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A Contextual Bandits

In this section, we apply Theorem 12 and the approach of Foster and Rakhlin [2020] to the setting
of contextual bandits with contexts drawn from a smooth distribution, considered in Block et al.
[2022]. Unlike in that work, however, we will realize regret bounds achievable by an oracle-efficient
algorithm that are polynomially improved both in the horizon and the number of actions in the
particular case of noiseless rewards that are piecewise linear.

We consider the following setting: the learner has access to the context set Bd

1 and an action set A
with |A| = A <1. Let

G
A
F =

�
gf = (ga

f )a2A |ga

f 2 GF

 

where GF is as in Theorem 12, be a class of functions gf : Bd

1 ⇥A! R. Before the game begins,
Nature selects some `? 2 G

A
F unknown to the learner. At each time t, Nature draws xt from a

�-smooth distribution on B
d

1; the learner then chooses at 2 A, observes `?(xt, at) and suffers the
same loss. Given `? 2 G

A
F , it is clear that the best policy, given a context is greedy:

⇡`?(x) = argmin
a2A

`?(x, a).

The goal of the learner is to minimize regret, Reg
T

, to the optimal policy ⇡`? . The primary difference
between our setting and that of Foster and Rakhlin [2020], Block et al. [2022], other than the fact
that we are considering a particular function class GA

F , is that our losses are noiseless, while the prior
works allow for some noise that is mean zero conditional on the history. We have the following regret
bound:
Corollary 13. Suppose that we are in the contextual bandit setting outlined above with GF from (6.3)
and X⇥A identified with some subset of Bd

1. Then there is an oracle-efficient algorithm that, for all
T , with probability at least 1� �, achieves

Reg
T
 80 ·A

p
T (K2d log(d) +K2 log (ATK/(��))) + 8 ·

p
AT log (4/�).

We prove Corollary 13 in Appendix A.1 using the reduction of Foster and Rakhlin [2020, Theorem
1] and Theorem 12. Note that, in contradistinction to the corresponding bound proved as Block et al.
[2022, Theorem 12], we achieve the optimal

p
T regret, albeit with stronger assumptions on the

setting.

A.1 Proof of Corollary 13

In this section, we prove Corollary 13 by applying the black box reduction of Foster and Rakhlin
[2020] to our Theorem 12. The key lemma is as follows:
Lemma 14. Suppose that we are in the setting of Corollary 13 and that we predict ŷt(a) and sample
at according to Algorithm 2. Then, for all T , with probability at least 1� �, we have

TX

t=1

I[ŷt(at) 6= `t(at)]  A

✓
136K2d log(d) + 91K2 log

✓
4AT 2K2

��

◆
+K2(`+ 1)

◆

Proof. We begin by noting that
TX

t=1

I[ŷt(at) 6= `t(at)] =
X

a2A

TX

t=1

I[ŷt(a) 6= `t(a)]I[at = a]

let
U =

⇢
for all 1  t  T and a 2 A if pt,a 

�

2AT
then at 6= a

�

A union bound implies that P(U) � 1� �

2 . Restricting to U, we note that for any B ⇢ B
d

1 measurable,

Pt (xt 2 B|at = a)  Pt(xt 2 B)

pt,at

 2ATµd(B)

��

thus after restricting to U, the distribution of xt conditioned on at = a is
�
��

2AT

�
-smooth with respect

to µd. Thus for each a, we may apply the regret bound from Theorem 12 and, summing over a 2 A

concludes the proof. ⌅
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Algorithm 2 Inverse Gap Weighting [Foster and Rakhlin, 2020] with Piecewise Regression
1: Init: A instances of the Piecewise Regressor (Algorithm 7) regressor(a) for a 2 A, learning

rate � > 0, exploration parameter µ > 0.
2: for each time t = 1, 2, . . . do

3: recieve xt

4: for each action a 2 A do

5: predict ŷt(a) = regressor(a).predict(xt) % Prediction step of Algorithm 7

6: Assign bt  argmin
a2A ŷt(a)

7: for each a 6= bt do

8: Assign

pt,a  
1

µ+ �(ŷt(a)� ŷt(bt))
(% Inverse Gap Weighting)

Assign

pt,bt  1�
X

a 6=bt

pt,a (% Inverse Gap Weighting)

9: sample at ⇠ pt and play at
10: observe `t(at)
11: update regressor(a).update(xt, at, `t(at)) % Update step of Algorithm 7

We can now prove Corollary 13:

Proof of Corollary 13. Note that by Lipschitzness and boundedness, twice the mistake bound is
larger than the square loss regret considered in Foster and Rakhlin [2020]. Applying Foster and
Rakhlin [2020, Theorem 1] concludes the proof. ⌅
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B Preliminaries

In this section, we provide some key definitions and results that come up in our analysis. We divide
the section by theme, with the first part collection results on probability and concentration, the second
part on geometric measure theory, and the third on convex geometry.

B.1 Probability and Concentration

We begin by stating the foundation of our regret bounds.
Lemma 15 (Ville’s Inequality [Ville, 1939]). Let Ft denote a filtration and suppose that the sequence
of random variables At is a supermartingale with respect to Ft. Suppose that

P (At > 0 for all t > 0) = 1.

Then for any x > 0, the following inequality holds:

P
✓
sup
t>0

At � x

◆
 E [A0]

x
.

We will also require a standard Chernoff bound.
Lemma 16 (Chernoff Bound). Let X1, . . . , Xt be a sequence of binary random variables such that
E[Xi | X1, . . . , Xi�1] � ⌘. Then,

P
"

tX

i=1

Xi  t⌘/2

#
 exp(�t⌘/8).

Finally, we will clear up any confusion about which distribution is smooth: that of contexts xt or that
of samples (xt, yt).
Lemma 17. Suppose that x ⇠ p and (x, y) ⇠ ep where p, ep are distributions. Suppose that y 2 {±1}.
Then if p is �-smooth with respect to µ then ep is

�
�

2

�
-smooth with respect to µ ⌦ Unif({±1}).

Conversely, if ep is �-smooth with respect to µ⌦Unif({±1}) then p is �-smooth with respect to µ.

Proof. The converse follows immediately from Lemma 35, proved in Appendix E.1. To prove the
first statement, note that any distribution on {±1} is 1

2 -smooth with respect to Unif({±1}). Thus,
decomposing ep(x, y) = p(x) · ep(y|x) concludes the proof. ⌅

B.2 Geometric Measure Theory

The key definition is that of Hausdorff measure, which formally generalizes our intuitive notion of
volume and surface area.
Definition 18 (Hausdorff Measure [Federer, 2014]). Let X be a metric space. For any k 2 R+, we
define the k-dimensional Hausdorff measure of a set A ⇢ X to be

2�k!k lim
"#0

vol"
k
(A),

where

vol"
k
(A) := inf

( 1X

i=1

(diamUi)
k

����A ⇢
1[

i=1

Ui and diamUi < "

)

and diamUi is the diameter of the set Ui, i.e., the maximal distance between any two points contained
in Ui. We define the Hausdorff dimension dim(A) = inf{k > 0| volk(A) > 0}. As is common, when
we integrate with respect to the Hausdorff measure, we denote the measure in the integral as dHk

instead of d volk.

Note that when X = Rd then vold exactly coincides with the Lebesgue measure [Federer, 2014]. The
following is an immediate consequence of the definition:
Lemma 19. For a given set A ⇢ X, let N(A, ") denote the minimal number of balls of radius "
required to cover A. Then

volk(A)  !k"
kN(A, ").
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Proof. It is immediate from the definition that vol"
k

is monotone nonincreasing as " # 0. The result
follows by letting Ui be the set of balls of radius " covering A. ⌅

We also use the co-area formula:
Theorem 20 (Co-area Formula [Federer, 2014]). Let � : Rn ! Rm be a Lipschitz function with
n � m. Then, for A ⇢ Rm,

Z

��1(A)

q
det(D�(x)D�(x)T )dHm(x) =

Z

A

voln�m(��1(y))dHm(y).

This in turn implies the projection formula:
Corollary 21 ([Federer, 2014]). Let � : X ! Y denote a 1-Lipchitz map between m-dimensional
sets X,Y. Then volm(�(X))  volm(X).

Proof. By Theorem 20,

volm(�(X)) =

Z

�(X)
dHm(y)  sup

x

p
det(D�(x)D�(x)T )

infy vol0(��1(y))

Z

X

dHm(x)  volm(X),

where the last inequality holds because the Lipschitz assumption bounds the largest singular value of
D� and for any y 2 �(X), there is at least one point x 2 ��1(y). ⌅

B.3 Convex Geometry

We first define a polytope:
Definition 22. We say that a set A ⇢ Rd is a polytope if it is the intersection of a finite number of
halfspaces. If A is the intersection of K halfspaces, we say that it has K faces.

We now define an ellipsoid:
Definition 23. Let A 2 Rd⇥d be a positive definite matrix and let a 2 Rd be a point. We define an
ellipsoid to be

E(A, a) =
�
w 2 Rd|(w � a)TA�1(w � a)  1

 
.

Note that the volume of an ellipsoid is given by vold(E(A, a)) = !d

p
det(A).

We now define the John ellipsoid associated with a convex body:
Theorem 24 (John Ellipsoid [John, 1948, Ball et al., 1997]). Let A ⇢ Rd be a convex body, i.e.,
a convex set with nonempty interior. Then there is a unique ellispoid EA that has maximal volume
subject to the condition that the ellipsoid is contained in A. Furthermore, A ⇢ d · EA.

We require the following general fact about ellipsoids:
Lemma 25 (Corollary 15 from Rivin [2007]). Suppose E = E(A, a) is an ellipsoid and A has
eigenvalues given by q = (q1, . . . , qd). Then,

vold�1(@E)  ||q|| ·
p
d · vold(E). (B.1)

Finally, we have the following result about cutting planes through the center of the John ellipsoid:
Lemma 26 (Tarasov et al. [1988], Khachiyan [1990]). Let A ⇢ Rd be a polytope with John ellipsoid
EA with center a. Let A0 be the intersection of A and a halfspace going through a, i.e., there is some
w 2 Rd such that

A0 = A \
�
w 2 Rd| hw, xi � ha, xi

 
.

If EA0 is the John ellipsoid of A0, then

vold(EA0)  8

9
vold(EA).
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C Technical Workhorses

This appendix proves the technical workhorses, the abstract decay lemma (Lemma 3), and the main
geometric lemma, Lemma 4.

C.1 Proof of Lemma 3: The Abstract Decay Lemma

We prove a slightly more general form of the lemma, with a weaker assumption on the sequence of z:
Lemma 27. Suppose that a sequence (`t, zt) satisfies (R, c)-geometric decay with respect to some a
µ on Z, and define a sequence of stopping times tm where tm = t if t is the mth time that `s(zs) = 1.
Let mt denote the maximal m such that tm < t and thus tmt is last time before t that `s = 1. Suppose
that for all t, the distribution of zt conditional on tmt is �-smooth with respect to µ. Then for all
T 2 N, with probability at least 1� �,

TX

t=1

`t(zt)  4
log
�
2TR

��

�

log
�
1
c

� +
e� 1

1�
p
c
. (C.1)

Proof. Fix a sequence of positive integers hk for k 2 N, whose values we tune at the end of the proof.
Let ⌧0 = 0 and for all m > 0, let

⌧m = ⌧m�1 + inf

8
<

:k > 0

����
⌧m�1+khmX

t=⌧m�1+(k�1)hm

`t(zt) = 1

9
=

;

= ⌧m�1 + inf

⇢
k > 0

����9t 2 ⌧m�1 + [(k � 1)hm, khm � 1] s.t. `t(zt) = 1

�
.

Furthermore, let T (m) =
P

m

k=1(⌧k � ⌧k�1)hk and

tm = inf {t > T (m� 1)|`t(zt) = 1} . (C.2)

In words, we consider epochs of length hm, whose length can change every time we make a mistake
in an epoch. We have T (m) the time of the mth change of epoch and ⌧m the number of epochs of
length hm we have to go before we make a mistake; we also have tm is the time of the first mistake
after the mth change of epoch size. Let

Am =

T (m)�1X

s=tm+1

`s(zs). (C.3)

be the number of mistakes in a given epoch other than the first mistake. Let ⇡m = min
�
Rm
�
, 1
�
,

where we abbreviate Rm = Rtm . We first claim that with probability at least 1� �, for all m it holds
that:

Am  log

✓
1

�

◆
+ (e� 1)

mX

k=1

⇡k(hk � 1). (C.4)

To see this, let

B�

m
= exp

 
�Am �

�
e� � 1

� mX

k=1

⇡khk

!
.

