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Abstract
The Neural Tangent Kernel (NTK) has emerged as a powerful tool to provide
memorization, optimization and generalization guarantees in deep neural networks.
A line of work has studied the NTK spectrum for two-layer and deep networks
with at least a layer with Ω(N) neurons, N being the number of training samples.
Furthermore, there is increasing evidence suggesting that deep networks with sub-
linear layer widths are powerful memorizers and optimizers, as long as the number
of parameters exceeds the number of samples. Thus, a natural open question is
whether the NTK is well conditioned in such a challenging sub-linear setup. In this
paper, we answer this question in the affirmative. Our key technical contribution
is a lower bound on the smallest NTK eigenvalue for deep networks with the
minimum possible over-parameterization: up to logarithmic factors, the number of
parameters is Ω(N) and, hence, the number of neurons is as little as Ω(

√
N). To

showcase the applicability of our NTK bounds, we provide two results concerning
memorization capacity and optimization guarantees for gradient descent training.

1 Introduction
Training a neural network is a non-convex problem that exhibits disconnected local minima [8, 57, 70].
Yet, in practice gradient descent (GD) and its variants routinely find solutions with zero training loss
[72]. A framework to understand this phenomenon comes from the Neural Tangent Kernel (NTK).
This quantity was introduced in [33], where it was proved that, during GD training, the network
follows the kernel gradient of the functional cost with respect to the NTK. Furthermore, as the layer
widths go large, the NTK converges to a deterministic limit which stays constant during training.
Hence, in this infinite-width limit, it suffices that the smallest eigenvalue of the NTK is bounded
away from 0 for gradient descent to reach zero loss. Going to finite widths, a recipe to prove GD
convergence can be summarized as follows: show that (i) the NTK is well conditioned at initialization,
and (ii) the NTK has not changed significantly by the time GD has reached zero loss (see e.g.
[49, 17, 11]). A number of papers have exploited this recipe for networks with progressively smaller
over-parameterization: two-layer networks [22, 50, 63, 69, 62], deep networks with polynomially
wide layers [5, 21, 73, 74], and deep networks with a single wide layer [47, 43]. Besides optimization,
showing that the NTK is well conditioned directly implies a result on memorization capacity [42, 48],
and the smallest eigenvalue of the NTK has also been related to generalization [6].

In [48], it is shown that, given N training samples, a single layer with Ω(N) neurons suffices for the
NTK to be well conditioned in networks of arbitrary depth. However, there is increasing evidence
that, in the challenging setup in which the layer widths are sub-linear in N , neural networks still
memorize the training data [14, 71, 66], reach zero loss under GD training in the two-layer setting
[61, 50, 42], and in the deep case, GD explores a nicely behaved region of the loss landscape [44].
This is in agreement with simple back-of-the-envelope calculations on CIFAR-10 and ImageNet:
CIFAR-10 has N = 50000 images and roughly 106 parameters suffice to fit random labels [72];
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furthermore, in order to fit random labels to a subset of 1.2 · 106 ImageNet data points, 2.4 · 107
parameters are enough [72]. These numbers suggest that having a number of parameters of the same
order as the dataset size is much closer to practice than having a number of neurons of that order. We
also note that, by counting degrees of freedom or bounding the VC dimension [10], Ω(N) parameters
(and, therefore, Ω(

√
N) neurons) are in general necessary to fit N data points. This naturally brings

forward the following open question:

Is the NTK well conditioned for deep networks with the minimum possible over-parameterization
(i.e., containing Ω(N) parameters corresponding to Ω(

√
N) neurons)?

Main contributions. In this paper, we settle this open question for a large class of deep networks.
We consider (i) a smooth activation function, (ii) i.i.d. data satisfying Lipschitz concentration (e.g.,
data with a Gaussian distribution, uniform on the sphere/hypercube, or obtained via a Generative
Adversarial Network), (iii) a standard initialization of the weights (e.g., He’s or LeCun’s initialization),
and (iv) a loose pyramidal topology in which the layer widths can increase by at most a multiplicative
constant as the network gets deep. Then, in Theorem 3.1 we show that the NTK is well conditioned
under the minimum possible over-parameterization requirement: the number of parameters between
the last two layers has to be Ω̃(N) or, equivalently, the number of neurons has to be Ω̃(

√
N), where

Ω̃ includes extra logarithmic factors. We achieve this goal by giving a lower bound on the smallest
eigenvalue of the NTK. This lower bound is tight when all the layer widths are of the same order.

Our NTK bounds open the way towards understanding the behavior of deep networks with minimum
over-parameterization. In particular, an immediate consequence of the fact that the NTK is well
conditioned is a result on the memorization capacity (Corollary 4.1). Furthermore, by suitably
choosing the initialization, we provide convergence guarantees for gradient descent training (Theorem
4.2). Finally, we highlight that, in order to obtain our bounds on the smallest NTK eigenvalue, we
give a number of tight estimates on the ℓ2 norms of feature vectors and of their centered counterparts,
which may be of independent interest.

