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Abstract

Due to the drastic gap in complexity between sequential and batch statistical learn-
ing, recent work has studied a smoothed sequential learning setting, where Nature
is constrained to select contexts with density bounded by 1/� with respect to a
known measure µ. Unfortunately, for some function classes, there is an exponen-
tial gap between the statistically optimal regret and that which can be achieved
efficiently. In this paper, we give a computationally efficient algorithm that is
the first to enjoy the statistically optimal log(T/�) regret for realizable K-wise
linear classification. We extend our results to settings where the true classifier is
linear in an over-parameterized polynomial featurization of the contexts, as well
as to a realizable piecewise-regression setting assuming access to an appropriate
ERM oracle. Somewhat surprisingly, standard disagreement-based analyses are
insufficient to achieve regret logarithmic in 1/�. Instead, we develop a novel
characterization of the geometry of the disagreement region induced by generalized
linear classifiers. Along the way, we develop numerous technical tools of indepen-
dent interest, including a general anti-concentration bound for the determinant of
certain matrix averages.

1 Introduction

In batch statistical learning, a learner faces a set of independent examples drawn from a given
distribution, and is tasked with generalizing to novel examples drawn from that same distribution.
In sequential or online learning, however, Nature may adversarially select examples to thwart the
learner’s progress and success is defined only in comparison to the best a priori predictor. Due to the
wide range of application and minimal set of assumptions, online learning has received considerable
recent attention. For concreteness, consider binary classification, where a sequence of T examples
takes the form (xt, yt) 2 R

d ⇥ {�1,+1}. Even in the realizable setting, where there exists a true
f? in a pre-specified class of functions F for which f?(xt) = yt for all t 2 {1, 2, . . . , T}, the gap
between batch and statistical learning and sequential learning can be drastic: when d = 1, the class
of linear thresholds f✓(x) = sign(x � ✓) has VC dimension one and is thus learnable in the PAC
framework [Wainwright, 2019]. A sequential adversary, however, can select xt so as to force the
linear to misclassify ⌦(T ) points [Littlestone, 1988].

To circumvent the pessimism of the sequential setting, recent works [Rakhlin et al., 2011, Haghtalab
et al., 2020, 2021, Block et al., 2022, Haghtalab et al., 2022] have studied the smoothed sequential
learning paradigm, where the adversary is constrained to choose xt at random from any probability
distribution pt with density at most 1/� with respect to a known measure µ. The most current
of these results point to a striking statistical computational gap: whereas there exist algorithms
which attain regret that scales with

p
T log(/�), computationally efficient algorithms can only
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hope for poly(T/�) regret in general, even against a realizable adversary [Haghtalab et al., 2022,
Theorem 5.2]. In many d-dimensional settings, natural choices of µ yield � = exp(�⌦(d)), and
thus the exponential separation in � translates into an exponential separation in dimension. This
gap motivates the following question: can the statistical-computational gap be eliminated in more
structured settings? In this work, we answer the question affirmatively for a variety of natural function
classes. A better understanding of what function classes allow computationally efficient, statistically
optimal regret-minimizing algorithms remains a promising direction for future research.

Contributions. We show that for certain classes of realizable smoothed online classification
problems, there exists a computationally efficient algorithm which enjoys the statistically optimal
log(T/�) regret scaling, when the base measure µ is uniform on the unit-ball. Specifically, we
provide computationally efficient algoirthms for achieving the statistically optimal regret bound for
the following function classes:

• For affine thresholds,
• For affine thresholds in nonlinear features,
• For K-class affine classification,
• For piecewise affine regression

We also provide lower bounds that demonstrate the statistical optimality of our algorithms. Further-
more, we apply our results to noiseless contextual bandits and get a fast algorithm that achieves
optimal regret dependence on the horizon, up to logarithmic factors. Finally, we present a comple-
mentary approach based on the perceptron algorithm which is robust to adversarial corruptions of the
labels yt, and enjoys a polynomial regret in a “directional smoothness” parameter which interpolates
between the log(1/�)-guarantees attained above in the realizable setting, and the poly(1/�) bounds
from prior work. We emphasize that, though we adopt the smoothed online learning setting of
Rakhlin et al. [2011], Haghtalab et al. [2021], Block et al. [2022], we use entirely different techniques
involving Ville’s inequality [Ville, 1939], geometric measure theory, and convex geometry. Moreover,
in none of these works was the question of adapting to realizability explored; thus, we provide the
first regret bounds that are logarithmic in both the horizon and the smoothness parameter. We now
discuss some related work:

