup
θ∈D

∥Wl(θ)−Wl(θ0)∥F

≤ ∥Wl(θ0)∥op + sup
θ∈D

∥θ − θ0∥2

= ∥Wl(θ0)∥op + o(1)

= O (1) ,

(243)

where in the fourth line we use that R = o(1), and the result of the last line holds with probability at
least 1− 2 exp(−cnL−1) over Wl(θ0) by Theorem 4.4.5 of [65]. By following the same argument,
we have that, with probability at least 1− 2 exp(−cnL−1) over WL−1(θ0),

sup
θ∈D

∥∥∥W (k)
L−1(θ)

∥∥∥
op

= O (1) , for k ∈ {1, 2}, (244)

which readily implies that supθ∈D ∥WL−1(θ)∥op = O (1) and concludes the proof.

Lemma H.4 (Distance of features in D from initialization). Let θ0 be defined in (18), x ∼ PX ,
D = B(θ0, R) and assume that R = o(1). Then, for any 0 ≤ l ≤ L− 1, we have

sup
θ∈D

∥fl(θ, x)− fl(θ0, x)∥2 ≤ C R
√
d, (245)

with probability at least 1 − C exp(−cnL−1) over (Wk(θ0))
l
k=1 and x, where c, C are numerical

constants.

Proof. We prove the claim by induction over l. For the base case, we have f0(θ, x) = f0(θ0, x),
hence (245) holds with probability 1.

For the induction case, let l > 0. Then,

sup
θ∈D

∥fl(θ, x)− fl(θ0, x)∥2 = sup
θ∈D

∥∥ϕ ((Wl(θ))
⊤fl−1(θ, x)

)
− ϕ

(
(Wl(θ0))

⊤fl−1(θ0, x)
)∥∥

2

≤M sup
θ∈D

∥∥(Wl(θ))
⊤fl−1(θ, x)− (Wl(θ0))

⊤fl−1(θ0, x)
∥∥
2

≤M sup
θ∈D

∥∥(Wl(θ))
⊤fl−1(θ, x)− (Wl(θ))

⊤fl−1(θ0, x)
∥∥
2

+M sup
θ∈D

∥∥(Wl(θ))
⊤fl−1(θ0, x)− (Wl(θ0))

⊤fl−1(θ0, x)
∥∥
2

≤M sup
θ∈D

∥Wl(θ)∥op sup
θ∈D

∥fl−1(θ, x)− fl−1(θ0, x)∥2

+M sup
θ∈D

∥Wl(θ)−Wl(θ0)∥op ∥fl−1(θ0, x)∥2 .

(246)
By Lemma H.3, we have that

sup
θ∈D

∥Wl(θ)∥op = O (1) , (247)

with probability at least 1− 2 exp(−cnL−1) over Wl(θ0). By inductive hypothesis, we have

sup
θ∈D

∥fl−1(θ, x)− fl−1(θ0, x)∥2 ≤ C R
√
d, (248)

with probability at least 1− C exp(−cnL−1) over (Wk(θ0))
l−1
k=1 and x. Clearly, we also have that

sup
θ∈D

∥Wl(θ)−Wl(θ0)∥op ≤ sup
θ∈D

∥Wl(θ)−Wl(θ0)∥F ≤ sup
θ∈D

∥θ − θ0∥ ≤ R. (249)

Furthermore, an application of Lemma C.1 gives that

∥fl−1(θ0, x)∥2 = Θ(
√
nl−1) = O

(√
d
)
, (250)
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with probability at least 1− C exp(−cnL−1) over (Wk(θ0))
l−1
k=1 and x. By combining (246), (247),

(248), (249) and (250), we obtain that

sup
θ∈D

∥fl(θ, x)− fl(θ0, x)∥2 ≤ C R
√
d, (251)

with probability at least 1− C exp(−cnL−1) over (Wk(θ0))
l
k=1 and x, which completes the proof.