Proof ideas. To prove Theorem 3.1, we restrict to the kernel KL−2 = JL−2J
⊤
L−2, where JL−2 is

the Jacobian of the output w.r.t. the parameters between the last two hidden layers. This suffices
as KL−2 is a lower bound on the NTK in the positive semi-definite (PSD) sense. We note that the
i-th row (i ∈ {1, . . . , N}) of JL−2 is given by the Kronecker product ⊗ between the feature vector
at layer L − 2 and the backpropagation term from the same layer. One key technical hurdle is to
center JL−2, so that its rows have the form u ⊗ v − E [u⊗ v], where E[u] = E[v] = 0, and all
expectations are taken with respect to the (random) training data. To do so, we perform three steps of
centering: (i) we center the feature vectors (corresponding to u), (ii) we center the backpropagation
terms (corresponding to v), and (iii) we center again the whole row (corresponding to u⊗ v). These
centering steps are approximate in the sense that the centered matrix is not necessarily a lower bound
(in the PSD sense) on the original one. However, we are able to control the operator norm of the
difference, and show that it scales slower than the smallest eigenvalue of the centered kernel. At this
point, we leverage the structure of the rows of the centered Jacobian to bound their sub-exponential
norm via a version of the Hanson-Wright inequality for (weakly) correlated random vectors [1].
Finally, after providing also a tight estimate on the ℓ2 norms of such rows, we can exploit a result
from [2] to lower bound the smallest singular value of a matrix whose rows are independent random
vectors with well controlled sub-exponential and ℓ2 norms.

Existing work bounds the smallest NTK eigenvalue for networks with two layers [61, 42], or deep
networks with a layer containing Ω(N) neurons [48]. In particular, [61] also exploits the results [1, 2].
However, the centering of the Jacobian is achieved via a combination of whitening and dropping
rows, which appears to be difficult to generalize to deep networks. In contrast, the 3-step centering
we described above applies to networks of arbitrary depth L. A different approach is put forward
in [42], and it is based on a decomposition of the kernel via spherical harmonics. This technique
allows to obtain the exact limit of the smallest NTK eigenvalue, it has been used to analyze random
feature models [26, 41, 25, 40] and to obtain generalization bounds for two-layer networks (see again
[42]). However, understanding how to carry out such a decomposition in the multi-layer setup is an
open problem. Finally, [48] considers the deep case, and it relates the smallest eigenvalue of the NTK
to the smallest singular value of a feature matrix. As feature matrices are full rank only when the
number of neurons is Ω(N), this approach is inherently limited to networks with a linear-width layer.
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The rest of the paper is organized as follows: Section 2 discusses the problem setup and our model
assumptions; Section 3 presents our main result on the smallest NTK eigenvalue and gives a roadmap
of the argument; Section 4 provides two applications of our NTK bounds: memorization capacity and
gradient descent training; Section 5 discusses additional related work, and Section 6 provides some
concluding remarks. The details of the proofs are deferred to the appendices.

2 Preliminaries
Neural network setup. We consider an L-layer neural network with feature maps fl : Rd → Rnl

defined for every x ∈ Rd as

fl(x) =


x, l = 0,

ϕ(W⊤
l fl−1), l ∈ [L− 1],

W⊤
L fL−1, l = L.

(1)

Here, Wl ∈ Rnl−1×nl is the weight matrix at layer l, ϕ is the activation function and, given
an integer n, we use the shorthand [n] = {1, . . . , n}. We assume that the network has a sin-
gle output, i.e. nL = 1 and WL ∈ RnL−1 , and for consistency we have n0 = d. Let
gl : Rd → Rnl be the pre-activation feature map so that fl(x) = ϕ(gl(x)) for l ∈ [L]. We de-
fine g0(x) = f0(x) = x. Let X = [x1, . . . , xN ]⊤ ∈ RN×d be the data matrix containing N
samples in Rd, θ = [vec(W1), . . . , vec(WL)] be the vector of the parameters of the network, and
FL(θ) = [fL(x1), . . . , fL(xN )]⊤ be the network output. We denote by J the Jacobian of FL with
respect to all the parameters of the network:

J =

[
∂FL

∂ vec(W1)
, . . . ,

∂FL
∂ vec(WL)

]
∈ RN×

∑L
l=1 nl−1nl . (2)

Our key object of interest is the empirical Neural Tangent Kernel (NTK) Gram matrix, denoted by
K ∈ RN×N and defined as:

K = JJT =

L∑
l=1

[
∂FL

∂ vec(Wl)

] [
∂FL

∂ vec(Wl)

]⊤
. (3)

In [33], it is shown that, as nl → ∞ for all l ∈ [L− 1], K converges to a deterministic limit, which
stays constant during gradient descent training. The focus of this paper is on the finite-width behavior
of the empirical NTK (3). Quantitative bounds for the NTK convergence rate can be obtained from
[7, 15]. However, these bounds lead to a significant over-parameterization requirement, see the
discussion at the end of Section 3 in [48]. Here, our main result consists in showing that the NTK is
well conditioned for a class of neural networks with the minimum possible over-parameterization,
i.e., Ω(N) parameter or, equivalently, Ω(

√
N) neurons.