Online Learning. Extensions of classical learning theory to the online setting have proliferated
due to the scope of application. Several works [Littlestone, 1988, Blumer et al., 1989, Ben-David
et al., 2009, Rakhlin et al., 2015a] have explored the gap in statistical rates between classical and
online learning settings, with Littlestone [1988], Blumer et al. [1989] showing that the class of one
dimensional thresholds, which is easy to learn in the batch setting, is not learnable with adversarial
data. Other works, such as Rakhlin et al. [2015a], Rakhlin and Sridharan [2013], Rakhlin et al.
[2015b], Block et al. [2021], Rakhlin and Sridharan [2014] have provided sequential analogues of
classical notions of complexity that characterize minimax regret, as well as providing computational
separation between classical and online learning [Hazan and Koren, 2016]. Due to the statistical and
computational hardness results presented in the aforementioned work, there has been great interest in
finding realistic, robust assumptions, such as smoothness, that allow for efficient learning.

Smoothed Online Learning. Smoothed analysis was first proposed in Spielman and Teng [2004]
as a way to explain the success of the simplex algorithm of Klee and Minty [1972] by combining the
polynomial time bounds of an average-case analysis with the verisimilitude of a worst-case analysis.
Since then, smoothed analysis has been applied to explain the empirical success of many algorithms
[Roughgarden, 2021]. In the learning setting, Rakhlin et al. [2011] proposed smoothed adversaries
and proved regret bounds for linear thresholds in Rd; their proof, however, was nonconstructive and
did not achieve logarithmic regret in the realizable setting. The use of smoothed adversaries was
essential due to the hardness results discussed above. In a series of works Haghtalab et al. [2020,
2021] generalized Rakhlin et al. [2011] and showed the regret depending on the VC dimension was
possible in the smoothed online learning setting, albeit with computationally inefficient algorithms.

Recently, Block et al. [2022], Haghtalab et al. [2022] generalized Haghtalab et al. [2021] to allow
for continuous labels and, more importantly, provided oracle-efficient algorithms for achieving
vanishing regret in the smoothed setting. These papers also showed that the dependence on � in the
regret bounds of their oracle-efficient algorithms, which was polynomial, could not in general be
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reduced to the logarithmic dependence achievable by the inefficient algorithms, thereby exposing a
statistical-computational gap. Unlike other recent works such as Block et al. [2022], Haghtalab et al.
[2022], we do not use the coupling approach [Haghtalab et al., 2021] to prove our regret bounds.

Classification with Linear Thresholds. Considering the ubiquity of linear thresholds in classi-
fication, the list of relevant references is far too long to include here; as such, we highlight only
those most germane to our work. The perceptron algorithm was introduced in Rosenblatt [1958] and
a margin-based mistake bound was proved in Novikoff [1963]. There have been many variations
on and applications of this bound, from Ben-David et al. [2009] using it to bound the Littlestone
dimension of linear thresholds with margin to dealing with non-realizable samples [Crammer et al.,
2006, Freund and Schapire, 1999]. To the best of our knowledge our work constitutes the first to
explore the effect that a smoothed adversary has on the perceptron algorithm.

Disagreement Coefficient and Active Learning. Intuitively, our analysis is similar to works in
active learning based on the disagreement coefficient [Hanneke, 2007, 2011, Hanneke et al., 2014,
Wang, 2011]. Indeed, as we shall see, our regret bounds arise by bounding the probability that a point
falls into the disagreement region in a similar way as, for example, Hanneke [2007] controls the label
complexity of active learning. We will note in Remark 3, however, that an approach grounded purely
in the disagreement coefficient cannot hope to achieve regret logarithmic in � in the smoothed setting.
Indeed, our approach incorporates a finer understanding of the geometry, accomodated by the more
limited scope of application of our techniques, which allows us to prove tight rates.