Lemma H.5 (ℓ2 norm and ℓ2 distance of features in D). Let θ0 be defined in (18), x ∼ PX ,
D = B(θ0, R) and assume that R = o(1). Then, for any 0 ≤ l ≤ L− 1, we have

sup
θ∈D

∥fl(θ, x)∥2 = O
(√

d
)
, (252)

with probability at least 1 − C exp(−cnL−1) over (Wk(θ0))
l
k=1 and x, where c, C are numerical

constants. Furthermore,

sup
θ1,θ2∈D

∥fl(θ1, x)− fl(θ2, x)∥2 ≤ C R
√
d, (253)

with probability at least 1− C exp(−cnL−1) over (Wk(θ0))
l
k=1 and x.

Proof. The first statement follows from the chain of inequalities below:

sup
θ∈D

∥fl(θ, x)∥2 ≤ ∥fl(θ0, x)∥2 + sup
θ∈D

∥fl(θ)− fl(θ0)∥2 ≤ C
√
nl + C R

√
d, (254)

where the second inequality holds with probability at least 1− C exp(−cnL−1) over (Wk(θ0))
l
k=1

and x by combining Lemma C.1 and Lemma H.4.

We prove the second statement by induction over l. For the base case, we have f0(θ1, x) = f0(θ2, x),
hence (253) holds with probability 1.

For the induction case, let l > 0. Then,

sup
θ1,θ2∈D

∥fl(θ1, x)−fl(θ2, x)∥2= sup
θ1,θ2∈D

∥∥ϕ ((Wl(θ1))
⊤fl−1(θ1, x)

)
−ϕ
(
(Wl(θ2))

⊤fl−1(θ2, x)
)∥∥

2

≤M sup
θ1,θ2∈D

∥∥(Wl(θ1))
⊤fl−1(θ1, x)− (Wl(θ2))

⊤fl−1(θ2, x)
∥∥
2

≤M sup
θ1,θ2∈D

∥∥(Wl(θ1))
⊤fl−1(θ1, x)− (Wl(θ1))

⊤fl−1(θ2, x)
∥∥
2

+M sup
θ1,θ2∈D

∥∥(Wl(θ1))
⊤fl−1(θ2, x)− (Wl(θ2))

⊤fl−1(θ2, x)
∥∥
2

≤M sup
θ1∈D

∥Wl(θ1)∥op sup
θ1,θ2∈D

∥fl−1(θ1, x)− fl−1(θ2, x)∥2

+M sup
θ1,θ2∈D

∥Wl(θ1)−Wl(θ2)∥op sup
θ2∈D

∥fl−1(θ2, x)∥2 .

(255)
By Lemma H.3, we have that

sup
θ1∈D

∥Wl(θ1)∥op = O (1) , (256)

with probability at least 1− 2 exp(−cnL−1) over Wl(θ0). By inductive hypothesis, we have

sup
θ1,θ2∈D

∥fl−1(θ1, x)− fl−1(θ2, x)∥2 ≤ C R
√
d, (257)

with probability at least 1− C exp(−cnL−1) over (Wk(θ0))
l−1
k=1 and x. Clearly, we also have that

sup
θ1,θ2∈D

∥Wl(θ1)−Wl(θ2)∥op ≤ sup
θ1,θ2∈D

∥Wl(θ1)−Wl(θ2)∥F ≤ sup
θ1,θ2∈D

∥θ1 − θ2∥ ≤ R. (258)

Furthermore, by using (252), we have that

sup
θ2∈D

∥fl−1(θ2, x)∥2 ≤ C R
√
d, (259)
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with probability at least 1− C exp(−cnL−1) over (Wk(θ0))
l−1
k=1 and x. By combining (255), (256),

(257), (258) and (259), we obtain that

sup
θ1,θ2∈D

∥fl(θ1, x)− fl(θ2, x)∥2 ≤ C R
√
d, (260)

with probability at least 1− C exp(−cnL−1) over (Wk(θ0))
l
k=1 and x, which completes the proof.