Weight and data distribution. We consider the following initialization of the weight matrices:
(Wl)i,j ∼i.i.d. N (0, β2

l /nl−1) for l ∈ [L− 1], i ∈ [nl−1], j ∈ [nl], where βl is a numerical constant
independent of the layer widths. This covers the popular cases of He’s and LeCun’s initialization
[27, 30, 36]. For the last layer, we assume that (WL)i ∼i.i.d. N (0, β2

L) for i ∈ [nL−1]. Throughout
the paper, we let (x1, . . . , xN ) be N i.i.d. samples from the data distribution PX , which satisfies the
conditions below.

Assumption 2.1 (Data scaling). The data distribution PX satisfies the following properties:

1.
∫
∥x∥2 dPX(x) = Θ(

√
d).

2.
∫
∥x∥22 dPX(x) = Θ(d).

3.
∫ ∥∥x−

∫
x′ dPX(x′)

∥∥2
2
dPX(x) = Ω (d) .

Assumption 2.2 (Lipschitz concentration). The data distribution PX satisfies the Lipschitz con-
centration property. Namely, there exists an absolute constant c > 0 such that, for every Lipschitz
continuous function φ : Rd → R, we have E|φ(X)| < +∞, and for all t > 0,

P
(∣∣∣∣φ(x)− ∫ φ(x′) dPX(x′)

∣∣∣∣ > t

)
≤ 2e−ct

2/∥φ∥2
Lip .
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Assumption 2.1 is simply a scaling of the training data points and their centered counterparts.
Assumption 2.2 covers a number of important cases, e.g., standard Gaussian distribution [65],
uniform distributions on the sphere and on the unit (binary or continuous) hypercube [65], data
produced via a Generative Adversarial Network (GAN)3 [59], and more generally any distribution
satisfying the log-Sobolev inequality with a dimension-independent constant. We also remark that
Assumption 2.2 is rather common in the related literature [48], or it is even replaced by a stronger
requirement (e.g., Gaussian distribution or uniform on the sphere) [42].

Assumption 2.3 (Activation function). The activation function ϕ satisfies the following properties:

1. ϕ is a non-linear (and therefore also non-constant) M -Lipschitz function;

2. its derivative ϕ′ is a M ′-Lipschitz function;

These requirements are satisfied by common activations, e.g. smoothed ReLU, sigmoid, or tanh.

Assumption 2.4 (Network topology). The network satisfies a loose pyramidal topology condition,
i.e. nl = O (nl−1), for all l ∈ [L− 1].

A strict pyramidal topology (namely, non-increasing layer widths) has been considered in prior
work concerning the loss landscape [45, 46] and gradient descent training [47]. Our Assumption 2.4
requires a loose pyramidal topology in the sense that, as we go deep, the layer widths are allowed to
increase by a constant multiplicative factor. We also note that the widths of neural networks used in
practice are often large in the first layers and then start decreasing [28, 60].

Assumption 2.5 (Over-parameterization). We have that

N · log8N = o(nL−2nL−1). (4)

Furthermore, there exists γ > 0 such that

Nγ = O (nL−1) . (5)

Condition (4) requires the number of parameters between the last two hidden layers to be linear in
the number of samples, up to logarithmic factors. This represents our key over-parameterization
condition. When all the widths have the same scaling, (4) reduces to N = õ(d2). This is satisfied
by several “standard” datasets, such as MNIST (N = 60000, d = 784), CIFAR-10 (N = 5 · 104,
d = 3 · 322), and ImageNet (N = 1.4 · 107, d = 2 · 105). We also note that, if N ≫ d2, the NTK
is low-rank and λmin (K) = 0. Furthermore, Corollary 4.1 and Theorem 4.2 cannot generally hold
when N ≫ d2, as there are more data points to fit than parameters to help with the fitting. A milder
requirement is possible for classification tasks, see the discussion at the end of Section 5. The second
condition (5) is rather mild, as γ can be taken to be arbitrarily small, and it avoids an exponential
bottleneck in the last hidden layer.