In Section 2, we setup the learning problem and introduce some necessary notions from convex
geometry, as well as fixing notation. In Section 3, we highlight two technical results that form the
foundation of our approach, before, as a warmup, applying them to the case of classification with
linear thresholds in Section 4. In Section 5, we generalize beyond linear thresholds to allow for offset
and nonlinear features. Finally, in Section 6, we move beyond binary classification by extending our
results to K-class affine classification, piecewise affine regression, and noiseless contextual bandits.

2 Preliminaries

In this section, we provide basic definitions and setup the learning problem. We begin by defining a
smooth distribution, as in Block et al. [2022], Haghtalab et al. [2021]:
Definition 1. Let µ be a probability measure on a measurable space X. For some 0 < �  1, we say
that a measure p on X is �-smooth with respect to µ if the likelihood dp

dµ 
1
�

is uniformly bounded.

We consider the smoothed online learning setting. First, a horizon T 2 N is fixed and a distribution
µ on X is chosen. For each step 1  t  T , Nature chooses a distribution pt, possibly depending
on the history, such that pt is �-smooth with respect to µ and samples xt ⇠ pt as well as choosing
some yt 2 Y. The learner sees xt, chooses ŷt and suffers loss `(ŷt, yt). Given a function class F of
functions mapping X! Y, the learner attempts to minimize regret, where regret is defined as:

Reg
T
=

TX

t=1

`(ŷt, yt)� inf
f2F

TX

t=1

`(f(xt), yt). (2.1)

In the sequel, for the sake of simplicity, we take X = B
d

1 to be the unit ball, µ = µd to be the uniform
measure on B

d

1, and `(ŷt, yt) = I(ŷt 6= yt) to be the 0-1 loss.
Remark 1 (Scaling of �). A natural example of a smoothed adversary is one that is allowed to place
bxt in a worst-case manner, which gets perturbed by some small additive noise, chosen uniform on
" ·Bd

1, to become xt; this adversary is � = "d smooth. For such situations, polynomial dependence
on � in the regret translates into something exponential in dimension.
Remark 2 (Other measures µ). Assuming the dominating measure µ = µd is not overly strong: if µ
is another measure on B

d

1 for which dµ
dµd
� c > 0, then, because our regret bounds are logarithmic

in �, our results will still hold with an additive term of log
�
1
c

�
.

For much of the paper, we assume that Nature is realizable with respect to F, i.e., for some f? 2 F,
f?(xt) = yt for all 1  t  T . In this case, Reg

T
is just a mistake bound: Reg

T
=
P

T

t=1 I{ŷt 6= yt}.
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The foundations of our analysis consider the class of linear threshold classifiers

F
d

lin :=
�
x 7! sign(hw, xi)|w 2 B

d

1

 
. (2.2)

We identify F
d

lin with the set of w’s defining it, so that we may treat it as, itself, a subset of Bd

1; other
function classes are similarly identified with their parameters (without further comment).

At the core of our base algorithm is the computation of the John ellipsoid [John, 1948, Ball et al.,
1997], the maximal volume ellipsoid contained in a convex body.1 It is well-known that given a
polytope in Rd, the John ellipsoid can be computed in time polynomial in d and the number of faces
[Boyd and Vandenberghe, 2004]. In particular, we compute the John ellipsoid of the version space,
Ft, where for any time t, we let Ft = {f 2 F

d

lin|f(xs) = ys for all s < t}, which is a polytope
with t  T faces. An important concept in our analysis is the notion of Hausdorff measure, which
generalizes the standard notions of volume and surface area in Rd; we will denote the k-dimensional
Hausdorff measure (see Definition 18) by volk(·). More detail on both the John ellipsoid and the
Hausdorff measure can be found in Appendix B.

Notation. For a set U ⇢ Rd, we denote by @U its boundary. We let Bd

r
denote the ball of radius r

around the origin in Rd and let Sd�1 = @Bd

1 . Letting � denote the �-function, let !d = ⇡
d/2

�(d/2+1)

denote the volume of Bd

1 and let µd denote the uniform measure on B
d

1 normalized to be a probability
measure. If � : Rn ! Rm is Lipschitz, we denote the Jacobian by D�. Lastly, we use “.” to denote
inequality up to universal, problem-independent constants.

3 The Technical Workhorses

In this section we introduce the two key workhorse results that provide the technical foundation for
the rest of the paper. The first result is a purely probabilistic statement that we use as a blackbox
throughout the paper to turn probabilistic and geometric theorems into regret bounds in the realizable,
smoothed online learning setting. The second result is a geometric statement that allows us to apply
the black box regret bound to the case of classification with affine thresholds.