Lemma H.6 (ℓ2 norm of backpropagation in D). Let θ0 be defined in (18), x ∼ PX , and D =
B(θ0, R). Assume that R = o(1) and that γ > 1. Then, for any l ∈ [L], we have

sup
θ∈D

∥bl(θ, x)∥2 ≤ C
√
γ · nL−1, (261)

with probability at least 1− C exp(−cnL−1) over (Wk(θ0))
L
k=l+1, where c, C are numerical con-

stants.

Proof. We prove the claim by induction on l ∈ {L,L− 1, . . . , 1}. For the base case, we have that
∥bL(θ, x)∥2 = 1, hence (261) clearly holds.

For the induction case, pick l ∈ [L− 1]. Then,

sup
θ∈D

∥bl(θ, x)∥2 = sup
θ∈D

∥∥∥∥∥
(
L−2∏
k=l

Σk(θ, x)Wk+1(θ)

)
ΣL−1(θ, x)WL(θ)

∥∥∥∥∥
2

≤ sup
θ∈D

∥∥∥∥∥
(
L−2∏
k=l

Σk(θ, x)Wk+1(θ)

)
ΣL−1(θ, x)

∥∥∥∥∥
op

sup
θ∈D

∥WL(θ)∥2

≤

(
L−2∏
k=l

sup
θ∈D

∥Σk(θ, x)∥op sup
θ∈D

∥Wk+1(θ)∥op

)
sup
θ∈D

∥ΣL−1(θ, x)∥op sup
θ∈D

∥WL(θ)∥2

≤ML−l

(
L−1∏
k=l+1

sup
θ∈D

∥Wk(θ)∥op

)(
∥WL(θ0)∥2 + sup

θ∈D
∥WL(θ)−WL(θ0)∥2

)
≤ CML−l(∥WL(θ0)∥2 + sup

θ∈D
∥θ − θ0∥2)

≤ CML−l(
√
γnL−1 + sup

θ∈D
∥θ − θ0∥2)

= C
√
γnL−1.

(262)
Here, the fourth line follows from Assumption 2.3, which gives supθ∈D ∥Σk(θ, x)∥op ≤M ; the fifth
line holds with probability 1− C exp(−cnL−1) over (Wk(θ0))

L−1
k=l+1 by Lemma H.3; the sixth line

holds with probability at least 1− exp(−cnL−1) over WL(θ0) by Theorem 3.1.1 in [65]; and the last
line follows from R = o(1). Taking the intersection of these events gives the desired result.

Lemma H.7 (ℓ2 distance of backpropagation in D). Let θ0 be defined in (18), x ∼ PX , and
D = B(θ0, R). Assume that R = o(1) and that γ > 1. Then, for any l ∈ [L], we have

sup
θ1,θ2∈D

∥bl(θ1, x)− bl(θ2, x)∥2 ≤ C R
√
γdnL−1, (263)

with probability at least 1− C exp(−cnL−1) over (Wk(θ0))
L
k=l+1 and x, where c, C are numerical

constants.
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Proof. We prove the claim by induction on l ∈ {L,L− 1, . . . , 1}. For the base case, bL(θ, x) does
not depend on θ, hence (263) clearly holds. For the induction case, pick l ∈ [L− 1]. Then,