We show that B�

m
is a supermartingale for all � > 0. To see this, we have

E
⇥
B�

m
|B�

m�1

⇤
= B�

m�1E

2

4exp

0

@�
T (m)�1X

s=tm+1

I[ŷs 6= ys]�
�
e� � 1

�
⇡m(hm � 1)

1

A
����B

�

m�1

3

5  B�

m�1,

where the inequality follows because the conditional probability of a mistake for tm+1  T (m)�1 
⇡m by the assumption of smoothness conditional on a sub-sigma algebra of that generated by tm�1

and realizability and T (m)� 1� (tm + 1)  hm � 1 by construction. Thus we may apply Ville’s
inequality from Lemma 15 and recover (C.4).
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Claim 1. With probability at least 1� �, it holds for all m that

⌧m � ⌧m�1 � max

✓
1, log

✓
�

⇡mhmT

◆◆
. (C.5)

Proof of Claim 1. For any ⌧m�1 + (k � 1)hm  t < ⌧m�1 + khm, smoothness implies
P (`t(zt) = 1|`s(zs) = 0 for all s < t)  hm⇡m. (C.6)

where we note that the event that `s(zs) = 0 for s < t is contained in the sigma-algebra generated by
tmt . A union bound then implies that

P

9t 2 ⌧m�1 + [(k � 1)hm, khm) s.t. `t(zt) = 1

����`s(zs) = 0, 8s 2 [⌧m�1, (k � 1)hm)

�
 hm⇡m.

Hence, letting Xm be a random variable distributed geometrically with parameter e⇡m =
min(hm⇡m, 1), ⌧m � ⌧m�1 stochastically dominates Xm. Thus, for any � < � log(1� ⇡m),

E
h
e�(⌧m�⌧m�1)

i
 E

⇥
e�Xm

⇤
=

f⇡me�

1� (1� f⇡m)e�
. (C.7)

We further note that

log
�
1� (1� e⇡m)e�1

�
� 1� 1

1� (1� e⇡m)e�1
= � (1� e⇡m)e�1

1� (1� e⇡m)e�1
(C.8)

� � e�1

1� e�1
. (C.9)

Thus, setting � = �1, we see that with probability at least �

T
,

⌧m � ⌧m�1 � 1 + log

✓
1

f⇡m

◆
� log

✓
T

�

◆
� e�1

1� e�1
� log

✓
�

h⇡mT

◆
. (C.10)

Because ⌧m � ⌧m�1 > 0 by construction, we may then take a union bound to conclude the proof of
the claim. ⌅

Now we note that

T � T (m) =
mX

k=1

(⌧k � ⌧k�1)hk (C.11)

and, further, that if mT is the maximal m such that the preceding display holds,
Reg

T
 mT +AmT . (C.12)

Thus, combining (C.4) and (C.5), along with the fact that ⇡k  ckR0/�, with probability at least
1� 2�, we have

T �
mTX

k=1

log

✓
��

ckR0hkT

◆
hk (C.13)

Reg
T
 mT + log

✓
1

�

◆
+ (e� 1)

mX

k=1

ck
R0

�
(hk � 1) (C.14)

Now, let hk = 1 for k  2 log
�
TR0
��

�
/ log

�
1
c

�
and let hk = c�

k
2 otherwise. Then we see that if

(C.13) and (C.14) hold, then

mT  2
log T

log
�
1
c

� +
2 log

�
TR0
��

�

log
�
1
c

�  �4
log
�
TR0
��

�

log c
, (C.15)

and
mX

k=1

ck
R0

�
(hk � 1) 

1X

j=0

c
j
2 =

1

1�
p
c
. (C.16)

Thus we see that with probability at least 1� �.

Reg
T
 4

log
�
2TR0
��

�

log
�
1
c

� +
e� 1

1�
p
c
. (C.17)

which proves the result. ⌅
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We note that Lemma 3 follows immediately because tmt < t almost surely and so the sigma algebra
generated by tmt is contained in that generated by the history up to t � 1 and so the smoothness
assumption of Lemma 3 implies that of Lemma 27.

C.2 Proof of Lemma 4: The Key Geometric Lemma

We begin by proving the following technical geometric lemma, which, for simplicity, considers
subsets of the sphere, rather than of the ball. This ultimately suffices due to positive homogeneity of
linear classifiers.
Lemma 28. Let F̂ ⇢ Sd�1 be a measurable subset of the (d� 1)-dimensional sphere imbedded in
Rd. Let D(F̂) denote the set of points in Sd�1 orthogonal to at least one point in F̂, i.e.,

D(F̂) =
n
x 2 Sd�1|for some w 2 F̂, hw, xi = 0

o
. (C.18)

Then, if volk is the k-dimensional Hausdorff measure on the sphere, we have

vold�1(D(F̂))  2 · 4d�1 vold�1(F̂) + 4d+1 vold�2(@F̂). (C.19)

Proof. For a given set A ⇢ Sd�1, denote by T (A, ") the “tube” of radius " around A, i.e., the set of
points in Sd�1 with distance at most " from a point in A.

Note that for any fixed point w 2 F̂, we have D(w) is just the (d� 2)-sphere formed by intersection
the linear space orthogonal to w with Sd�1. If B̂"(w) denotes the "-ball around w in Sd�1, then we
claim that D(B̂"(w)) ⇢ T (D(w), "). Indeed, suppose that v 2 B̂"(w) so that hw0, vi = 0 for some
w0 2 B̂"(w). Let ↵ be a member of the orthogonal group such that ↵w0 = v and h↵w,wi = 0. Then
hv + ↵(w � w0), wi = 0 and ||↵(w � w0)|| = ||w � w0||  ", proving the claim.

Let N(bF, ") denote the minimum size of an "-net of F and let P (bF, ") denote the maximum size of
an "-packing. By abuse of notation, we will also use N(bF, ") to denote the minimal "-net itself. The
fact that D( bB"(w)) ⇢ T (D(w), ") implies that

vold�1(D(F̂))  vold�1

0

@
[

w2N(F,")

T (D(w), ")

1

A  N(F̂, ") · vold�1(T (D(w), ")) (C.20)

By packing, covering duality, we have

N(bF, ")  P
⇣
bF, "

2

⌘
 2d�1 vold�1(T (bF, "))

vold�1( bB"(w))
(C.21)

Now, we may apply Gray [2003, Theorem 10.20], the generalization of Steiner’s formula to submani-
folds of a sphere, to get

vold�1(T (bF, "))  vold�1(bF) + vold�2(@bF)
�
2d�1"+ 2d�1"d

�
(C.22)

Putting this together, we have

vold�1(D(F̂))  2d�1 vold�1(T (D(w), "))

vold�1(B"(w)))

⇣
vold�1(F̂) + vold�2(@F̂)

�
2d�1"+ 2d�1"d

�⌘
.

(C.23)
Now we may apply Weyl’s tube formula [Weyl, 1939] (see Gray [2003], Lotz [2015] for a clear
exposition on the topic) to Sd�2 imbedded as the equator of Sd�1 to get that for any " < 1,

vold�1(T (D(w), "))

vold�1( bB"(w))


2!d�1

�
(1 + ")d�1 � (1� ")d�1

�

"d�1!d�1
= 2

�
(1 + ")d�1 � (1� ")d�1

�

"d�1
.

(C.24)
As " " 1, the above expression tends to 2d. Putting everything together, we have

vold�1(D(F̂))  2 · 4d�1 vold�1(F̂) + 2 · 22d+1 vold�2(@F̂). (C.25)

as desired. ⌅
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We now use the homogenity of the inner product to show that it suffices to consider the sphere:

Lemma 29. Let F ⇢ B
d

1 and let bFt denote its projection to Sd�1. Suppose that F is such that

F =
n
rbx|0  r  1 and bx 2 bF

o
.

Then,
vold(F)

vold(Bd

1)
=

vold�1(bF)
vold�1(Sd�1)

.

Proof. Let bFr = rbF. Then we see from Theorem 20 that vold�1(bFr) = rd�1 vold�1(bF). Thus,

vold(F) =

Z 1

0
vold�1(bFr)dr = vold�1(bF)

Z 1

0
rd�1dr.

In particular, this holds for F = B
d

1. Thus, we have

vold(F)

vold(Bd

1)
=

vold�1(bF)
R 1
0 rd�1dr

vold�1(
c
Bd

1)
R 1
0 rd�1dr

=
vold�1(bF)

vold�1(Sd�1)
.

as desired. ⌅

We now put everything together:

Proof of Lemma 4. Let bD(F) be the set of x 2 D such that ||x|| = 1 and let bF be defined similarly.
By the positive homogeneity of both D(F) and F, we have

µd(D) =
vold(D)

vold(B1)
=

vold�1( bD(F))

vold�1(@B1)
(C.26)

µd(F) =
vold(F)

vold(B1)
=

vold�1(bF)
vold�1(@B1)

(C.27)

where vold�1(·) denotes the (d� 1)-dimensional Hausdorff measure. Thus, it suffices to compare
vold�1( bD(F)) with vold�1(bF), which is the content of Lemma 28. The result follows. ⌅
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D Proofs From Section 4

In this appendix, we provide proofs of Theorem 5 and Proposition 6.

D.1 Proof of Theorem 5

In order to apply Lemma 3 to prove Theorem 5, we need to show that the loss functions satisfy
(R, c)-geometric decay. We will show this for R = 4d+1d2d and c = 8

9 using Lemma 4 and some
more convex geometry. We begin by proving the following characterization of the disagreement
region, which will in turn allow us to apply Lemma 4:
Lemma 30. Suppose that we are in the situation of Theorem 5. Then we have

Dt ⇢
�
x 2 B

d

1| hw, xi = 0 for some w 2 Ft

 
. (D.1)

Proof. Recall that the version space is defined as

Ft = {w 2 F| hw, ysxsi � 0 for all s < t} . (D.2)

If x 2 Dt, then there are w,w0 2 Ft such that sign(hw0, xi) 6= sign(hw00, xi). Consider the
continuous function h(�) = h�w00 + (1� �)w0, xi; by the intermediate value theorem, there is some
0 < �? < 1 and w = �?w00 + (1 � �?)w0 such that hw, xi = 0. By convexity of Ft, then w 2 Ft

and thus Dt is contained within the set of points orthogonal to at least one point in Ft. ⌅

With Lemma 30 in hand, we will be able to apply Lemma 4 and it will suffice to control µ(Ft) and
vold�1(Ft). The next result bounds these quantities in terms of their analogues in Et:

Lemma 31. Let F ⇢ Rd be a convex body with John ellipsoid E. Then we have

µ(F)  ddµ(E) vold�1(@F)  2ddµ(E). (D.3)

Proof. Note that it is a classical fact that F ⇢ d · E [John, 1948] and thus µ(F)  ddµ(E). We thus
only have to prove the second bound. To do this we first note that

vold�1(@F)  vold�1(@(d · E)). (D.4)

To see that this is the case, consider ⇡ : @(d · E)! @F be projection onto the convex F. Then ⇡ is
a contraction and thus shrinks Hausdorff measure as per Corollary 21. We now apply Lemma 25
and note that because our ellipsoids are contained in the ball, ||q||  2 ·

p
d, where q is the vector of

semi-axis lengths, i.e., the eigenvalues of the associated positive definite matrix. Thus we have

vold�1(@(d · E)) = dd�1 vold�1(@E)  dd�1 (2dµ(E)) , (D.5)

and the result follows. ⌅

We are now finally ready to apply the geometry that we have done so far to prove a slightly more
general form of Theorem 5, which we will require to apply some of our reductions below.
Proposition 32. Suppose we are in the situation of Theorem 5 with the added complication that
at any time t, the adversary can choose to censor round t from the learner, so the learner does not
observe yt and does not suffer loss at time t. We further allow xt to be drawn adversarially with
the condition that if xt is drawn adversarially, then the adversary always censors time t. Then the
conclusion of Theorem 5 holds.

Proof. By Lemma 3, it suffices to show that with our choice of wt, the sequence

`t = I [sign(hwt, xti) 6= yt and round t is not censored]

satisfies (R, c) geometric decay with respect to µ for come R, c. In particular, we need to find an
R � µ(D1) and a c < 1 such that if we make a mistake, then µ(Dt+1)  cµ(Dt). Note that if `t = 1
then we must have xt 2 Dt and yt is not censored. By Lemma 30 it suffices to control the size of the

24



set of points orthogonal to at least one w 2 Ft; by Lemma 4, it in turn suffices to control µ(Ft) and
vold�1(Ft). Applying Lemma 31 to the preceding logic, we have:

µ(Dt)  2 · 4d�1µ(Ft) +
4d+1

!d

vold�1(@Ft) (D.6)

 2 · 4d�1 · ddµ(Et) +
4d+1

!d

· 2 · ddµ(Et) (D.7)

 4d+1d2dµ(Et). (D.8)

As µ(Et)  1, we may choose R = 4d+1d2d and reduce to showing that every time we make a
mistake, µ(Et+1)  cµ(Et) for some c.