3.1 An Abstract Decay Analysis

We begin with an abstract, technical result that will form the basis for all of our regret bounds. We
first introduce the following definition:
Definition 2. Let µ be a measure on some set Z and let `t : Z ! {0, 1} be a sequence of loss
functions. For R > 0 and 0 < c < 1, we say that the sequence (`t, zt) satisfies (R, c)-geometric
decay with respect to µ if there exists a sequence of nonnegative numbers Rt with R1 = R satisfying
the following two properties:

1. For all t, µ ({z : `t(z) = 1})  Rt.

2. For any t such that `t(zt) = 1, we have Rt+1  cRt.

To motivate this admittedly abstract definition, consider the case of online classification with thresh-
olds f✓(x) = sign(x � ✓) from the introduction, with µ uniform on [0, 1] ⇥ {±1} (note that this
does not precisely fit into the linear setting described above due to the offset); take zt = (xt, yt) and
`t(zt) = I[ŷT 6= yt], where the learner predicts ŷt at each time t. By realizability, `t(z) = 1 only
when xt falls in the “region of disagreement,”i.e. the interval the rightmost xs labelled �1 and the
leftmost xs labelled 1. To see why this is true, note that the “version space,” i.e., the set of thresholds
that correctly classify all the data so far, is exactly this interval; for us to make a mistake, there must
be two functions in the version space that disagree on xt, which can only happen if xt itself is in
the version space. If the learner denotes by wt the midpoint of the region of disagreement, then any
mistake forces the version space, and thus the disagreement region, to shrink by a factor of 2. We see
then that (`t, zt) satisfy

�
1, 1

2

�
-geometric decay with respect to the uniform measure.

If the adversary were constrained to choose xt ⇠ µ at each time step, it is intuitive that we should not
expect many mistakes to be made because, after any mistake, the probability that we make a mistake

1Some authors refer to the minimal volume ellipsoid containing a convex body as the John ellipsoid.
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in some future interval decreases. In the following result, we show that this intuition holds in the
more general smoothed setting:
Lemma 3 (Abstract Decay Lemma). Suppose that a sequence (`t, zt) satisfies (R, c)-geometric
decay with respect to some µ on Z, and that for all t, there is some pt that is �-smooth with respect
to µ and zt ⇠ pt. Then for all T 2 N, with probability at least2 1� �,

TX

t=1

`t(zt)  4
log

�
2TR

��

�

log
�
1
c

� +
e� 1

1�
p
c
. (3.1)

Proof Sketch. We break our analysis into epochs whose lengths hm are tuned at the end of the proof.
We then consider a sequence of stopping times ⌧m that count the number of epochs of length hm

we experience in between the (m� 1)st and mth time that `t = 1. We then show that if hm is not
too large relative to the Probability that `t = 1, then ⌧m � ⌧m�1 is large with high probability and
apply Ville’s inequality [Ville, 1939] to conclude that if mT is the maximal epoch-index m such that
⌧m  T , then mT cannot be too large. We again apply Ville’s inequality to show that if hm is not too
large then the probability of multiple mistakes per epoch is small. Because of the geometric decay
property, the probability that `t = 1 decreases exponentially in the number of mistakes and thus we
may let hm grow exponentially in m and still not be too large to apply the above argument. We then
conclude by noting that if hm are growing exponentially in m then mT has to be logarithmic in T .
The details can be found in Appendix C.1. ⌅

If we return to the above example of online classification with thresholds, we see that Lemma 3
immediately yields the first regret bound for realizable, smoothed online learning with thresholds that
is logarithmic both in the horizon T and the smoothness parameter �. The intuition gleaned from
one-dimensional thresholds that geometric decay suffices to ensure logarithmic regret will be key to
the more general regret bounds we exhibit below.