sup
θ1,θ2∈D

∥bl(θ1, x)− bl(θ2, x)∥2

= sup
θ1,θ2∈D

∥Σl(θ1, x)Wl+1(θ1)bl+1(θ1, x)− Σl(θ2, x)Wl+1(θ2)bl+1(θ2, x)∥2

≤ sup
θ1,θ2∈D

∥Σl(θ1, x)Wl+1(θ1)bl+1(θ1, x)− Σl(θ1, x)Wl+1(θ1)bl+1(θ2, x)∥2

+ sup
θ1,θ2∈D

∥Σl(θ1, x)Wl+1(θ1)bl+1(θ2, x)− Σl(θ2, x)Wl+1(θ2)bl+1(θ2, x)∥2

≤ sup
θ1∈D

∥Σl(θ1, x)∥op sup
θ1∈D

∥Wl+1(θ1)∥op sup
θ1,θ2∈D

∥bl+1(θ1, x)− bl+1(θ2, x)∥2

+ sup
θ1,θ2∈D

∥Σl(θ1, x)Wl+1(θ1)− Σl(θ2, x)Wl+1(θ2)∥op sup
θ2∈D

∥bl+1(θ2, x)∥2

≤ sup
θ1∈D

∥Σl(θ1, x)∥op sup
θ1∈D

∥Wl+1(θ1)∥op sup
θ1,θ2∈D

∥bl+1(θ1, x)− bl+1(θ2, x)∥2

+ sup
θ1,θ2∈D

∥(Σl(θ1, x)− Σl(θ2, x))Wl+1(θ2)∥op sup
θ2∈D

∥bl+1(θ2, x)∥2

+ sup
θ1,θ2∈D

∥Σl(θ2, x) (Wl+1(θ1)−Wl+1(θ2))∥op sup
θ2∈D

∥bl+1(θ2, x)∥2 .

(264)

Furthermore, we have that the following results hold.

(i) By Assumption 2.3 and Lemma H.3,

sup
θ1∈D

∥Σl(θ1, x)∥op sup
θ1∈D

∥Wl+1(θ1)∥op = O (1) ,

with probability 1− 2 exp(−cnL−1) over Wl+1(θ0);

(ii) By inductive hypothesis,

sup
θ1,θ2∈D

∥bl+1(θ1, x)− bl+1(θ2, x)∥2 ≤ C R
√
γdnL−1,

with probability at least 1− C exp(−cnL−1) over (Wk(θ0))
L
k=l+2 and x;

(iii) By the same argument of the second statement in Lemma H.5 and again Lemma H.3,

sup
θ1,θ2∈D

∥(Σl(θ1, x)− Σl(θ2, x))Wl+1(θ2)∥op

≤ sup
θ1,θ2∈D

∥ϕ′ (gl(θ1, x))− ϕ′ (gl(θ2, x))∥2 sup
θ2∈D

∥Wl+1(θ2)∥op

≤ C R
√
d,

with probability at least 1− C exp(−cnL−1) over (Wk(θ0))
l+1
k=1 and x;

(iv) By Lemma H.6,
sup
θ2∈D

∥bl+1(θ2, x)∥2 ≤ C
√
γnL−1,

with probability at least 1− C exp(−cnL−1) over (Wk(θ0))
L
k=l+1;

(v) By Assumption 2.3,

sup
θ1,θ2∈D

∥Σl(θ2, x) (Wl+1(θ1)−Wl+1(θ2))∥op ≤ C R.

By combining (i)-(v) with (264), we conclude that

sup
θ1,θ2∈D

∥bl(θ1, x)− bl(θ2, x)∥2 ≤ C R
√
γdnL−1, (265)

with probability at least 1− C exp(−cnL−1) over x and (Wk(θ0))
L
k=1, which concludes the proof.
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Lemma H.8 (Difference of Jacobians in D). Let θ0 be defined in (18), x ∼ PX , and D = B(θ0, R).
Assume that R = o(1) and that γ > 1. Then, we have

sup
θ1,θ2∈D

∥J(θ1)− J(θ2)∥op ≤ C Rd
√
γnL−1N, (266)

with probability at least 1 − CN exp(−cnL−1) over (xi)
N
i=1 and θ0, where c, C are numerical

constants.