Now, suppose that we make a mistake at time t, i.e., hwt, ytxti < 0. Then, we have

Ft+1 = Ft \ {w 2 F| hw, xtyti > 0} ⇢ Ft \ {w 2 F| hw, xtyti � hwt, xtyti} . (D.9)

by monotonicity. Thus Ft+1 is a subset of the intersection of Ft and a halfspace through the center
of Et. Thus, by Lemma 26, vol(Et+1)  8

9 vol(Et). Thus, we may choose c = 8
9 and conclude the

proof. ⌅

We remark that Theorem 5 trivially follows from Proposition 32 by restricting the adversary to never
censor a time t.

D.2 Proof of Theorem 6

We construct separate adversaries which regret E [Reg
T
] � ⌦(d) and E [Reg

T
] � ⌦

�
log
�
T

�

��
.

Randomizing between the two with probability one-half gives the lower bound.

We first note that any algorithm must experience E [Reg
T
] � d+1

2 against some adversary; indeed, as
a generic set of d+1 points defines a hyperplane, a realizable adversary can choose yt as independent
Rademachers for each 1  d  d+ 1 and the learner will suffer expected regret d+1

2 .

We now construct an adversary in one dimension that will force E [Reg
T
] � ⌦

�
log
�
T

�

��
; by

projecting onto some fixed direction, the higher dimensional case reduces to this setting. Thus,
suppose that the xt are required to be sampled from a distribution that is �-smooth with respect to the
uniform measure on the unit interval. At each time t, let Dt be the interval between the rightmost xs

labelled �1 and the leftmost xs labelled 1, let Rt be its length and wt its midpoint. Fix 0 < " < 1 to
be tuned later and let

eDt =

⇢
x 2 Dt|

1� "
2

Rt  |x� wt| 
1

2
Rt

�
(D.10)

be the set of points in the disagreement region close to its boundary. We let the adversary select
the distribution that picks uniformly from eDt with probability min

⇣
µ( eDt)
�

, 1
⌘

and with remaining

probability selects 0. If |xt � wt| � Rt
2 , then yt is determined by realizability. Otherwise, let yt be

an independent Rademacher random variable.

Let ⇡m = min
�
"Rm
�

, 1
�

and tm be the mth time that xt 2 eDt, we see that tm+1�tm is geometrically
distributed with parameter ⇡m and thus

B�

m
= exp

 
�tm �m��

mX

k=1

log

✓
⇡k

1� (1� ⇡k)e�

◆!
(D.11)

is a supermartingale for � < minkm (� log(1� ⇡k)) = � log(1� ⇡m). Note that by construction,
Rm+1 � (1 � ")Rm and thus Rm � (1 � ")m. Setting � = ⇡m  � log(1 � ⇡m) and applying
Ville’s Inequality, Lemma 15, we get that with probability at least 1� �, for all m,

tm  m+
log
�
1
�

�

⇡m
+

1

⇡m

mX

k=1

log

✓
⇡k

1� (1� ⇡k)e⇡k

◆
. (D.12)
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We now note that
1

⇡m
log

✓
⇡k

1� (1� ⇡k)e⇡k

◆
 1

⇡m

✓
⇡m

1� (1� ⇡m)e⇡m
� 1

◆
(D.13)

=
e⇡m � 1

⇡m

1� ⇡m
1� (1� ⇡m)e⇡m

(D.14)

 (e� 1)
2

⇡2
m

(D.15)

using monotonicity, the fact that ⇡m  1 and the following computation:

1� (1� x)ex = 1� (1� x)
1X

k=0

xk

k!
=

1X

k=2

xk

✓
1

(k � 1)!
� 1

k!

◆
� x2

2
. (D.16)

Now, using the fact that ⇡m � "

�
(1� ")m, we have

tm  m+
�

"
(1� ")�m log

✓
1

�

◆
+ 2(e� 1)m

⇣ "
�

⌘�2
(1� ")�2m. (D.17)

Setting " = 1� e�1, we see that there is some constant c > 0 such that with probability at least 1� �,

tm  cmax

✓
�em log

✓
1

�

◆
,m�2e2m

◆
. (D.18)

In particular, there is a universal constant C such that if m = C log

✓
T

� log( 1
� )

◆
, then with probability

at least 1� � we have Reg
T
� m because the probability of a mistake, given that xt 2 eDt is 1

2 . The
result follows.

D.3 Lower bound against naive play.

In this section, we show that it is necessary to choose the half-spaces wt intelligently in order to attain
logarithmic-in-1/� regret.

Consider d = 1, so µ1 is the uniform measure on the interval [�1, 1]. We define F
thres := {x 7!

sign(x � c)} as the set of (monotone) threshold classifiers. Given a function class F, we say that
a learning strategy is consistent, if at each t 2 [T ], it selects an ft 2 Ft in the version space
Ft := {f 2 F : f(xs) = ys, 1  s  t� 1}. Define the left and right endpoints of the negative
and positive regions

x̃t := max

⇢
�1, max

1st

{xt : yt = �1}
�
, x̄t := min

⇢
1, min

1st

{xt : yt = 1}
�
.

For a given ⌘ > 0, we consider the strategy

ŷt =

⇢
sign (xt � x̃t�1 � ⌘) x̃t�1 + ⌘ < x̄t

sign
�
xt � 1

2 (x̃t�1 + x̄t�1)
�

otherwise.
(D.19)

This is consistent with F
thres, since the thresholds are always chosen strictly between x̃t�1 and x̄t�1.

However, the strategy is very naive, since it defaults to setting the threshold only slightly to the right
of x̃t�1. As a consequence, we show it suffers ⌦(1/�) regret when ⌘ is small.

Proposition 33. Fix ⌘ > 0. For T � 1 and � 2 (1/T, 1/4], there exists an F
thres-realizable, �

smooth adversary such that the strategy in Equation (D.19) suffers expected regret linear in 1/� for
⌘ small:

E[Reg
T
] � b 1

�
c ·
⇣
1� ⌘

2�

⌘
.

Proof. At each time 1  t  T0 := b1/�c, the adversary selects

xt = �1 + 2�(t� 1) + 2�at, at ⇠ Unif([0, 1]).
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For times t � T0, the adversary selects xt ⇠ Unif([�1, 1]). This adversary is clearly � smooth,
satisfies xt 2 �1 + 2�[t � 1, t] until T0, and then plays arbitrarily. Moreover, for �  1/T ,
xt 2 [�1, 1] for all t.Fixing a ground-truth classifier f?(x) = sign(x�1), we see ys = f?(xt) = �1
is realizable for all t.

Lastly, we analyze the regret of Equation (D.19); notice that under the above adversary, x̄t = 1, so
we are always in the first case yt = sign(xt �max1st�1 xs � ⌘). Then, for any t  T0,

P (ŷt = yt|Ft�1) = P
✓
xt  ⌘ + max

1st�1
xs|Ft�1

◆

 P [xt  ⌘ + 2(t� 1)� � 1 | Ft�1]

= Pat⇠Unif([0,1]) [�1 + 2�(t� 1) + 2�at  ⌘ + 2(t� 1)� � 1]

= Pat⇠Unif([0,1])

h
at 

⌘

2�

i
=

⌘

2�
.

Hence,

E[Reg
t
] =

TX

t=1

E[P[ŷt 6= yt | Ft�1]]

�
T0X

t=1

E[P[ŷt 6= yt | Ft�1]]

=
T0X

t=1

1� E[P[ŷt = yt | Ft�1]]

�
T0X

t=1

⇣
1� ⌘

2�

⌘
= T0

⇣
1� ⌘

2�

⌘
, T0 := b1/�c.

⌅
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E Proofs from Section 5

E.1 Proof of Corollary 8

The key technical result is contained in the following lemma, which says that we can lift a �-smooth
distribution on B

d

1 to one on B
d+1
1 and only lose a factor that is exponential in dimension. Because

our regret guarantees are only logarithmic in �, this will translate into a factor that is only linear in d
by reducing to the setting of Theorem 5. We have the following result:

Lemma 34. There exist a probability kernel K : Bd

1 ! 4(Bd+1
1 ) that satisfies the following two

properties: first,

Px̃⇠K(·|x)
�
for all w̃ = (w, b) 2 Rd ⇥ R, sign(hw, xi+ b) = sign(hw̃, x̃i)

�
= 1,

and second, if p is �-smooth with respect to µd, then K � p is �0-smooth with respect to µd+1, where
�0 = �/4d+2 and ex ⇠ K � p if x ⇠ p and ex ⇠ K(·|x).

Proof. For general b, define ew := (w, b), let �(x, z) = z(x,1)
4 , and let

ex = �(xt, zt) zt ⇠ Unif(1, 2). (E.1)

Note that whenever x 2 B
d

1, P[ext 2 B
d+1
1 | xt = x] = 1. Moreover,

sign(hw, xti+ b) = sign(h ew, (xt, 1)i) = sign(h ew, zt(xt, 1)i) = sign(h ew, exti).

Since our proposed algorithm is a function only of the version space Ft, and not the disagreement
region, it follows that we can assume without loss of generality that the learner interacts with the
distribution ept induced by drawing xt ⇠ pt, zt ⇠ Unif[1, 2], and ext = �(xt, zt).

To conclude, we must argue that if xt ⇠ pt is �-smooth with respect to the uniform measure µd on
B

d

1, then x̃t ⇠ p̃t is �0-smooth with respect to the uniform measure µd+1 on B
d+1
1 , for an appropriate

�0.

Let eµd+1 denote the density of ex = �(x, z), where z 2 Unif[1, 2] when x ⇠ µd. Then,

dept(ex)
dµd+1(ex)

=
dp̃t(x̃)

dµ̃d+1(x̃)
· µ̃d+1(x̃)

µd+1(x̃)
. (E.2)

To bound the first term, consider ��1, the inverse of � from B
d

1/4 ⇥ [ 14 , 1/2]! B
d

1/4 ⇥ [1, 2] given
by

��1 : x̃ = (x, z) 7! ((x/z), 4z)

Then, p̃t is the pushforward under ��1 of the measure pt ⌦Unif[ 14 ,
1
2 ], and µ̃d+1 the pushforward of

µd ⌦Unif[ 14 ,
1
2 ]. Thus, by Lemma 35, we have that ept is �-smooth with respect to eµd+1.

Now, we compute deµd+1(ex)
dµd+1(ex) . It suffices to show that for any set H ⇢ B

d

1/2 ⇥ [ 14 , 1/2], we have

eµd+1(H)  Cdµd+1(H), (E.3)

for some desirable constant C. Let J��1 denote the Jacobian of the map ��1 : (x, u) 7! (x/z, 4z).
Then, J��1 is a triangular matrix with determinant 4(1/z)d. Thus, on H ⇢ B

d

1/2 ⇥ [ 14 , 1/2], its
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Algorithm 3 Binary Classification with Affine Thresholds

1: Initialize eW1 = B
d+1
1 , ew1 = e1 2 eW1,

2: for t = 1, 2, . . . do

3: Recieve xt, draw zt ⇠ Unif(1, 2), and assign

ext  �(xt, zt) =
zt(xt, 1)

4

4:
5: predict

ŷt = sign(h ewt, exti), (% self.classify(xt))

6: Update eWt+1 = eWt \ { ew 2 B
d+1
1 | h ew, extyti � 0}

7: if ŷt 6= yt then (% self.errorUpdate(xt))
8: ewt+1  JohnEllpsoidCenter( eWt+1)
9: % returns center of John Ellpsoid of given convex body

determinant is at most | detJ�(x, z)| = 4d+1. Hence,

µ̃d+1(H) = P(x,z)⇠Bd
1⇥Unif[1,2][�(x, z) 2 H]

= P(x,z)⇠Bd
1⇥Unif[1,2][(x, z) 2 ��1(H)]

=

R
��1(H) dxdz

vold+1(Bd

1 ⇥Unif[1, 2])

=

R
H
| det(J��1)(x,z)|dxdz

vold+1(Bd

1 ⇥Unif[1, 2])

 4d+1 vol(H)

vold+1(Bd

1 ⇥Unif[1, 2])

= µd+1(H) · 4d+1 vold+1(B
d+1
1 )

vold+1(Bd

1 ⇥Unif[1, 2])

= µd+1(H) · 4
d+1 vold+1(B

d+1
1 )

vold(Bd

1)

= 4d+1

p
⇡

d+ 1
2

 4d+2.

Combining these computations with (E.2) yields

dp̃t(x̃)

dµd+1(x̃)
=

dp̃t(x̃)

dµ̃d+1(x̃)
· µ̃d+1(x̃)

µd+1(x̃)
 ��14d+2,

which concludes the proof. ⌅
Lemma 35. Suppose that f : X! Y is a measurable map and suppose that p, µ are measures on
X and p is �-smooth with respect to µ. Define the pushforward measure on Y by taking f?µ(B) =
µ(f�1(B)) for any measurable B ⇢ Y. Then f?p is �-smooth with respect to f?µ.