3.2 A Volumetric Lemma

In the previous section, we saw that in the setting of realizable, smoothed online classification with
one-dimensional thresholds, the learner can force the indicator of a mistake at time t to satisfy
geometric decay; our second workhorse result will allow us to extend this fact to higher dimensions.
In the case of thresholds in the unit interval, the key intuition leading to geometric decay was
the fact that the disagreement region was exactly the version space and thus shrinking the version
space tautologically shrank the disagreement region as well. In higher dimensions the situation is
significantly more complicated. We have the following result:
Lemma 4. Let x1, . . . , xt 2 B

d

1 and suppose that y1, . . . , yt are realizable with respect to F
d

lin.
Define the disagreement region

Dt :=
�
x 2 B

d

1 | there exist f, f 0 2 Ft such that f(x) 6= f 0(x)
 

(3.2)

where Ft is the version space, defined in Section 2. Then, recalling that @Ft is the boundary of Ft,

µd(Dt)  2 · 4d�1µd(Ft) +
4d+1

!d

vold�1(@Ft). (3.3)

Note that by controlling the size of Dt by that of Ft, Lemma 4 is a direct generalization of the
one-dimensional case; however, in contradistinction to that setting, the proof is much more difficult
and the bound includes an extra term corresponding to the surface area of Ft, which is unavoidable
in general. The full proof is in Appendix C.2, but we summarize the key points here. Though the
conclusion of Lemma 4 is intuitive, it requires significant technical effort to prove.

Proof Sketch of Lemma 4. We first note that Dt is contained in the set of points x such that there is
some w 2 Ft with hw, xi = 0; thus the conclusion of Lemma 4 reduces to a geometric statement
about the volume of the set of points orthogonal to at least one point in a given set can be. It may
seem like this should “obviously” be the volume of a (d � 1)-dimensional ball multiplied by the

2Here, as in the rest of the paper, we made no effort to optimize constants. We include them only to
demonstrate that they are not unreasonably large.
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Algorithm 1 Binary Classification with Linear Thresholds
1: Initialize W1 = B

d

1, w1 = e1
2: for t = 1, 2, . . . do

3: Recieve xt, and predict ŷt = sign(hwt, xti), (% self.classify(xt))
4: Update Wt+1 = Wt \ {w 2 B

d

1| hw, xtyti � 0}
5: if ŷt 6= yt then (% self.errorUpdate(xt))
6: wt+1  JohnEllpsoidCenter(Wt+1)
7: % returns center of John Ellpsoid of given convex body

volume of Ft, but this is false: if Ft is the equator of the sphere Sd�1, then µd(Ft) = 0, but the set of
points orthogonal to at least one point in Ft is the entirety of Bd

1. Ruling out this pathology requires
several steps, including a covering argument to reduce to the case where Ft is a ball, and application
of (a generalized) Steiner’s formula, and a deep geometric fact called Weyl’s Tube Formula [Weyl,
1939, Gray, 2003] that governs how much volume we can add to Ft by “fattening” to include all
points distance at most " from Ft. ⌅

4 Warmup with Linear Classification

In this section, we begin to apply our results from Section 3 to get tight regret bounds with computa-
tionally efficient algorithms for learning halfspaces in the realizable, smoothed online setting:
Theorem 5. Let µ be the uniform measure on B1. Suppose that we are in the smoothed, realizable
online learning setting, where the adversary samples xt from a distribution that is �-smooth with
respect to µ. If we predict ŷt according to Algorithm 1, then for all horizons T , with probability at
least 1� �,

Reg
T
 136d log(d) + 34 log

✓
T

��

◆
+ 56. (4.1)

Computational Efficiency. The subroutine JohnEllpsoidCenter(Wt+1) can be run in time polyno-
mial in T and d by solving a Semi-definite Program (SDP) [Boyd and Vandenberghe, 2004, Primak
and Kheyfets, 1995]. Note that we change our predictor ft only at the times t that we make a mistake;
thus, the number of calls to the SDP is also logarithmic in T .

Proof Sketch of Theorem 5. We apply Lemma 3 with zt = (xt, yt) and `t(z) = I [ŷt 6= yt]. In order
to do this we need to show that `t satisfies (R, c) geometric decay, which amounts to finding a
geometrically decreasing sequence of upper bounds on µ(Dt). By Lemma 4, it will suffice to provide
such bounds on both µ(Ft) and vold�1(@Ft), which is where the specific choice of wt becomes
important. It is now classical [Tarasov et al., 1988, Khachiyan, 1990] that if a polytope is cut by
a hyperplane through the center of its John ellipsoid then both halfs have John ellipsoids whose
volumes are at most 8