Notation. The feature matrix at layer l is Fl = [fl(x1), . . . , fl(xN )]⊤ ∈ RN×nl , and Σl(x) =
diag([ϕ′(gl,j(x))]

nl
j=1) for l ∈ [L−1], where gl,j(x) is the pre-activation neuron. Given two matrices

F,B ∈ Rm×n, we denote by F ◦B their Hadamard product, and by F ∗B = [(F1:⊗B1:), . . . , (Fm:⊗
Bm:)]

T ∈ Rm×n2

their row-wise Kronecker product (also known as Khatri-Rao product). Given a
random vector v, let ∥v∥ψ2

and ∥v∥ψ1
denote its sub-Gaussian and sub-exponential norm, respectively

(see also Appendix A for a detailed definition). Given a matrix A, let ∥A∥op be its operator norm,
∥A∥F its Frobenius norm, λmin (A) its smallest eigenvalue, and σmin (A) its smallest singular value.
We denote by ∥φ∥Lip the Lipschitz constant of the function φ. All the complexity notations Ω(·),
O(·), o(·) and Θ(·) are understood for sufficiently large N, d, n1, n2, . . . , nL−1. Tildes on such
symbols are meant to neglect logarithmic factors.

3 NTK Bounds with Minimum Over-parameterization
Our main technical contribution on the smallest eigenvalue of the empirical NTK (3) is stated below.

Theorem 3.1 (Smallest NTK eigenvalue under minimum over-parameterization). Consider an L-
layer neural network (1), where the activation function satisfies Assumption 2.3 and the layer widths
satisfy Assumptions 2.4 and 2.5. Let {xi}Ni=1 ∼i.i.d. PX , where PX satisfies the Assumptions 2.1-2.2,

3By applying a Lipschitz map to a standard Gaussian distribution, the map output satisfies Assumption 2.2.

4



and let K be the empirical NTK Gram matrix (3). Assume that the weights of the network are
initialized as (Wl)i,j ∼i.i.d. N (0, β2

l /nl−1) for l ∈ [L− 1], i ∈ [nl−1], j ∈ [nl] and (WL)i ∼i.i.d.

N (0, β2
L) for i ∈ [nL−1]. Then, we have

λmin (K) = Ω(nL−2nL−1), (6)

with probability at least 1 − C Ne−c log
2 nL−1 − Ce−c log

2N over (xi)Ni=1 and (Wk)
L
k=1, where c

and C are numerical constants. Moreover, we have that

λmin (K) = O (dnL−1) , (7)

with probability at least 1− Ce−cnL−1 , over (xi)Ni=1 and (Wk)
L
k=1.
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Figure 1: λmin (K) as a function of d2 in
a 3-layer neural network, with sigmoid
activation and d = n1 = n2.

This result implies that the NTK is well conditioned for
a class of networks in which the number of parameters
nL−2nL−1 between the last two hidden layers is linear in
the number of data samples N , up to logarithmic factors.
This means that the total number of neurons of the network
can be as little as Ω̃(

√
N), which meets the minimum pos-

sible amount of over-parameterization. The lower bound
(6) and the upper bound (7) match when all the widths (up
to layer L− 2) have the same scaling, i.e., d = Θ(nL−2).
Throughout the paper, we do not explicitly track the depen-
dence of our bounds on L, in the sense that the numerical
constants c, C may depend on L.

In Figure 1, we consider a 3-layer neural network with
d = n1 = n2, and we plot λmin (K) as a function
of d2, for three different values of N . The inputs are
sampled from a standard Gaussian distribution, the ac-
tivation function is the sigmoid σ(x) = (1 + e−x)−1, and we set βl = 1 for all l ∈ [L].
We repeat the experiment 10 times, and report average and confidence interval at 1 standard
deviation. The linear scaling of λmin (K) in d2 is in agreement with the result of Theorem
3.1. The code used to obtain the results of Figure 1 (and Figure 2 as well) is available at
https://github.com/simone-bombari/smallest-eigenvalue-NTK/.

3.1 Roadmap of the proof of Theorem 3.1
After an application of the chain rule and some standard manipulations, we have

JJ⊤ =

L−1∑
k=0

Kk, with Kk = FkF
⊤
k ◦Bk+1B

⊤
k+1 ∈ RN×N , (8)

where Bk ∈ RN×nk is a matrix whose i-th row is given by

(Bk)i: =


Σk(xi)

(∏L−1
l=k+1WlΣl(xi)

)
WL, k ∈ [L− 2],

ΣL−1(xi)WL, k = L− 1,

1, k = L.

(9)

From the decomposition (8), one readily obtains that K ⪰ KL−2, since Kk is PSD for all k ∈
{0, . . . , L− 1}. Hence, it suffices to prove a lower bound on λmin (KL−2). We denote by JL−2 the
Jacobian obtained by computing the gradient only over the parameters between layer L− 2 and layer
L−1. Then, KL−2 = JL−2J

⊤
L−2 and, by using (8) and (9), the i-th row of JL−2 can be expressed as

(JL−2)i: = fL−2(xi)⊗ (DLϕ
′(W⊤

L−1fL−2(xi))), i ∈ [N ], (10)

where DL is a diagonal matrix with the entries of WL on its diagonal. Note that, if we fix the weight
matrices (Wl)

L
l=1, the rows ((JL−2)i:)

N
i=1 are i.i.d., as the training data (xi)

N
i=1 are i.i.d. too.