Proof. Let B ⇢ Y be measurable. Then

f?p(B) = p(f�1(B))  µ(f�1(B))

�
 f?µ(B)

�
. (E.4)

As this holds for any B ⇢ Y, the result follows. ⌅

We now describe Algorithm 3. At each time t, we draw zt ⇠ Unif(1, 2) independently and form
ext = �(xt, zt), where � is as in (E.1). We then run the classify and update subroutines of Algorithm 1
at each time step on the new data sequence (ext, yt). We are now ready to prove Corollary 8:
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Algorithm 4 Binary Classification with Nonlinear Features

1: Initialize eW1 = B
d+1
1 , ew1 = e1 2W1, � : Bd

1 ! B
d

1
2: for t = 1, 2, . . . do

3: Recieve xt, predict

ŷt = sign(h ewt,�(xt)i), (% self.classify(xt))

4: Update eWt+1 = eWt \ { ew 2 B
d+1
1 | h ew,�(xt)yti � 0}

5: if ŷt 6= yt then (% self.errorUpdate(xt))
6: ewt+1  JohnEllpsoidCenter( eWt+1)
7: % returns center of John Ellpsoid of given convex body

Proof of Corollary 8. We use Algorithm 3 to reduce the problem to the situation of Theorem 5.
Indeed, by Lemma 34, the data sequence (ext, yt) satisfies the property that ext is

�
4�d�2�

�
-smooth

with respect to µd+1 and is realizable by the function class Fd+1
lin . The result then follows immediately

from Theorem 5. ⌅

E.2 Proof of Theorem 9

We now prove begin generalizing beyond linear function classes with Theorem 9. The key technical
result shows that if � : Bd

1 ! B
d

1 is well-behaved, then �?µd is �-smooth with respect to µd, which
will then allow us to apply Theorem 5.
Lemma 36. Suppose that p is a measure on B

d

1 that is �-smooth with respect to µd and suppose that
� : Bd

1 ! B
d

1 is a function satisfying the following two properties:

• There is some c > 0 such that |det(D�(x))| > c for all x 2 B
d

1.

• There is some N 2 N such that for every x 2 B
d

1, it holds that
����1(x)

��  N , where
��1(x) =

�
y 2 B

d

1|�(y) = x
 

.

Then, �?p is
�

c

N
�
�
-smooth with respect to µd.

Proof. By Lemma 35, we have that �?p is �-smooth with respect to �?µd. Thus, as

d�?p

dµd

=
d�?p

d�?µd

· d�?µd

µd

it suffices to bound the latter factor. By the area formula [Federer, 2014], we have for any B ⇢ B
d

1
that

�?µd(B) =

Z

��1(B)
dµd(x)

=

Z

��1(B)

|det(D�(x))|
|det(D�(x))|dµd(x)

 1

c

Z

��1(B)
|det(D�(x))| dµd(x)

=
1

c

Z

B

����1(y)
�� dµd(y) 

N

c
µd(y)

Thus we see that for any B,
�?µd(B)

µd(B)
 N

c

and so the result follows. ⌅

As a corollary, we generalize Theorem 5 to adversaries that are now realizable to a class linear in
some new set of features:
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Corollary 37. Let � be a map as in Lemma 36 and suppose that we are in the smoothed online
learning setting with an adversary realizable with respecto to F � � = {x 7! f(�(x))|f 2 F}. If we
run Algorithm 4 on the data (�(xt), yt), then for all T , with probability at least 1� �, it holds that

Reg
T
 136d log(d) + 34 log

✓
N

c

◆
+ 34 log

✓
T

��

◆
+ 56

Proof. The statement follows immediately from applying Theorem 5 to the data sequence (�(xt), yt)
and using Lemma 36 to bound the smoothness. ⌅

Finally, we prove the simpler result stated in Section 5:

Proof of Theorem 9. By Corollary 37, it suffices to bound N and c in Lemma 36. Suppose that
�(x) = (�1(x1), . . . ,�d(xd)) as in the statement of the result. Then we see that D�(x) is diagonal
with �0

i
(xi) as the ith element of the diagonal and thus

det(D�(x)) =
dY

i=1

|�0
i
(xi)| � ↵d

where the final inequality follows from the assumption. Note that if �0
i
> 0 for all i, then � is strictly

increasing coordinate wise and thus we may take N = 1. The result follows. ⌅

E.3 Proof of Theorem 10

In this section, we show that our techniques extend to polynomial decision boundaries. Morally,
we proceed on similar lines as to the proof of Theorem 9 outlined in the previous section, but there
are a number of new technical subtleties that appear in this analysis that were not present before.
The most salient difference between the maps considered above and that which is required for a
polynomial decision boundary is that polynomial features require imbedding our problem into a
higher dimensional space; while Lemma 35 ensures that the pushforward of the law of each xt

is smooth with respect to the pushforward of µd, our analysis is very specific to the dominating
measure being uniform on the ball, which can never happen if we are pushing µd forward into a
higher dimensional space. In order to resolve this difficulty, we will present a reduction that allows
us to combine multiple points into one ‘meta-point,’ whose law will be smooth with respect to the
uniform measure on the higher dimensional ball. We will then be able to reduce to a similar setting
as considered in Theorem 5 and deduce a similar regret bound. We prove the following result:
Proposition 38. Suppose that � : Bd

1 ! B
m

1 satisfies the following properties:

• � is L-Lipschitz.

• � is polynomial in the sense that each of the coordinates of � is a polynomial in the
coordinates of x 2 B

d

1 with degree at most `.

• There is an ↵ > 0 such that the Jacobian D� satisfies:

det
�
Ex⇠µd

⇥
D�(x)D�(x)T

⇤�
� ↵2

Suppose further that the xt 2 B
d

1 are generated in a �-smooth manner and the yt are realizable with
respect to F

m

lin � �. Then there is a universal constant C such that for all T , if we set

p = Cm` log

✓
L`T

�

◆

and run Algorithm 5, then with probability at least 1� �,

Reg
T
 C

✓
m log(m) + log

✓
1

↵

◆
+ `2m2d log2

✓
d`TL

��

◆◆
.
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Proof. Consider the sequence of stopping times ⇢⌧ , where ⇢0 = 0 and, for ⌧ > 0,

⇢⌧ = inf

8
<

:t > ⇢⌧�1|max

0

@
tX

s=⇢⌧�1

I[yt = 1 and ŷt = �1],
tX

s=⇢⌧�1

I[yt = �1 and ŷt = 1]

1

A � p

9
=

; .

for some p to be determined. Furthermore, let
`t = I [t 2 (2p+ 1)N and t� 2p  ⇢⌧  t for some ⌧ ]

We begin by claiming that the following inequality holds:

Reg
T
 (2p+ 1)

 
1 +

TX

t=1

`t

!
 (2p+ 1)

0

B@1 +

b T
2p+1cX

t0=1

`(2p+1)t0

1

CA . (E.5)

Indeed, we note that the sum is equal to ⌧T , the maximal ⌧ such that ⇢⌧  T and the pigeonhole
principle tells us that we suffer at most 2p+ 1 mistakes in the interval ⇢⌧�1  t  ⇢⌧ . There are at
most 2p mistakes in the interval ⇢⌧T  t  T and so the first inequality holds. The second inequality
follows from noting that `t = 1 implies that t = (2p+ 1)t0 for some t0. For each 1  ⌧  ⌧T , we let

x⌧ =
1

p

X

⇢⌧�1<t⇢⌧
yt=y⌧ and ŷt 6=yt

�(xt)

Now, fix �, � > 0 to be set later and let
U1 = {for all t such that Pt(ŷt 6= yt) < �, it holds that ŷt = yt}
U2 = {for all t such that Pt(yt = y) < � for some y, it holds that yt 6= y} .

We claim that for some p, there is a sequence of x0
⌧
2 B

m

1 such that if
U = {ex⌧ = ex0

⌧
for all ⌧}

U = U1 \ U2 \ U3

then first, P(U) � 1� 2T� � T� � �

4 and second, the x0
⌧

are �0-smooth with respect to µm. This
claim, and the dependence of �0 on the relevant parameters is the subject of Proposition 39 below.
For now, we will take it as given. Now, recalling the disagreement region and version space notation
Dt,Ft, as from Appendix D, we note that if `t0 = 1 and ⌧ is maximal subject to ⇢⌧  (2p + 1)t0,
then we must have x⌧ 2 D⇢⌧�1 . To see this, note that wt = w⇢⌧�1 for ⇢⌧�1 < t  ⇢⌧ and thus
w⇢⌧�1 is such that

⌦
w⇢⌧�1 , ys�(xs)

↵
< 0 for each such s. By linearity, we have

⌦
w⇢⌧�1 , y⌧x⌧

↵
=

1

p

pX

i=1

⌦
w⇢⌧�1 , y⌧i�(x⌧i)

↵
< 0

Realizabilty implies that there is some w such that hw, ys�(xs)i � 0 for all s, and so linearity implies
that, for that w,

hw, y
⌧
x⌧ i =

1

p

pX

i=1

hw, y
⌧
x⌧ i � 0

Thus we see that x⌧ 2 D⇢⌧�1 . We now note that for any t0,

P⇢⌧�1(`(2p+1)t0 = 1) 
(2p+ 1)µm(D⇢⌧�1)

�0

where �0 is as in Proposition 39. Applying now Lemmas 4, 30 and 31 in the same way as in the proof
of Theorem 5, we place ourselves now into the situation of Lemma 27, the generalized version of the
master reduction Lemma 3. Thus, we have that for all T , with probability at least 1� �,

b T
2p+1cX

t0=1

`(2p+1)t0  4
log
⇣

2T (2p+1)4m+1
m

2m

(2p+1)�0�

⌘

log
�
9
8

� +
e� 1

1�
q

8
9

 C

✓
1 +m log(m) + log

✓
T

�

◆
+ log

✓
1

�0

◆◆
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Algorithm 5 Binary Classification with Polynomial Features

1: Initialize eW1 = B
m

1 , ew1 = e1 2W1, � : Bd

1 ! B
m

1 , M1,M�1 = {}, p 2 N
2: for t = 1, 2, . . . do

3: Recieve xt, predict

ŷt = sign(h ewt,�(xt)i), (% self.classify(xt))

4: Update eWt+1 = eWt \ { ew 2 B
d+1
1 | h ew,�(xt)yti � 0}

5: if ŷt 6= yt then (% self.errorUpdate(xt))
6: Update Myt  Myt [ {xt}
7: if max (|M1| , |M�1|) = p then

8: Update

9: ewt+1  JohnEllpsoidCenter( eWt+1)
10: % returns center of John Ellpsoid of given convex body
11: Reset M1,M�1  {}

If we set

p = Cm` log

✓
L`T

�

◆

then plugging in the penultimate display into (E.5), taking � = �

4T and � = �

8T , and plugging in the
bounds from Proposition 39 concludes the proof.

⌅

We note that Theorem 10 follows immediately from Proposition 38. The key difficulty in the proof of
Proposition 38, that we left until now, is the smoothness of the x⌧ . We state this fact, and provide a
quantitative bound on the smoothness parameter, in the next proposition:
Proposition 39. Let � : Bd

1 ! B
m

1 be an L-Lipschitz function whose coordinates are polynomials in
the coordinates of x 2 B

d

1, with degree at most `. Suppose � is such that

det
�
Ex⇠µd

⇥
D�(x)D�(x)T

⇤�
� ↵2.

Fix any p 2 N such that pd � m. Suppose that (x1, y1), . . . , (xT , yT ) is a data sequence satisfying
the following four properties:

• The distribution of xt conditional on the history is �-smooth with respect to µd.

• For y 2 {±1}, for any t, Pt(yt = y) � �.

• The yt are realizable with respect to F
m

lin � �.

• For any t, and any choice of ŷt by the learner, Pt (ŷt 6= yt) � �.

where Pt is the conditional probability of the history up to time t. Now, consider the set of stopping
times ⇢⌧ with ⇢0 = 0 and

⇢⌧ = inf

8
<

:t > ⇢⌧�1|max

0

@
tX

s=⇢⌧�1

I[yt = 1 and ŷt = �1],
tX

s=⇢⌧�1

I[yt = �1 and ŷt = 1]

1

A � p

9
=

;

Let y
⌧
= y⇢⌧ and let

x⌧ =
1

p

pX

k=1

� (x⌧k)

where ⌧1, . . . , ⌧p are the p times ⇢⌧�1 < t  ⇢⌧ satifying yt = y
⌧

and ŷt 6= yt. There is a universal
constant C such that if

p � Cm` log

✓
L`T

�

◆
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then there is a data sequence a sequence x0
t
2 B

m

1 satisfying the following three properties. First, the
sequence (x0

t
, y

t
) is realizable with respect to F

m

lin. Second, with probability at least 1� �, for all t,
xt = x0

t
. Third, the x0

t
is �0-smooth with respect to µm, where

�0 = c · ↵ · p�m
2

✓
���

T

◆2`mp

`�m(`+pd)d�pd (E.6)

wisth c a universal constant

Intuitively, we wait until we have misclassified a class p times and then form a ‘meta-point’ (ex⌧ , ey⌧ )
that will allow us to reduce to the setting of Theorem 5. The meta-point will be constructed by
averaging samples xt in order to ensure smoothness with respect to µm.