Proof. Pick i ∈ [N ]. Then, we have

sup
θ1,θ2∈D

∥(J(θ1))i: − (J(θ2))i:∥22

≤
L−1∑
l=0

sup
θ1,θ2∈D

∥(Fl(θ1)):i ⊗ (Bl+1(θ1)):i − (Fl(θ2)):i ⊗ (Bl+1(θ2)):i∥22

=

L−1∑
l=0

sup
θ1,θ2∈D

∥fl(θ1, xi)⊗ bl+1(θ1, xi)− fl(θ2, xi)⊗ bl+1(θ2, xi)∥22

≤
L−1∑
l=0

sup
θ1,θ2∈D

∥(fl(θ1, xi)− fl(θ2, xi))⊗ bl+1(θ1, xi)∥22

+

L−1∑
l=0

sup
θ1,θ2∈D

∥fl(θ2, xi)⊗ (bl+1(θ1, xi)− bl+1(θ1, xi))∥22

≤
L−1∑
l=0

sup
θ1,θ2∈D

∥fl(θ1, xi)− fl(θ2, xi)∥22 sup
θ1∈D

∥bl+1(θ1, xi)∥22

+

L−1∑
l=0

sup
θ2∈D

∥fl(θ2, xi)∥22 sup
θ1,θ2∈D

∥bl+1(θ1, xi)− bl+1(θ1, xi)∥22 .

(267)

Since xi ∼ PX , we can merge together the results from Lemmas H.4, H.5, H.6 and H.7 and obtain

sup
θ1,θ2∈D

∥(J(θ1))i: − (J(θ2))i:∥22 ≤ CγR2d2nL−1, (268)

with probability at least 1− C exp(−cnL−1) over xi and θ0.

Therefore, we have

sup
θ1,θ2∈D

∥J(θ1)− J(θ2)∥op ≤ sup
θ1,θ2∈D

∥J(θ1)− J(θ2)∥F

≤

√√√√ N∑
i=1

sup
θ1,θ2∈D

∥(J(θ1))i: − (J(θ2))i:∥22

≤ C Rd
√
γnL−1N,

(269)

with probability 1− CN exp(−cnL−1) over (xi)Ni=1 and θ0.

Lemma H.9 (NTK spectrum in D). Let θ0 be defined in (18), x ∼ PX , and D = B(θ0, R). Assume
that R = o(1) and that γ > 1. Then, we have

sup
θ∈D

∥K(θ)∥op ≤ C γ N dnL−1, (270)

with probability at least 1 − C N exp(−cnL−1) over θ0 and (xi)
N
i=1, where c, C are numerical

constants. Furthermore,

inf
θ∈D

σmin(J(θ)) ≥ c1
√
γnL−2nL−1 − C1Rd

√
γnL−1N, (271)

with probability at least 1− C Ne−c log
2 nL−1 − Ce−c log

2N over θ0 and (xi)
N
i=1, where c1, C1 are

also numerical constants.
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Proof. We have

sup
θ∈D

∥K(θ)∥op = sup
θ∈D

∥∥∥∥∥
L−1∑
l=0

Fl(θ)F
⊤
l (θ) ◦Bl+1(θ)B

⊤
l+1(θ)

∥∥∥∥∥
op

≤
L−1∑
l=0

sup
θ∈D

∥∥Fl(θ)F⊤
l (θ) ◦Bl+1(θ)B

⊤
l+1(θ)

∥∥
op

≤
L−1∑
l=0

sup
θ∈D

∥∥Fl(θ)F⊤
l (θ)

∥∥
op sup
θ∈D

maxi∈[N ] ∥(Bl+1(θ))i:∥
2
2

≤
L−1∑
l=0

sup
θ∈D

∥Fl(θ)∥2F sup
θ∈D

maxi∈[N ] ∥bl+1(θ, xi)∥22

≤
L−1∑
l=0

(
N∑
i=1

sup
θ∈D

∥fl(θ, xi)∥22

)
sup
θ∈D

maxi ∥bl+1(θ, xi)∥22 .