The proof consists of two main parts. First, we construct the centered Jacobian J̃L−2, which is
obtained from JL−2 by iteratively removing expectations with respect to X to its parts, and we show
that its smallest singular value is close to the smallest singular value of JL−2. The details of this part
are contained in Appendix D. Second, we bound the smallest eigenvalue of the kernel obtained from
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the centered Jacobian J̃L−2 by providing an accurate estimate of the ℓ2 and sub-exponential norms of
its rows. The details of this part are contained in Appendix E. In order to carry out this program, we ex-
ploit a number of concentration results on the ℓ2 norms of feature and backpropagation vectors, and on
the ℓ2 norms of their centered counterparts. These results are contained in Appendix C, and they could
be of independent interest. In particular, we provide tight high-probability estimates on (i) ∥fl(x)∥2,
(ii) Ex[∥fl(x)∥22], (iii) Ex[∥fl(x)∥2], (iv) Ex[∥fl(x)− Ex[fl(x)]∥22], Ex[∥fl(x)− Ex[fl(x)]∥2], and
∥fl(x)− Ex[fl(x)]∥2, and (v) ∥DLϕ

′(gL−1(x))− Ex[DLϕ
′(gL−1(x))]∥2. Some preliminary calcu-

lations are also contained in Appendix B.

Part 1: Centering. We consider the centered Jacobian J̃L−2, whose i-th row is defined as

(J̃L−2)i: = f̃L−2(xi)⊗ (DLϕ̃′(gL−1(xi)))− Exi

[
f̃L−2(xi)⊗DLϕ̃′(gL−1(xi))

]
, i ∈ [N ],

(11)
where f̃L−2(xi) = ϕ̃(gL−2(xi)), with ϕ̃(gL−2(xi)) = ϕ(gL−2(xi)) − Exi

[ϕ(gL−2(xi))] and
ϕ̃′(gL−1(xi)) = ϕ′(gL−1(xi))−Exi [ϕ

′(gL−1(xi))] being the centered versions of the activation func-
tion and of its derivative, respectively. Our strategy is to relate λmin(JL−2J

⊤
L−2) to λmin(J̃L−2J̃

⊤
L−2)

via the following two steps.

Step (a): Centering FL−2 and BL−1. We show that λmin(JL−2J
⊤
L−2) ≥ λmin(J̃FB J̃

⊤
FB) −

o(nL−2nL−1), where J̃FB J̃⊤
FB = F̃L−2F̃

⊤
L−2 ◦ B̃L−1B̃

⊤
L−1 and F̃L−2 = FL−2 − EX [FL−2] and

B̃L−1 = BL−1 − EX [BL−1] (Lemma D.1 in Appendix D.1). Our strategy differs from existing
work (e.g., [61, 48]), where either only the backpropagation term is centered (cf. Proposition 7.1 of
[61]) or only the features are centered (cf. Lemma 5.4 of [48]). We remark that, in order to handle
deep networks with minimum overparameterization4, the centering of FL−2 and BL−1 is crucially
performed at the same time. In fact, by doing so, certain terms containing an eigenvalue which
is negative and large in modulus suitably cancel. As a result, the difference between the original
kernel JL−2J

⊤
L−2 and the centered one J̃FB J̃⊤

FB can be bounded by a matrix whose operator norm
is o(nL−2nL−1).

Step (b): Centering everything. We show that λmin(J̃FB J̃
⊤
FB) ≥ λmin(J̃L−2J̃

⊤
L−2)−o(nL−2nL−1),

where the rows of J̃L−2 are given by (11) (Lemma D.2 in Appendix D.2). The idea is to decompose
the difference J̃FB J̃⊤

FB − J̃L−2J̃
⊤
L−2 into a rank-1 matrix plus a PSD matrix. Then, in order to

bound the operator norm of the rank-1 term, we leverage the general version of the Hanson-Wright
inequality given by Theorem 2.3 in [1] (see the tail bound on quadratic forms that we provide in
Lemma B.5). This strategy avoids whitening and dropping rows (as done in [61]) and, hence, appears
to be better suited to the deep case.

The main result of this part is stated below, and it is proved by combining Lemmas D.1 and D.2.

Theorem 3.2 (Jacobian centering). Consider the setting of Theorem 3.1, and let the rows of JL−2

and J̃L−2 be given by (10) and (11), respectively. Then, we have

λmin

(
JL−2J

⊤
L−2

)
≥ λmin

(
J̃L−2J̃

⊤
L−2

)
− o(nL−2nL−1), (12)

with probability at least 1− C exp(−c log2 nL−1)− C exp(−c log2N) over (xi)Ni=1 and (Wk)
L
k=1,

where c, C are numerical constants.