We will show that Proposition 39 follows from three results that we will prove below. First, we show
that if � is well-behaved, and the xt are �-smooth with respect to µd, then the ext are �0-smooth with
respect to µm.
Proposition 40. Suppose that � : Bd

1 ! B
m

1 is a smooth map between Euclidean balls of dimensions
d and m with Jacobian D�. Consider the function f : (Rd)p ! Rm defined as

 (x1, . . . , xp) =
1

p

pX

i=1

�(xi) (E.7)

Suppose that that the following three conditions are satisfied:

• There is some V ⇢ (Bd

1)
⇥p and c > 0 such that for µ⌦p

d
-almost every x 2 V ,

det(D (x)D (x)T ) � ↵2.

• For some ` � 2
sup
x2Bd

1

max
|⌫|=`+1
1im

|@⌫�i(x)|  2�(1+`) (E.8)

In particular, this holds if �(x) is a polynomial of degree at most `.

• Finally, suppose that the joint distribution of (x1, . . . , xp) is �p-smooth with respect to µ⌦p

d
.

If pd � m, then the law of  (x1, . . . , xp), conditioned on (x1, . . . , xp) 2 V is �0-smooth with
respect to µm, the uniform measure on B

m

1 , where

�0 =
↵�p · P ((x1, . . . , xp) 2 V )

`2m+mpddpd
(E.9)

Second, we show that if � is a polynomial, then it is well-behaved in the sense of Proposition 40 with
high probability, by proving the more general small-ball type estimate below:
Proposition 41. There exists a univesal constant C such that the following holds. Let  : Rd !
SD+ be any function whose image is contained in the set of PSD matrices and whose entries are
polynomials of degree at most `, and let x1, . . . , xp be a sequence of random-variables such that,
for each t, xt | x1, . . . , xt�1 is �-smooth with respect to a common log-concave measure µ, and
Px⇠µ[�max( (x))  B] = 1. Define

⇤ := Ex⇠µ[ (x)]

Suppose that p � 16 log(1/�) + D

4 log(24B) + 1
4 (log det(⇤) +D` log(C`)). Then,

P
"
det

 
1

p

pX

i=1

 (xi)

!

⇣ �

C`

⌘`D
det(⇤)

#
 �.

Finally, we will show that if the probabilities corresponding to each label are well-controlled, then
the laws of x⌧k are smooth with respect to µd:
Proposition 42. Let (x⌧1 , y⌧1), . . . , (x⌧p , y⌧p) be the sequence of points defined in Proposition 39,
arising from a sequence of (xt, yt) with the xt being �-smooth conditional on the history and for
each t, and y 2 {±1} it holds that P(yt = y) � � and that P(ŷt 6= yt) � �. Then, for each i, it
holds that the law of x⌧i conditional on the history up to time ⌧i�1 is (���/T )-smooth with respect
to µd. In particular, the law of (x⌧1 , . . . , x⌧p), conditional on the sigma-algebra generated by ⇢⌧�1,
is (���/T )p-smooth with respect to µ⌦p

d
.
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Proof. Note that a peeling argument and induction show that the second statement follows immedi-
ately from the first. For any ⌧, i, denote probability conditioned on the history up to time ⌧i�1 by
P⌧i�1 . Let B ⇢ B

d

1 be measurable. Then we compute that P⌧i�1 (x⌧i 2 B) can be given by:
X

1tT

P⌧i�1(t = ⌧i)P⌧i�1 (xt 2 B|⌧i = t)


X

1tT

P⌧i�1(⌧i > t� 1)P⌧i�1(xt 2 B|yt 6= ŷt and yt = ey⌧ )


X

1tT

P⌧i�1(⌧i > t� 1)
P⌧i�1(xt 2 B|yt = ey⌧ )

�


X

1tT

P⌧i�1(⌧i > t� 1)
P⌧i�1 (xt2B|yt=1, ey⌧=1)P⌧i�1 (ey⌧=1)+P⌧i�1 (xt2B|yt=�1, ey⌧=�1)P⌧i�1 (ey⌧=1)

�

=
X

1tT

P⌧i�1(⌧i > t� 1)
P⌧i�1(xt 2 B)

��

 Tµd(B)

���

Thus, the result follows. ⌅

Propositions 40 and 41 will be shown below but for now we will take them as given. We can now
prove the key proposition:

Proof of Proposition 39. Let

E =

(
det

 
1

p

pX

i=1

(D�D�T )(x⌧i)

!
>

✓
���

T

◆(2p+1)`m

(C`)�`m↵2 for all ⌧

)

and note that by the fact that ⌧  T

p � Cm log

✓
`L↵T

�

◆
,

applying a union bound to Proposition 41 and using Proposition 42 to ensure that the hypothesis holds,
shows that P(U) � 1��. On U we will let x0

⌧
= x⌧ and on U

c, we will draw x0
⌧

from µm, conditioned
on (x0

⌧
, y
⌧
) being realizable with respect to F

m

lin. Note that we have realizability by construction on
U

c. On U, we have that x0
⌧
= x⌧ and note that convexity implies that if y⌧1 = · · · = y⌧p , then any

realizable adversary must classify x⌧ as y
⌧
. Indeed, if w 2 F

m

lin is in the version space, and y
⌧
= 1,

then *
w,

1

p

pX

i=1

�(x⌧i)

+
=

1

p

pX

i=1

hw,�(x⌧i)i > 0

and similarly if y
⌧
= �1. Thus, realizability holds. As we have already seen that

{there exists ⌧ such that ex0
⌧
6= x⌧} ⇢ E

c

and P(Uc)  �, it suffices to show smoothness of x0
⌧
. On U

c, the construction implies that x0
⌧

are
smooth, so we now restrict to the event E. We first compute the Jacobian of  :

D (x1, . . . , xp) =
1

p
[D�(x1) D�(x2) · · · D�(xp)]

and thus

D D T =
1

p2

pX

i=1

D (xi)D (xi)
T

which in turn implies:

det(D D T ) = p�m det

 
1

p

pX

i=1

D (xi)D (xi)
T

!
.
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Thus, under U, we have that

det((D D T )(x⌧1 , . . . , x⌧p)) � p�m

✓
���

T

◆(2p+1)`m

(C`)�`m↵2 = e↵2

We may now use Proposition 42 to get that (x⌧1 , . . . , x⌧p) has a law that is (���/T )p smooth with
respect to µ⌦p

d
and apply Proposition 40 to get that, conditional on E, the law of  (x⌧1 , . . . , x⌧p) is

�0-smooth with respect to µm, where

�0 =
↵0
⇣
���

2T

⌘p

`2m+mpddpd

where we let V = U and note that P((x⌧1 , . . . , x⌧p) 2 U) � 1
2 . The result follows. ⌅

E.3.1 Proof of Propossition 40

We will proceed by using the co-area formula [Federer, 2014]. For a given x 2 (Bd

1 )
n, let

J( )(x) =
q

det(D (x)D (x)T ) (E.10)

and let Hj denote the j-dimensional Hausdorff measure. Then the co-area formula tells us that for
any B ⇢ V , we haveZ

 �1(B)
J( )(x)dHdp(x) =

Z

B

H
dp�m( �1(y))dHm(y) (E.11)

We make use of the following lemma:
Lemma 43. Suppose that � is as in Proposition 40. Then for all y,

H
dp�m( �1(y))  `2m+mpd

Before proving the lemma, we require a preliminary result from Yomdin [1984]; we reprove it here
in order to keep track of the constant.
Lemma 44. Fix k 2 N and suppose that Y ⇢ B

k

1 is a hypersurface and let Bk

r
⇢ B

k

1 . Suppose that
any line passing through B

d

r
intersects Y in at most ` points. Then,

volk�1(Y )  `2⇡
k
2

⇤
�
k

2

�r�k. (E.12)

Proof. Because Bk

r
is convex, we may consider the map ⇡ : Y ! @Br of projection to the boundary.

Recentering so that Bk

r
has center at the origin, we have ⇡(y) = r y

||y|| . By the co-area formula
introduced as (E.11), we haveZ

Y

J(⇡)(y)dHk�1(y) =

Z

@Bk
r

H
0(⇡�1(z))dHk�1(z) (E.13)

Now, note that J(⇡(y)) � rk and thus we have

volk�1(Y ) =

Z

Y

dHk�1(y) 

R
@Bk

r
H

0(⇡�1(z))dHk�1(z)

rk
 `2⇡

k
2

⇤
�
k

2

�
rk

(E.14)

where the last inequality comes from combining the fact that by assumption vol0( �1(z))  ` and
the expression for the surface area of Sd�1. ⌅

Proof of Lemma 43. We apply Yomdin [1984, Theorem 3 (iii)] iteratively on the coordinates of  .
In particular, we apply Lemma 44 in order to keep track of the explicit constant in Yomdin [1984,
Lemma 7] and apply Yomdin [1984, Lemma 4] to show that we may choose r = (20 · `2)�1 in
Lemma 44. Thus we have for any y 2 B

m

1 ,

volpd�m(f�1(y)) 
m�1Y

j=0

0

@ `2⇡
pd�j

2

⇤
⇣

pd�j

2

⌘ (20 · `2)pd�j

1

A (E.15)

 `2m+mpd (E.16)
using the fact that pd � m. The result follows. ⌅
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Returning now to the proof of Proposition 40, we see for a given set B ⇢ V , that

P ( (x1, . . . , xp) 2 B|(x1, . . . , xp) 2 V )  ��p voldp( �1(B))

!p

d
P(V )

(E.17)

 ��p`2m+mpd

!p

d
P(V )

volm(B) (E.18)

 ��p`2m+mpd!m

!d
p
P(V )

µm(B) (E.19)

where the first inequality follows from the definition of smoothness, the second inequality follows
by (E.11) and the above claims, and the last inequality follows by the definition of µm. The result
follows by using the fact that

!m =
⇡

m
2

⇤
�
m

2 + 1
� (E.20)

and bounding
�
m

4

�m
4  ⇤

�
m

2 + 1
�

�
m

2

�m
2 .

E.3.2 Proof of Proposition 41

We first introduce a small-ball estimate for sums of PSD random variables, in the spirit of Simchowitz
et al. [2018].
Lemma 45. Let X1, X2, . . . , Xp be i.i.d. of positive semi-definite, RD⇥D-valued random variables,
and suppose there exists B, ⌘ > 0 and ⇤ 2 SD++ for which, for all t 2 [p],

P[�max(Xt) > B] = 0

PXt [v
>Xv � v>⇤v | X1, . . . , Xt�1] � ⌘, 8v 2 RD.

Then, if p � 8⌘�1 log(1/�) + D

4 log( 12B
⌘

) + 1
4 log det(⇤

�1),

P
"
1

p

pX

i=1

Xi 6⌫
⌘

4
· ⇤
#
 �.

In particular,

P
"
det

 
1

p

pX

i=1

Xi

!

⇣⌘
4

⌘D
det(⇤)

#
 �.

Proof. The proof follows along the lines of Simchowitz et al. [2018], sharpened slightly for the
less general setting. Let ⌃ =

P
p

i=1 Xi. By a Chernoff bound (Lemma 16), for any v 2 S
D�1,

P[v>⌃v  ⌘pv>⇤v/2] = P[
P

p

i=1 v
>Xiv  ⌘pv>⇤v/2]  P[

P
p

i=1 I{v>Xiv  ⌘v>⇤v} 
⌘p/2]  exp(�⌘p/8), where we use that Xi ⌫ 0. Hence, for any finite subset T ⇢ S

D�1,

P[v>⌃v � v>⇤v · ⌘p
2
, 8v 2 T] � 1� exp(�⌘p/8 + log |T|).

To conclude, we show that there exists a finite set T of size at most exp(D2 log( 12B
⌘

) + 1
2 log det(⇤))

such that, if v>⌃v � v>⇤v · ⌘T/2 for all T, then ⌃ ⌫ ⌘T

4 .