(272)

By Lemma H.5, we have that supθ∈D ∥fl(θ, xi)∥22 ≤ C dwith probability at least 1−C exp(−cnL−1)
over (Wk(θ0))

l
k=1 and xi, for any 0 ≤ l ≤ L − 1 and i ∈ [N ]. By Lemma H.6, we have that

supθ∈D ∥bl(θ, xi)∥22 ≤ CγnL−1 with probability at least 1−C exp(−cnL−1) over (Wk(θ0))
L
k=l+1,

for any l ∈ [L] and i ∈ [N ]. Therefore, we obtain

sup
θ∈D

∥K(θ)∥op ≤ C γ N dnL−1, (273)

with probability at least 1− C N exp(−cnL−1) over θ0 and (xi)
N
i=1, which gives the first statement

of the lemma.

By using Weyl’s inequality, we get

inf
θ∈D

σmin(J(θ)) ≥ σmin(J(θ0))− sup
θ∈D

∥J(θ1)− J(θ0)∥op

≥ c1
√
γnL−2nL−1 − C1Rd

√
γ nL−1N,

(274)

where the last inequality follows from Lemma H.2 and Lemma H.8, and it holds with probability
1 − C Ne−c log

2 nL−1 − Ce−c log
2N over (xi)Ni=1 and θ0. This gives the second statement of the

lemma and concludes the proof.

Armed with Proposition H.1 and the intermediate estimates of Lemmas H.2-H.9, we are finally ready
to prove Theorem 4.2.

Proof of Theorem 4.2. We show that there exist two absolute constants c̃ and C̃ such that

α = c̃
√
γnL−2nL−1 (275)

and
β = C̃

√
γNdnL−1 (276)

satisfy the two assumptions in Proposition H.1 with initialization θ̃0 := θ0, where θ0 is defined in
(18). This holds with probability at least 1− C Ne−c log

2 nL−1 − Ce−c log
2N over (xi)Ni=1 and θ0.

Recall from Proposition H.1 that R is defined as 4 ∥FL(θ0)− Y ∥2 /α, since we have set θ̃0 = θ0.
For the moment, we assume that

R = O

(√
N

γnL−2nL−1

)
, (277)

and we will verify that this is the case later. Note that γ = d3N2 > 1 and, hence, (277) and
Assumption 2.5 imply that R = o(1). Thus, we can apply Lemma H.9 and obtain

inf
θ∈D

σmin(J(θ)) ≥ c1
√
γnL−2nL−1 − C1Rd

√
γnL−1N ≥ c̃

√
γnL−2nL−1, (278)
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with probability at least 1 − C Ne−c log
2 nL−1 − Ce−c log

2N over (xi)Ni=1 and θ0, where the last
inequality uses (277). This shows that the lower bound in (230) holds.

Now, by using (278), we verify that (277) holds. Recall that, by assumption of the theorem, ∥Y ∥2 =

Θ(
√
N). Furthermore, by Lemma H.2, FL(θ0) is a vector of all zeros. Then,

R =
4 ∥FL(θ0)− Y ∥2

α
=

4 ∥Y ∥2
α

= O

(√
N

γnL−2nL−1

)
. (279)

By Lemma H.9, we have that

sup
θ∈D

∥J(θ)∥op ≤ C
√
γNdnL−1, (280)

with probability at least 1− C N exp(−cnL−1) over θ0. Thus, by our choice (276) of β, we obtain
that the upper bound in (230) holds.

Next, we verify the second assumption of Proposition H.1. To do so, let us write

α2

2β
=

c̃2nL−2nL−1γ

2C̃
√
γNdnL−1

= Ω(
√
nL−2Nd), (281)

where we have used Assumption 2.5. Thus,

sup
θ1,θ2∈D

∥J(θ1)− J(θ2)∥op ≤ C Rd
√
γnL−1N = O

(
dN

√
nL−2

)
≤ α2

2β
, (282)

with probability at least 1− C N exp(−cnL−1) over (xi)Ni=1 and θ0. Here, the first passage follows
from Lemma H.8, in the second passage we use (277), and in the last one we use (281). This
completes the proof of (231) and also of the theorem, since the desired claim follows from an
application of Proposition H.1.
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