Part 2: Bounding the centered Jacobian. If we fix the weight matrices (Wl)
L
l=1, the rows of

J̃L−2 are i.i.d. vectors of the form u⊗ v−E [u⊗ v], where both u and v are centered. By exploiting
this structure, in Appendix E.1 we bound the ℓ2 and sub-exponential norms of these rows. The
ℓ2 norm is bounded in Lemma E.2, and this result relies on the tight estimates on the ℓ2 norms of
centered features and centered backpropagation terms given by Lemma C.4 and C.5, respectively.
The sub-exponential norm is bounded in Lemma E.3, and we use again the tail bound of Lemma
B.5, which exploits the version of the Hanson-Wright inequality in [1]. At this point, the problem
is reduced to bounding the smallest eigenvalue of a matrix such that its rows are i.i.d. and we have
a good control on their ℓ2 and sub-exponential norms. This goal can be achieved via the following

4In contrast, [61] considers shallow networks, and [48] requires the existence of a layer with roughly Ω(N)
neurons.
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result, whose proof follows from Theorem 3.2 in [2] and it is presented for completeness in Appendix
E.2.

Proposition 3.3. Let J̃ be a matrix with rows J̃i: ∈ RnL−2nL−1 , for i ∈ [N ]. Assume that {J̃i:}i∈[N ]

are independent sub-exponential random vectors with ψ = maxi ∥J̃i:∥ψ1
. Let ηmin = mini ∥J̃i:∥2

and ηmax = maxi ∥J̃i:∥2. Set ξ = ψK +K ′, and ∆ := Cξ2N1/4(nL−1nL−2)
3/4. Then, we have

that
λmin

(
J̃ J̃⊤

)
≥ η2min −∆ (13)

holds with probability at least

1− exp

(
−cK

√
N log

(
2nL−1nL−2

N

))
− P

(
ηmax ≥ K ′√nL−1nL−2

)
, (14)

where c and C are numerical constants.

The main result of this part is stated below, and it is proved in Appendix E.3.

Theorem 3.4 (Bounding the centered Jacobian). Consider the setting of Theorem 3.1, and let the
rows of J̃L−2 be given by (11). Then, we have

λmin

(
J̃L−2J̃

⊤
L−2

)
= Ω(nL−2nL−1), (15)

with probability at least 1− Ce−c
√
N − C Ne−c log

2 nL−1 over (xi)Ni=1 and (Wk)
L
k=1, where c and

C are numerical constants.

Recall that K ⪰ KL−2, hence λmin (K) ≥ λmin (KL−2) = λmin

(
JL−2J

⊤
L−2

)
. Thus, the lower

bound (6) follows by combining the results from Theorem 3.2 and Theorem 3.4.

Finally, the upper bound (7) is rather straightforward. First, we write

λmin (K) = λmin

(
JJ⊤) ≤ (JJ⊤)11 =

L−1∑
l=0

∥(Fl)1:∥22 ∥(Bl+1)1:∥22 . (16)

Then, by combining the bound on ∥(Fl)1:∥22 of Lemma C.1 with a direct calculation for ∥(Bl+1)1:∥22,
the desired result (7) follows. The details are contained in Appendix F.

4 Two Applications: Memorization and Optimization
Memorization capacity. The fact that the NTK Gram matrix (3) is well conditioned readily implies
a result on memorization capacity. This was already observed in [42] for two-layer networks and
in [48] for deep networks with a layer containing Ω(N) neurons. Here, by using Theorem 3.1, we
show that Ω(N) parameters between the last pair of hidden layers are enough for the network to fit
N real-valued labels up to an arbitrarily small error. The result is stated below and, for completeness,
we give the proof in Appendix G.

Corollary 4.1 (Memorization). Consider anL-layer neural network (1), where the activation function
satisfies Assumption 2.3 and the layer widths satisfy Assumptions 2.4 and 2.5. Let {xi}Ni=1 ∼i.i.d. PX ,
where PX satisfies the Assumptions 2.1-2.2. Then, it holds that for every Y ∈ RN , and for every
ε > 0, there exists a set of parameters θ such that

∥FL(θ)− Y ∥2 ≤ ε, (17)

with probability at least 1 − C Ne−c log
2 nL−1 − Ce−c log

2N over (xi)
N
i=1, where c and C are

numerical constants.

Gradient descent training. Theorem 3.1 has implications on the convergence of gradient descent
algorithms. In particular, by choosing carefully the initialization, we show that gradient descent
trained on the N samples {xi}Ni=1 with labels Y = (Y1, . . . , YN ) converges to zero loss. This
is – at the best of our knowledge – the first result of this kind for deep networks with minimum
over-parameterization.