We take T to be an " =
p
⌘/4B-net of the set S⇤ := {v 2 R

d : v>⇤v = 1}. Then, if v>⌃v �
v>⇤v · ⌘p/2 = ⌘p/2 for all ṽ 2 S⇤, it holds

ṽ>⌃ṽ � 1

2
v>⌃v � (ṽ � v)>⌃(ṽ � v) � 1

2
⌘T �Bpkṽ � vk2 � ⌘p

4
,

which means that ⌃ ⌫ ⌘p

4 ⇤. Define the ellipsoid E⇤ := {v 2 R
d : v>⇤v  1} � S⇤. Note that

since �max(⇤)  B, E⇤ � {v : kvk2  1/B} � 2"BD

1 , since " =
p
⌘/4B  1

2
p
B

.

|T| 
vol( "2B

D

1 + S⇤)

vol( "2B
D

1 )


vol( "2B
D

1 + E⇤)

vol( "2B
D

1 )


vol( 54E⇤)
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�
"

2B
D

1

� =

✓
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◆D

det(⇤�1/2).
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Hence, we can take

log |T|  D

2
log(

64

25"2
) +

1

2
log det(⇤)  D

2
log(

12B

⌘
) +

1

2
log det(⇤).

⌅
Lemma 46. Let  : Rd ! SD+ be any function whose image are PSD matrices whose entries are
polynomials of degree at most `. Let ⇢ be any distribution which is �-smooth with respect to a
log-concave measure µ. Then, there exist a universal constant C such that, for any v 2 R

D \ 0,

Px⇠⇢[v
> (x)v  �`(C`)�`v> Ex⇠µ (x)v] 

1

2
.

Proof. Consider the polynomial function fv(x) = v> (x)v. This is a polynomial of degree ` in x,
and nonnegative. By Carbery and Wright [2001, Theorem 8], with q = `, we have

Ex⇠µ[fv(x)]
1/` · ↵�1/` · Px⇠µ[fv(x)  ↵]  C 0`,

where C 0 is a universal constant. Reparametrizing ↵ ↵ · Ex⇠µ[fv(x)], we have

Px⇠µ[fv(x)  ↵Ex⇠µ[fv(x)]]  C 0`↵1/`.

To conclude, take ↵ = (2C 0`/�)�`, we get

Px⇠µ[fv(x)  (2C 0`/�)�` Ex⇠µ[fv(x)]] 
�

2

Hence,

Px⇠⇢[fv(x)  (2C 0`/�)�` Ex⇠µ[fv(x)]] 
1

2

Taking C = 2C 0 and substituting fv(x) = v> (x)v concludes. ⌅

Proof of Proposition 41. Let ⇢t denote the conditional distribution of xt | x1, . . . , xt�1. By assump-
tion, ⇢t is �-smooth with respect to the log-concave measure µ, so

P[v> (xt)v  (C`)�`v> Ex⇠µ (x)v | x1, . . . , xt�1] 
1

2

Hence, we can apply Lemma 45 with ⌘  1/2, B  B, and ⇤  (C`)�`⇤. Using that
det((C`)�`⇤) = (C`)�D` det(⇤) concludes. ⌅
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F Proofs from Section 6

In this section, we prove the extensions of our results to the multipiece setting.

F.1 Proof of Theorem 11

Algorithm Description. Algorithm 6 gives our algorithm for K-class classification. We maintain�
K

2

�
instances of the binary classification algorithm, Algorithm 1. That is, each Abin maintains a

w(i,j)
t

at each time t, and

A
(i,j)
bin .classify(x) = sign(hw(i,j)

t
, wi).

To gain intuition, recall that we assume the ground-truth classifier to

f?(x) = argmax
i2[K]

hx,wi

?
i, (F.1)

where the argmax is taken lexicographically. Hence, f?(x) admits the following equivalent represen-
tation:

f?(x) = min
i2[K]

{i : hx,wi

?
i � max

j>i

hx,wj

?
i}

= min
i2[K]

{i : sign(hx,wi

?
� wj

?
i �, 8i > i} (F.2)

Hence, f?(x) can be thought of running a lexicographic tournament, picking out the first index i
which ‘wins’ over all lesser indices k. This is what motivates the selection of ŷ in Appendix F.1 of
Algorithm 6.

Proof of Theorem 11. We reduce to the generalized, “censored” variation of our linear classification
setting, depicted in Proposition 32. For pairs i < j, define

w(i,j)
? := wi

?
� wj

?
y(i,j)
t

:= sign(hw(i,j)
? , xti), ŷ(i,j)

t
:= A

(i,j)
bin .classify(xt)

Note that

y(i,j)
t

= 1 8j > i whenever i = yt. (F.3)

For simplicty, lets assume that w?,(i,j) 6= 0 for i < j. We address the edgecase where this term
may be zero at the end. Further, let it < jt denote the indices select in Equation (F.4). Then,
since the algorithm always selects such a pair (it, jt) whenever a mistake is made (and defining, say
(it, jt) = (0, 0) to indicate no mistake),

TX

t=1

I{ŷt 6= y} =
X

i<j

TX

t=1

I{(it, jt) = (i, j)}.

The following claim reduces to binary-losses.

Claim 2. For the indices it < jt selected in Equation (F.4), and any 1  i < j  K,

I{(it, jt) = (i, j)} = I{y(i,j)
t
6= ŷ(i,j)

t
}I{(it, jt) = (i, j)}.

Moreover, when (it, jt) = (i, j), y(i,j)
t

= sign(ŷt � yt), and thus can be determined by learner.

Proof. Indeed, at a round where I{(it, jt) = (i, j)}, we have ŷt 6= yt. We have two cases

• When yt < ŷt, then Equation (F.4) selects i = yt and j as some index for which ŷ(i,j)
t

= �1,
such an index must exist by the choice of ŷt in Appendix F.1 (otherwise, either ŷt < yt,
or else yt would be correctly selected as the true class). On the other hand, y(i,j)

t
:=

sign(hw(i,j)
? , xti) = 1 = sign(ŷt � yt) by Equation (F.3). Thus, y(i,j)

t
6= ŷ(i,j)

t
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• If ŷt < yt, then from Appendix F.1 it must be the case that ŷ(i,j)
t

= 1 for i = ŷt and
j = yt being the indices selected in Equation (F.4). But by the reverse of Equation (F.3),
y(i,j)
t

= �1 = sign(ŷt � yt). Hence, ŷ(i,j)
t
6= y(i,j)

t
.

⌅

Hence, we may write
TX

t=1

I{ŷt 6= y} =
X

i<j

TX

t=1

`(i,j)
t

, `(i,j)
t

:= I{y(i,j)
t
6= ŷ(i,j)

t
}I{(it, jt) = (i, j)}.

We now claim that the losses `(i,j)
t

:= I{y(i,j)
t
6= ŷ(i,j)

t
}I{(it, jt) = (i, j)} precisely corresponding

to the censored binary setting of Proposition 32.Indeed, consider a setting where x1, x2, . . . are
selected by the �-smooth adversary, and the label is ŷ(i,j)

t
defined above. A(i,j)

bin does not always see
ŷ(i,j)
t

, but whenever `(i,j)
t

= 1, Claim 2 shows that the learner does indeed observe the true value
ŷ(i,j)
t

. Thus, by Proposition 32, it holds for any fixed i < j that with probability 1� �,
TX

t=1

`(i,j)
t
 136d log(d) + 34 log

✓
T

��

◆
+ 56

Union bounding over all
�
K

2

�
 K2 pairs i < j and summing, we conclude that with probability

1� �,

Reg
T
=
X

i>j

TX

t=1

`(i,j)
t
 136K2d log(d) + 34K2 log

✓
TK2

��

◆
+ 56K2.

 136K2d log(d) + 90K2 log

✓
TK2

��

◆

Modification for non-unique ground truth classifiers. Here, we can modify A
(i,j)
bin with the

following rule: predict ŷ(i,j)
t

= 1 until there is an time t for which (it, jt) = (i, j), and then
reinitalize A

(i,j)
bin to have w(i,j)

t
= e1, as in Algorithm 1.

Consider an i < j with wi

?
= wj

?. We claim (it, jt) 6= (i, j) for any t. Now, suppose there is a time t
that (it, jt) = (i, j), let ⌧ denote the first time t for which this is true. Then, ŷ(i,j)

t
= 1. But in addition

yt 6= j for any t because we assume the argmax in Equation (F.1) is broken lexicograophically.
Thus, from Equation (F.4), it must be that y⌧ = i, and that j is such that ŷ(i,j)

t
= �1; this gives a

contradiction.

Now consider i < j with wi

?
6= wj

?. Then our modification of ŷ(i,j)
t

only increases
P

T

t=1 `
(i,j)
t

by at
most 1. This adds at most

�
K

2

�
< K2 to the total regret (modifying the constant of 90 to 91).

⌅

F.2 Formal Guarantees for Piecewise Regression

We will prove a slightly more general version of Theorem 12 and then derive the result in Section 6
as a corollary. First, we will define what kinds of regression classes our result will apply to:
Definition 47. Let G : X ! R be a function class. We say that G is `-determined with respect to
some measure µ on X if the following two conditions hold:

• The values on ` points in general position uniquely determine the function, i.e.,

P (there exist g 6= g0 2 G such that g(xi) = g0(xi) for 1  i  ` and xi ⇠ µ) = 0 (F.5)

• Two functions intersect only on measure zero sets, i.e., for all g, g0 2 G,

µ ({x 2 X : g(x) = g0(x)}) = 0 (F.6)
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Algorithm 6 K-class linear classification

1: Initialize Binary classifiers A(i,j)
bin , i < j

2: for t = 1, 2, . . . do

3: recieve xt

4: for i < j do ŷ(i,j)
t

= A
(i,j)
bin .classify(xt)

5: predict ŷt = min{i 2 [K] : ŷ(i,j)
t

= 1, i < j  K} (% self.classify(xt))
6: if ŷt 6= yt then (% self.errorUpdate(xt))
7: Define

(i, j) =

(
i = yt, j 2 {j > i : ŷ(i,j)

t
= �1} if yt < ŷj

i = ŷt, j = yt if ŷj < yt
(F.4)

8: Update A
(i,j)
bin .errorUpdate(xt)

Note that linear classes in Rd are trivially d-determined with respect to the Lebesgue measure,
and thus with respect to any measure absolutely continuous with respect to the Lebesgue measure.
Polynomial classes are also `-determined with respect to the Lebesgue measure for some ` depending
on d and the degree of the polynomials. We observe that our definition of an `-determined function
class is an offline analogue to the notion of eluder dimension from Russo and Van Roy [2013].

Now, for a given function class G : X! R, we denote by

GF =

(
x 7! gf (x) =

KX

i=1

gi(x)I[f(x) = i]

����gi 2 G and f 2 F

)
(F.7)

where F is the set of K-class linear classifiers from Theorem 11. We will continue to suppose that
the xt are drawn from distributions that are �-smooth with respect to µ and that the labels yt are
realizable with respect to GF.
Assumption 1 (Oblivious, realizable smoothed sequential setting). We suppose smoothed online
learning setting and the adversary is realizable with respect to GF and oblivious in the sense that
before the learning process begins, the adversary chooses g? = (g?1 , . . . , g

?

K
) 2 G

K and f? 2 F and
lets yt = (g?)f?(xt) for all t. We assume further that g? has unique entries: g?

i
6= g?

j
for i  j.

Lastly, we assume we have access to the following ERM oracle.
Definition 48 (ERM Oracle). Given U = {(x1, y1), . . . , (xn, ym)}, where (xi, yi) 2 B

d

1 ⇥ Y,
ERM(U,G,K) returns a n  K, and g1, . . . , gn and partition C1, . . . , Cn of U such that, for all
(x, y) 2 Ci, gi(x) = y. By post-processing, we may also assume that gi are distinct4

Proposition 49 (General `-Determined Regression). Suppose that we are in the semi-oblivious,
smoothed online learning setting, where the adversary begins by choosing g?

f?GF from (F.7), and, at
each time t, draws xt from a distribution that is �-smooth with respect to µ and sets yt = g?

f?(xt).
Suppose further that G is `-determined, in the sence of Definition 47. Then, Algorithm 7 satisfies for
all T , with probability at least 1� �,

Reg
T
 136K2d log(d) + 91K2 log

✓
TK2

��

◆
+K2(`+ 1) (F.8)

Moreover, the per-time step computational complexity of Algorithm 7 is polynomial in d and the
complexity of the ERM oracle Definition 48, applied to a data set U of size no more that |U| 
K(`+ 1).