To define our initialization, let us assume that the (L− 1)-th layer has an even number of neurons.
With a slight abuse of notation, we indicate its width as 2nL−1. Thus, WL−1 can be written in the
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form
[
W

(1)
L−1,W

(2)
L−1

]
, whereW (1)

L−1,W
(2)
L−1 ∈ RnL−2×nL−1 . Similarly,WL ∈ R2nL−1 is the concate-

nation of W (1)
L ,W

(2)
L ∈ RnL−1 . Then, we define the initialization θ0 = [vec(W1,0), . . . , vec(WL,0)]

as follows:

(Wl,0)i,j ∼i.i.d. N (0, β2
l /nl−1), l ∈ [L− 2], i ∈ [nl−1], j ∈ [nl],

(W
(1)
L−1,0)i,j ∼i.i.d. N (0, β2

L−1/nL−2), i ∈ [nL−2], j ∈ [nL−1], and W (2)
L−1,0 =W

(1)
L−1,0,

(W
(1)
L,0)i ∼i.i.d. N (0, β2

Lγ), i ∈ [nL−1], and W (2)
L,0 = −W (1)

L,0.

(18)

As usual, (βl)Ll=1 are numerical constants independent of the layer widths. In contrast, the quantity γ
will be set to a suitably large value depending on the number of training samples and on the layer
widths. In words, the initialization is standard for W1,0, . . . ,WL−2,0 and W (1)

L−1,0; the variance of

W
(1)
L,0 is boosted up by a factor γ; and we duplicate the neurons of layer L − 1 so that W (2)

L−1,0 =

W
(1)
L−1,0 and W (2)

L,0 = −W (1)
L,0. At this point, we are ready to state our optimization result.

Theorem 4.2 (Optimization via gradient descent). Consider an L-layer neural network (1), where
the activation function satisfies Assumption 2.3 and the layer widths satisfy Assumptions 2.4 and 2.5.
Consider training data {xi}Ni=1 ∼i.i.d. PX , where PX satisfies the Assumptions 2.1-2.2, with labels
Y ∈ RN such that ∥Y ∥2 = Θ(

√
N). We consider solving the least-squares optimization problem

minθ L(θ) :=
1

2
minθ ∥FL(θ)− Y ∥22 , (19)

by running gradient descent updates of the form θt+1 = θt − η∇L(θt), where the initialization θ0 is
defined in (18) with γ = d3N2 and η ≤ C(γNdnL−1)

−1. Then, for all t ≥ 1,

L(θt) ≤ (1− cηγnL−2nL−1)
t L(θ0), (20)

with probability at least 1− C Ne−c log
2 nL−1 − Ce−c log

2N over (xi)Ni=1 and the initialization θ0,
where c and C are numerical constants.
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Figure 2: Value of the loss L(θf ) once
gradient descent has converged for a 4-
layer ReLU network with d = n1 =
n2 = n3.

In words, (20) guarantees that gradient descent linearly
converges to a point with zero loss. We also note that (our
upper bound on) the convergence rate can be expressed
as a simple function of the learning rate η, the number of
training samples N , and the layer widths {ni}L−1

i=0 .

In Figure 2, we give an illustrative example that 4-layer
networks achieve 0 loss when the number of parameters is
at least linear in the number of training samples, i.e., under
minimum over-parameterization. To ease the experimental
setup, we use a ReLU activation, with Adam optimizer.
We initialize the network as in the setting of Theorem 3.1,
picking βl = 1 for all l ∈ [L]. The inputs, as well as the
targets, are sampled from a standard Gaussian distribu-
tion. The plot is averaged over 10 independent trials. As
predicted by Theorem 4.2, the loss experiences a phase
transition and it goes from 1 to 0 when the layer widths
are of order

√
N .

We now provide a sketch of the argument of Theorem
4.2, deferring the detailed proof to Appendix H. As a

consequence of Theorem 3.1, the NTK is well conditioned at the initialization θ0, which implies that
gradient descent makes progress at the beginning. The idea is that the NTK remains sufficiently well
conditioned also during training and, hence, the loss vanishes with the linear rate in (20), since the
trained weights remain confined in a ball of sufficiently small radius centered at θ0. More specifically,
we exploit the optimization framework developed in [49]. There, a convergence result is proved if the
following condition holds: there exists α, β such that

α ≤ σmin(J(θ)) ≤ ∥J(θ)∥op ≤ β, and ∥J(θ1)− J(θ2)∥op ≤ α2

2β
, (21)
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for all θ, θ1, θ2 ∈ D = B(θ0, R), where D denotes a ball centered at θ0 of radius R := 4∥FL(θ0)−
Y ∥2/α (cf. Proposition H.1). In order to control the radius R, we take advantage of the form
(18) of the initialization θ0. In particular, the spectrum of the Jacobian J (and, hence, α) scales
linearly in

√
γ, and the network output at initialization FL(θ0) is equal to 0 (cf. Lemma H.2).