F.3 Algorithm for Piecewise Regression

Algorithm 7 proceeeds at follows. We let Nt denote the number of clusters about which we are
certain, Ut denote the set of points which cannot be assigned to a cluster. We maintain a supervised

4Note that the ERM Oracle need not cluster with respect to the classifiers (even thought it can certainly be
implemented this way). Hence, one can can merge cluster to ensure gi is distinct.
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Algorithm 7 General Piecewise Regression
1: Init: K-class supervised linear classifier A (instance of Algorithm 8)

ERM-oracle ERM (see )
2: for each time t = 1, 2, . . . do

3: recieve xt

4: predict ŷt = ĝk(xt) for k = k̂t, where k̂t := A.classify(xt, Nt) % ŷt = 0 if Nt = 0
5: observe yt.
6: if 9k?

t
2 [Nt] with ĝk(xt) = yt then

% update classification
7: if k̂t 6= k?

t
then, A.errorUpdate(xt, Nt)

8: maintain Nt+1  Nt, Ut+1  Ut

9: else% update clustering
10: (C1:n, g1:n) ERM(Ũt,G,K) , Ũt = Ut [ {(xt, yt)}

% Initialize Ñ = Nt

11: for each i : |Ci| � `+ 1 do

12: Ñ = Ñ + 1, ĝ
Ñ
 gi,

13: Nt+1  Ñ , Ut+1  Ũt \
S

i:|Ci|�`+1{(x, y) 2 Ũt : gi(x) = y}

Algorithm 8 K-class linear classification with supervision

1: Initialize Binary classifiers A(i,j)
bin , i < j

2: for t = 1, 2, . . . do

% guarantee yt  Mt

3: Recieve (xt,Mt) and predict (% self.classify(xt,Mt))

ŷt = min{i 2 [Mt] : A
(i,j)
bin .classify(xt) = 1, i < j Mt},

4: Observe yt
5: if ŷt 6= yt then (% self.errorUpdate(xt,Mt))
6: Define

(i, j) =

(
i = yt, j 2 {k > i : hw(i,k)

1 , xti < 0} if yt < ŷj
i = ŷt, j = yt if ŷj < yt

(F.9)

7: Update A
(i,j)
bin .errorUpdate(xt)

K-class linear classifier, A, described in Algorithm 8. It is similar in spirit to Algorithm 6, except
it takes in “side information” Mt on which it only predicts from the first Mt classes. Lastly, we
maintain a growing sequence of regressors ĝ1, ĝ2, · · · 2 G such that ĝi does not change once assigned,
and ĝi is defined for all i  Nt.

At each time t, we call k̂t = A.classify(xt, Nt) to guess the cluster of xt, only among cluster i  Nt

about which we are certain. Then, we predict ŷt = ĝ
k̂t
(xt). The idea is that, for k = k̂t  Nt,

we are sure that ĝk is the true predictor if xt is in cluster k.We then observe yt. If yt was correctly
predicted by one of that ĝi for which i  Nt, but not the k̂t we guessed, then we update our classifier
A. Otherwise, we call the ERM oracle to determine if we can find new cluster(s) to add, appending
to our sequence of predictors ĝ’s, and growing our number of certain clusters Nt. Note that we
never maintain an explicit clustering of our points, but only cluster retroactively based on whether
ĝi(xt) = yt for some i, as a means to recover the classification label.
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F.4 Proof of Proposition 49

F.4.1 Guarantee for ERM procedure

Lemma 50. Let I ⇢ [T ] be any subset of time. Then with probability one, it holds that for
any partition C1, . . . , Cn of (xs, ys)s2[I] and any g1, . . . , gn distinct functions such that, for all
(x, y) 2 Cn, g̃i(x) = y, then for any index i for which |Ci| � `+ 1,

• f?(x) = f?(x0) for all (x, y), (x0, y0) 2 Ci

• g̃i = g?
f?(x), representative x 2 Ci

Proof. Let I1, . . . , Im denote the times in each cluster C1, . . . , Cn. Without loss of generality,
suppose I1 is a cluster for which |I1| � `+ 1 (we may handle all simultaneously via a finite union
bound.)

Item 1. Suppose in fact that there exists s, s0 2 I1 with f?(xs) 6= f?(xs0). We first argue then
that g1 6= g?

k
for all k 2 [K]. Indeed, by smoothness and the second condition of Definition 47, it

holds that with probability 1, g?
k
(xs̃) 6= g?

k0(xs̃) for all 1  s̃  T and k 6= k0. Set i1 = f?(xs) and
i2 = f?(xs0). Thus, if gi = g?

k
, the fact gi(xs) = g?

f?(xs) and gi(xs0) = g?
f?(xs0) would require

both g?
k
(xs) = g?

f?(xs) = g?
i1
(xs) and g?

k
(xs0) = g?

f?(xs0) = g?
i2
(xs0). Thus, on the aforementioned

probability one event, we would have both k = i1 and k = i2, which contradicts the supposition
i1 6= i2.

Next, let S ⇢ [T ] denote a set of indices. Denote smax = max{s 2 S}, and define the events

AS(g
0) := {9g 2 G \ {g0} : g0(xsmax) = ysmax , 8s 2 S, g(xs) = ys}}.

By the above observation that gi 6= g?
k

for any k, we see that if there exists s, s0 2 I1 with
f?(s) 6= f?(s0) with |I1| � `+ 1, then one of the events AS(g?k) must occur for some |S| � `+ 1
and k 2 [K]. Since there are only finitely many such events, it suffices to show that for any fixed S
and k, P[AS(g?k)] = 0.

Hence, fix S and k. For a given S with max element smax, let F�1 denote history generated by
(x1, y1), . . . , (xsmax�1, ysmax�1). Define the A�1 := {9g 2 G \ {g?

k
} : s 2 S, g(xs) = ys, s 2

S \ {smax}}. Then, A�1 is F�1 measurable and A�1 contains AS(g0). Hence,

P[AS(g
?

k
)] = E[P[AS(g

?

k
) | F�1]]

= E[I{A�1} · P[AS(g
?

k
) | F�1]].

By the first condition of Definition 47, A�1 coincides with the event A0
�1 := {9 a unique g 2

G \ {g?
k
} : s 2 S, g(xs) = ys, s 2 S \ {smax}} almost surely. Hence,

P[AS(g
?

k
)] = E[I{A0

�1} · P[AS(g
?

k
) | FS�1]].

Lastly, when A
0
�1 holds, let ĝ 6= g?

k
denote the unique g 6= g?

k
consistent with examples s 2

S \ {smax}. Since ĝ is determined by FS�1, we have

P[AS(g
?

k
) | FS�1]  P[ĝ(xsmax) 6= g?

k
(smax)] = 0,

where we use that ĝ is fixed, that ĝ 6= g0, and the second condition of Definition 47. The bound
follows.

Item 2. For any fixed set of indices Ĩ with |Ĩ| � `+ 1 � `, the first condition of `-determination
(Definition 47) ensures then that P[9g1 6= g?

j
: g1(xs) = g?

j
(xs), 8x 2 Ĩ] = 0. The bound follows by

union boundig over all Ĩ ⇢ [T ] and j 2 [K].

⌅

F.4.2 Distinctness of clustering

Claim 3 (Ut is Uncertain Set). Fix a time t. Then, for any (x, y) 2 Ut and any i  Nt, ĝi(x) 6= y.
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Proof. This is true vacuously at time t = 1, when Ut = ;. Suppose it holds at time t, we prove it for
time t + 1. If xt is such that there exists an n  Nt with ĝi(xt) = yt, then Ut+1 does not change
from Ut. Otherwise, if ĝn(xt) 6= yt for all n  Nt,

Ut+1  Ũt \
[

i:|Ci|�`+1

{(x, y) 2 Ũt : gi(x) = y}, Ũt := Ut [ {(xt, yt)} (F.10)

where gi and Ci are the clustering from the ERM oracle. By the inductive hypothesis and fact that
ĝn(xt) 6= yt for all n  Nt, it follows that ĝn(x) 6= y for all (x, y) 2 Ut [ {(xt, yt)} = Ũt ◆ Ut+1.
Now, if there is some n : Nt < n  Nt for which ĝn(x) = y, then that ĝn was added during the
ERM step at round t: i.e. ĝn = gi for some i such that |Ci| � `+ 1. But then (x, y) is removed form
Ut+1 by Equation (F.10). ⌅

Claim 4. Fix a time t. Then, for any i, j  Nt, ĝi 6= ĝj .

Proof. This is trivially true at time t = 1. Suppose this is true at time t, we establish the claim for
time t+ 1. If xt is such that there exists an i  Nt with ĝi(xt) = yt, then Nt+1 = Nt and so the set
of ĝi’s under consideration remains unchanged.

On the other hand, suppose there is no i  Nt with ĝi(xt) = yt. Then, all possible new ĝj’s for
Nt < j  Nt+1 are correct on some subset of points of Ut [ (xt, yt). But by the previous claim
(Claim 3) and the assumption that, for i  Nt with ĝi(xt) = yt, no element of Ut [ (xt, yt) is
correctly predicted by any ĝi for i  Nt. Thus, none of the new ĝj’s can equal an ĝi for i  Nt.
Moreover, by the definition the ERM oracle, Definition 48, all newly added ĝj’s are distinct. ⌅

F.4.3 Key summary of Algorithm 7

We now summarize the results with the following lemma.
Lemma 51. With probability 1, there exists a permutation ⇡ such that

• For each time t and i 2 [Nt], ĝi = g?
⇡(i)

• For each time t and i 2 [Nt], ĝi(x) = y if and only if f?(x) = ⇡(i)

• If (x, y) 2 Ut, then ⇡�1(f?(x)) > Nt.

• Whenever ŷt 6= yt, either ⇡�1(f?(x)) > Nt, or k̂t := A.classify(xt, Nt) has ⇡(k̂t) 6=
f?(xt).

Proof. For n = NT , let ĝ1, . . . , ĝn 2 G denote the functions constructed by our algorithm. Since
each new ĝi is added from a cluster with at least `+1 points, applying Lemma 50 (with a union bound
over index sets I ensures that ĝi = g?

j
) for some j 2 [K]. This gives us a mapping ⇡ : [n]! [K]. ⇡

must be injective, since g?
j

are distinct by assumption, and ĝi are unique by Claim 4 (in particular,
n  K). Thus, ⇡ can be extednded to a permutation from [K]! [K]. By construction, the first item
is satisfied.

The second item is a consequence of uniquenessof that the previous point, uniqueness of ĝi’s, and the
second point of Definition 47 , since we only need to union bound over finitely many times t 2 [T ]
and pairs g?

i
, g?

j
’s. The third item follows similarly, by invoking Claim 3.

For the last point, suppose ⇡�1(f?(xt))  Nt. Then, by the previous point, (xt, yt) /2 Ut. Thus, the
algorithm classifies ŷt = ĝ

k̂t
(xt) where k̂t 2 [Nt]. But by the first point of the lemma, ĝ

k̂t
= g?

⇡(k̂t)
.

So if ⇡(k̂t) = f?(xt), then we woudl have ĝ
k̂t
(xt) = g?

f?(xt)
(xt) = yt, a contradiction. ⌅

F.4.4 Proof of Proposition 12

Let ⇡ denote the permutation ensured by Lemma 51. We may assume without loss of generality that
⇡ is the identity permutation (by permuting g?). Let kt = f?(xt). Recalling also that k̂t  Nt, the
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fourth point of Lemma 51 ensures.

I{ŷt  yt}  I{kt > Nt}+
TX

t=1

I{k̂t 6= kt, kt  Nt}

First, we bound the contribution of I{kt > Nt}:

Claim 5.
P

T

t=1 I{kt = k, k > Nt}  K(`+ 1). Thus,
P

T

t=1 I{kt > Nt}  K2(`+ 1).

Proof. Suppose k > Nt, and let St,k := {s  t : f?(xs) = k}, and define ⌧k = max{t 2 [T ] :
kt > Nt, kt = k}. Then

TX

t=1

I{kt > Nt, kt = k} = |S⌧k,k|.

We claim that |S⌧k,k|  K(` + 1). Indeed, suppose |S⌧k,k| > K(` + 1). Then, for some t < ⌧k,
|St,k| = K(`+ 1) and kt = k and k > Nt. By Lemma 51, g?

kt
(xt) 6= ĝi(xt) for any i  Nt. Hence,

our algorithm executes Appendix F.3. By the pidgeon-hole principle, there must be at least one cluster
Ci : |Ci| � `+ 1 which contains at least one s 2 St,k. Hence, the update rule ensures that i  Nt+1

for which ĝi(xs) = ys. But again, by Lemma 51 (and taking the permutation to be the identity),
we have f?(xs) = i. In other words, i = ks = k, i.e. ks  Nt+1  N⌧k . This constradictions the
definition of ⌧k. ⌅

Summarizing our argument thus far, the following holds with probability one

TX

t=1

I{ŷt  yt}  K2(`+ 1) +
TX

t=1

I{k̂t 6= kt, kt  Nt} (F.11)

Finally, by mirroring the proof of Theorem 11, we upper bound

TX

t=1

I{k̂t 6= kt, kt  Nt}  136K2d log(d) + 91K2 log

✓
TK2

��

◆
. (F.12)

The key difference between the above bound and that of Theorem 11 is that we only see when
get feedback kt  Nt, but at the same time, we only suffer a loss when kt  Nt. Hence, the
bound follows from a near-identical argument, calling the general censored version of our binary
classification Proposition 32, modified to add the event {kt  Nt} to the censoring. Combining
Equations (F.11) and (F.12) concludes.