Thus, as ∥Y ∥2 = Θ(
√
N), we have that R = Θ(

√
N/α), which can be controlled by choosing

suitably γ. At this point, the argument consists in providing a number of estimates on feature vectors,
backpropagation terms, and finally the Jacobian J(θ) for all θ ∈ D (cf. Lemmas H.3-H.9). This
allows us to find α, β such that (21) holds and conclude.

5 Related Work and Discussion

Random matrices in deep learning. The limiting spectra of several random matrices related to
neural networks have been the subject of a recent line of work. In particular, the Conjugate Kernel
(CK) – namely, the Gram matrix of the features from the last hidden layer – has been studied for
models with two layers [54, 37, 39, 51], with a bias term [3, 56], and with multiple layers [13]. The
Hessian matrix has been considered in [52], and the closely related Fisher information matrix in [55].
Using tools from free probability, the input-output Jacobian (as opposed to the parameter-output
Jacobian considered in this work) of deep networks is studied in [53] and the NTK of a two-layer
model in [4]. In [23], the spectrum of NTK and CK for deep networks is characterized via an iterated
Marchenko-Pastur map. The generalization error has also been studied via the spectrum of suitable
random matrices, see [29, 41, 38, 42] and Section 6 of the review [11]. Most of the existing results
focus on the linear-width asymptotic regime, where the widths of the various layers are linearly
proportional. An exception is [68], which focuses on the ultra-wide two-layer case (n1 ≫ N ).

Smallest eigenvalue of empirical kernels. In the line of work mentioned above, the limiting
spectrum of the random matrix is characterized in terms of weak convergence, which does not lead to
a direct implication on the behavior of its smallest eigenvalue. In fact, lower bounding the smallest
eigenvalue often requires understanding the speed of convergence to the limit spectrum. Quantitative
bounds for random Fourier features are obtained in [9]. In the two-layer setting, the smallest NTK
eigenvalue is lower bounded in [61, 42, 68], and concentration bounds can also be obtained from
[4, 63, 31]. In particular, [42] establishes a tight bound for two-layer networks with roughly as many
parameters as training samples (hence, under minimum over-parameterization), and for a wide class
of activations. However, this result still requires that n1 = Ω(d). For deep networks, a convergence
rate on the NTK can be obtained from [7] and potentially from [15], however these results require all
the layers to be wide. In [48], it is proved that a single layer of linear width suffices for the NTK to
be well conditioned. Here, Theorem 3.1 provides the first result for deep networks under minimum
over-parameterization, therefore allowing for sub-linear layer widths.

Memorization capacity and gradient descent training. For binary classification, the memo-
rization capacity of neural networks was first studied by Cover [18], who solved the single-neuron
case. Later, Baum [12] proved that, for two-layer networks, the memorization capacity is lower
bounded by the number of parameters, and upper bounds of the same order were given in [35, 58].
Recently, tight results for two-layer networks in the regression setting have been provided [14, 42].
In particular, [14] generalizes the construction of [12], while the memorization result of [42] comes
from a bound on the smallest NTK eigenvalue. This same route is also followed to analyze deep
networks in [48] and in this work. Results for multiple layers have been provided in [10, 71, 66, 24].
As concerns efficient algorithms achieving memorization, [19, 20] study classification with two-layer
networks. A popular line of research has exploited the NTK view to give optimization guarantees
on gradient descent. Existing work has focused on the two-layer case [61, 22, 50, 63, 69, 62], and
optimal results in terms of over-parameterization have been obtained [42]. For deep networks, [21]
assumes a lower bound on the smallest NTK eigenvalue, [5, 73, 74] require all the layer widths to be
(rather large) polynomials in the number of samples, and [47, 43] reduce the over-parameterization
to a single layer of linear width. In particular, in these last two papers, the analysis of the NTK is
reduced to that of a certain feature matrix (the first one in [47] and the last one in [43]). Hence,
these approaches do not seem suitable to tackle networks with sub-linear layer widths5. Finally, we
remark that milder over-paramerization requirements are sufficient for classification problems. More
specifically, it has been proved that polylogarithmic width suffices for two-layer [34] and deep [16]

5If the width is sub-linear, then the feature matrix is low-rank and, hence, its smallest eigenvalue is 0.
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ReLU networks to converge and generalize. In fact, achieving memorization for regression is harder
than for classification, where it suffices to satisfy inequality constraints [42].

6 Concluding Remarks
In this paper, we show that the NTK is well conditioned for deep networks with sub-linear layer
widths. As consequences of our NTK bounds, we also prove results on memorization and optimization
for such a class of networks. Our approach requires smooth activations and layer widths which do not
significantly grow in size with the depth. We believe such assumptions to be purely technical, and we
leave as an open question their removal. Our novel NTK analysis could potentially be applied beyond
standard gradient descent, e.g., for optimization with momentum [67], or federated learning [32].
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