⌅
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G Non-realizable mistake bounds for the Perceptron.

For simplicity, we consider regret with respect to a fixed b? 2 R, w? 2 B
d

1, and define

y?
t
= y?(xt), y?(x) := sign(b? + hxt, w

?i).

Again, we normalize xt that maxt kxtk  1. We further assume that

kb?k2 + kw?k2 = 1, kw?k � 1/2.

We show in Lemma 58 at the end of this section that this is without loss of generality. We define

ŵ? = w?/kw?k.

Unlike with our cutting-plane methods, we allow the adversary to deviate from a realizable clasiffier.
Specifically, for each time t, the adversary selects xt ⇠ pt, and may instead choose to play some
yt 6= y?

t
. We define,

Nerr := 1 + |{t : yt 6= y?
t
}|,

and obtain non-vacuous mistake bounds provided Nerr is sublinear in T .

Informally, our total mistake bound for the Perceptron is polynomial in the smoothness along the
direction of the optimal classifier ŵ?. This is formalized in the following definition:
Definition 52 (Directional �dir-smoothness). We say that the adversary

• is (�dir, ŵ?) directionally-smooth if hxt, ŵ?i has density at most 1/�dir with respect to the
Lebesgue measure on the real line.

• is, more generally, (�dir,↵, ŵ?) directional-Tsybakov-smooth if sup
a2R Pxt⇠pt [hxt, ŵ?i 2

[a, a+ ⌘]]  ⌘1�↵/�dir.

Note that a (�dir,↵, ŵ?)-Tsybakov adversary is is (�dir, ŵ?)-smooth.

Note that Definition 52 is a slightly weaker condition than the one consider in Theorem 7 in the body,
as it only requires directional smoothness along ŵ? (not uniformly). As noted in the body, directional
smoothness can differ substantially from general smoothness. We provide two examples.
Example 1 (Additive d-Ball Noise). Suppore that at each time t, the adversary selects xt = x̂t + et,
where kx̂tk  1/2, and et ⇠ rBd

1 for r  1/2 (and, for simplicity, d > 1). Then, the adversary
is �-smooth for � = vold(rBd

1)/ vold(B
d

1) = rd. However, if u ⇠ µd is drawn uniformly from the
sphere, then the density p1(·) of its first coordinate u1 with respect to the Lebesgue measure is

p1(u1) =
vold�1(

p
1� u2

1B
d�1
1 )

vold(Bd

1)
 vold�1(B

d�1
1 )

vold(Bd

1)
=

(d� 1)

2
p
⇡

.

Hence, by rotational symmetry, we see that for any w?, the adversary is (�dir, ŵ?) directionally-
smooth for �dir = 2

p
⇡r

(d�1) . Notice that the directional smoothness is now only polynomial in d, rather
than exponential in it.
Example 2 (Additive Noise in a Random-Direction). Again consider the additive noise setting where
at each time t, the adversary selects xt = x̂t+et, where kx̂tk  1/2. However, suppose et is selected
as follows: before the game, the adversary selects a direction ê ⇠ µd, and plays et = atê, where at
is drawn uniformly on the interval [�r/2, r/2]. Note that this adversary need not be �-smooth with
respect to µd for any � > 0, because after the adversary commits to ê, her smoothing is restricted to
a line segment. Still, with constant probability, hê, ŵ?i � c/d for some constant c > 0. Hence, with
constant probability, the adversary is (�dir, ŵ?)-directionally smooth for �dir = cr/d.

We now state our guarantee for the classical Perceptron algorithm Rosenblatt [1958]
Theorem 53. Suppose that the adversary is (�dir,↵, ŵ?)-Tsybakov, and define ⇢ := 2

3�↵ 2 [ 23 , 1).
Then, with probability 1� �, the Perceptron algorithm (Algorithm 9) satisfies

TX

t=1

I{ŷt 6= yt} . (T/�dir)
⇢ · (Nerr)

1�⇢ + log(dlog T e/�).
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Algorithm 9 Online Perceptron
1: Initialize w1 = e1 2 B

d

1
2: for t = 1, 2, . . . do

3: Recieve xt and predict

ŷt = sign(hwt, xti), (% self.classify(xt))

4: if ŷt 6= yt then (% self.errorUpdate(xt))
5: wt+1  wt + ytxt

6:

Remark 4. Recall Example 1, which shows that directional smoothness �dir may scale as ⇠ r/d
when the (standard) smoothness scales as � = rd. Applying Theorem 53 with ↵ = 0 and thus,
⇢ = 2/3, our (T/�dir)2/3 ⇠ (Td/r)2/3-mistake bound interpolates between the log(T/�) ⇠
d log(1/r) + log(T ) bounds attained in this paper, and the poly(1/�) ⇠ (1/r)⌦(d)-regret enjoyed
by previous computationally efficient algorithms. In addition, we achieve a robustness to sublinearly-
in-T mistakes, which prior approaches do not.

In fact, a more general result holds, in terms of a direction-wise anti-concentration of the adversaries
distributions.
Theorem 54 (Guarantee under Tsyabkov Smoothness). Define the anti-concentration function

pµ(⌘; v) := sup
t

sup
a2R

Pxt⇠pt [hxt, vi 2 [a, a+ ⌘] | Ft�1].

For any fixed � 2 (0, R), with least 1��, the number of mistakes made by the Perceptron (Algorithm 9)
is at most

TX

t=1

I{ŷt 6= yt} . Nerr

�2
+ Tpµ(R�, ŵ

?) + log(1/�),

G.1 Proofs for the Perceptron

We begin by stating the standard guarantee for the Perceptron algorithm due to Freund and Schapire
[1999]. To emphasizes its generality, we use x̄i to denote its inputs, which we allow to have
non-normalized radius R.
Theorem 55. Let (x̄i, yi)Ti=1 2 Rn ⇥ R be a sequence of labeled exampled with kx̄ik  R. Fix
w̄ 2 S

n�1, � > 0, and define the margin errors

di := di(w̄, �) = max{0, � � yi · hx̄i, w̄i}

Then, the number of mistakes make by the online Perceptron is at most

(R+D)2

�2
, D =

vuut
TX

i=1

d2
i

The following corollary explicitly bounds the term D2,
Corollary 56. Fix a w̄ 2 S

n�1, � 2 (0, R). Let

N1 := |{i : sign(yi · hx̄i, w̄i) < 0}|
N2 := |{0  yi · hx̄i, w̄i 2 [0, �]}|

Then, the number of mistakes make by the online Perceptron is at most

(8N1 + 4)
R2

�2
+ 2N2

Proof of Corollary 56. Let S1 := {i : sign(yi · hx̄i, w̄i) 6= 1} and S2 := {i : sign(yi · hx̄i, w̄i) =
1, yi · hx̄i, w̄i  �}. Note that N1 := |S1| and N2 := |S2|. Moreover, S1 \ S2 = ;, and if
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i /2 (S1 [ S2), di := max{0, � � yi · hx̄i, w̄i} = 0. Hence,

D2 =
X

i2S1

d2
i
+
X

j2S2

d2
j

 N1 max
i2S1

d2
i
+N2d

2
j
.

For i 2 S1, d2
i
 (� + |hx̄i, w̄i|)2  (� + R)2  4R2, where we used �  R. For j 2 S2,

dj 2 [0, �], so d2
j
 �2. Thus, D2  4R2N1 +N2. Thus,

(R+D)2

�2
 2R2 + 2D2

�2
 (8N1 + 4)

R2

�2
+ 2N2.

⌅

We now return to our specific setting, re-adopting xi (not x̄i) for features. We bound the probability
that a given point xi does not lie within a margin �.
Lemma 57. Consider the pµ function from eq. (% self.classify(xt)). Then, for any interval I0 ⇢ R,

P[y?
t
· (b? + hxt, w

?i)i 2 I0 | Ft�1]  2pµ(2|I0|, ŵ?),
In particular, P[y?

t
· (b? + hxt, w?i)  �} | Ft�1]  2pµ(2�, ŵ?).

Proof of Lemma 57. Note that the ground truth label yi may depend on xi. We circumvent this with
a union bound. Let I0 be any inverval.

P[y?
t
· (b? + hxt, w

?i) 2 I0] 
X

y2{�1,+1}

P[hxt, w
?i 2 yI0]


X

y2{�1,+1}

P[b? + hxt, ŵ
?i 2 (b? + yI0)/kw?k]

 2pµ(kw?k�1|I0|, ŵ?)  2pµ(2|I0|, ŵ?),
where we recall our assumption kw?k � 1/2. ⌅

We may now prove Proof of Theorem 54.

Proof of Theorem 54. We apply Corollary 56 with w̄ = (w?, b?) and x̄i = (xi, 1). Note then that
kx̄ik2 = 1 + kxik2  2, so we may take R =

p
2. Define

N1 := |{i : sign(yi · hx̄i, kw̄ki) < 0}|
N2 := |{i : sign(yi · hx̄i, w̄i) = 1, yi · hx̄i, w̄i 2 [0, �]}|

it suffices to bound N1 and N2. Sice y?
t
· hx̄t, w̄i) � 0, we see that each

N2 =
TX

t=1

Zt, Zt := I{yt · (b? + hxt, w
?i) 2 [0, �]}.

Set t� := 2pµ(2�, ŵ?) + 8 log(1/�)/m. By Lemma 57,
E[Zt | Ft�1]  2pµ(2�, ŵ

?)  t�
Hence, by Lemma 16,

P[N2 � 2Tt� ] = P[
TX

t=1

Zt � 2Tt� ]  exp(�Tt�/8)  �.

Thus, from Corollary 56, applyied to the vectors (xt, 1), the number of mistakes is at most

(8N1 + 4)
R2

�2
+ 2N2 

16(N1 + 1)

�2
+ 2N2 (R2 = 2)

 16(N1 + 1)

�2
+ 4Tt� (w.p. 1� �)

= (8N1 + 4)
R2

�2
+ 8Tpµ(2�, ŵ

?) + 32 log(1/�).

⌅
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Proof of Theorem 53. Fix any N 2 N. Under the Tsybakov smoothness of the adversary,

N

�2
N

+mpµ(2�N , ŵ?)  N

�2
N

+ ��1
dirT (2�N )1�↵ . N

�2
N

+ ��1
dirT (�N )1�↵ (G.1)

Balance both terms by setting �3�↵
N

= (N)/(��1
dirT ). Then, for ⇢ = 2

3�↵ , this choice of � ensures

N

�2
N

= (N)1�⇢)(T/�dir)
⇢

Since �3�↵
N

balanced the terms in Equation (G.1), we have

N

�2
N

+ Tpµ(2�N , ŵ?) . (N)1�⇢(T/�dir)
⇢ (G.2)

For k 2 N, let Ek := {2k�1  Nerr  2k}. Then, P[
Sdlog Te

k=1 ] = 1. Moreover, by applying
Theorem 54 with �2k for each k, we have with probability 1 � �, if Ek holds, then applying
Equation (G.2) with N = 2k,

#mistakes . Nerr
1

�22k
+ Tpµ(2�(2k), ŵ

?) + log(1/�)

. (T/�dir)
⇢((2k))1�⇢ · (?)

2�2↵
3�↵ + log(1/�)

. (T/�dir)
⇢(Nerr)

1�⇢ + log(1/�),

where in the last line, we use Nerr � 2k/2 on Ek. Taking a union bound over k 2 [dlog T e], with
probability 1� �,

#mistakes . (T/�dir)
⇢(Nerr)

1�⇢ + log(dlog T e/�).

⌅

G.2 Lower bound on 1/kw?k

Lemma 58. There exists (w̃, b̃) for which P[y?(xt) = sign(b̃+ hxt, w̃i), 8t � 1] = 1, and which
satisfy |b̃|+ |w̃|2 = 1, and kw̃k � 1/2.

Proof. We consider two cases.

• Case 1: y?(x) is not constant on B
d

1. Let (b̃, w̃) be equal to ↵(b?, w?), where ↵ is chosen
so that b̃2 + kw̃k2 = 1. By positive homegenity of sign, y?(x) = sign(b̃+ hxt, w̃i). Since
y?(x) is not constant on B

d

1, we must have kw̃k � |b̃|. This means kw̃k2 � b̃2 = 1� kw̃k2.
Hence, kw̃k2 � 1/2.

• Case 2: Since y?(x) ⌘ y? is constant on B
1
d
. For some " small, set b̃ =

p
1/2 + "y?,

and set w̃ = e1

q
(1� b̃2) =

p
(1/2� ")e1, where e1 is the first cannonical basis vector.

By construction, b̃2 + kw̃k2 = 1, and y?(b̃ + hx, w̃i) �
p

1/2 + " �
p
1/2 + " > 0. To

conclude, we take " = 1/4 (though any " arbitrarily close to zero would work as well).

⌅
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