9 times the volume of the original ellipsoid; as we know that Ft ⇢ d · Et [John,
1948], where Et is the John ellipsoid of Ft, we see that µ(d · Et) is an upper bound on µ(Ft) that
decreases by 8

9 every time we make a mistake. The true utility of the center of the John ellipsoid
is that it also allows us to show that @Ft decreases by a constant factor. Indeed, we show that
vold�1(@Ft)  vold�1(@Et) using a simple projection argument; we then apply a result of Rivin
[2007] to bound the size of @Et by µ(Et). The details are in Appendix D. ⌅

Importance of the John’s Ellipsoid. We show in Appendix D.3 that arbitrary predictions yt = f̃t(xt),
for f̃t 2 Ft in the version space, can guarantee 1/�-regret at best. Hence, selecting the correct wt is
key. One natural choice of wt is the Chebyshev center of Ft [Elzinga and Moore, 1975], equivalent
to a max-margin estimator; unfortunately it need not decrease the volume sufficiently if Ft is too
‘pointy.’ Another choice, the centroid of Ft, ensures decrease of the polytope’s volume, but is #P-hard
to compute [Rademacher, 2007], and does not ensure decay of the surface area. The former problem
can be accomodated with a sampling scheme [Bertsimas and Vempala, 2004], but the latter is critical.
In contrast, the center of the John ellipsoid controls the decay of both Ft and its boundary. To gain
intuition as to why the decay in surface area of Ft is necessary, consider the case where Ft is simply
an arc in Sd�1. In this case, as Dt is the set of points orthogonal to at least one point in in Ft, it
follows that Dt has positive measure even though Ft, being a lower dimensional set, does not; thus,
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it is impossible in general to get a guarantee on the size of Dt only in terms of the volume of Ft,
without regard to the surface area. In this way, we see that the choice of wt as the center of the John’s
Ellipsoid is critical to the success of our algorithm.
Remark 3 (Disagreement Coefficient). Our analysis is similar in spirit to the disagreement-coeffcient
analysis of active learning [Hanneke, 2007], which also exhibits geometric decay of the disagreement
region Dt. The key difference is that the latter applies to any algorithm that selects a classifier from
the version space Ft at each time t. Again, as shown in Appendix D.3, no such analysis can recover
a better than 1/�-regret bound. The culprit is that disagreement-coefficient arguments ensure that
Dt shrink only probabilistically under samples xt ⇠ µ, and this probability may shrink by a factor
of � in the smoothed-online setting. In contrast, our choice of classifier as the center of the John’s
ellipsoid ensures a deterministic decay of the disagreement region whenever a mistake is made.

Lower Bound. Before we move on to the more complicated settings, we note that this regret
bound is tight up to a logarithmic factor in d. A proof of the following proposition, based on Ville’s
inequality, can be found in Appendix D.
Proposition 6. Suppose that we are in the situation of Theorem 5. Then there is a realizable adversary
such that any classifier experiences

E [Reg
T
] � ⌦ (d+ log (T/�)) . (4.2)

4.1 Smoothed classification via the Perceptron algorithm

Next, we present a guarantee for the classical Perceptron algorithm Rosenblatt [1958], which requires
a much weaker notion of smoothness. We say that the adversary satisfies �dir directional smoothness
if, for any fixed w 2 Sd�1, it holds that for all t, hxt, wi is �dir-smooth with respect to the Lebesgue
measure on the real line. As we explain in Example 2 in Appendix G, the directional smoothness
�dir can be nontrivial even when the smoothness parameter � = 0. We now show that the perceptron
satisfies the following mistake bound under directional smoothness.
Theorem 7. Fix any w? 2 Sd�1 and b? 2 R. And suppose that the adversary satisfies �dir-
directional smoothness. Then, with probability 1 � �, the online Perceptron (Algorithm 9 in Ap-
pendix G) satisfies

Reg
T
=
P

T

t=1 I{ŷt 6= yt} . (T/�dir)
2
3 · (Nerr(w

?, b?))
1
3 + log(dlog T e/�),

where Nerr(w?, b?) = 1 +
P

T

i=1 I{yt 6= sign(b? + hw?, xti)} controls deviation from realizability.

For simplicity, Theorem 7 is stated relative to a fixed w? 2 Sd�1 and b? 2 R; uniform bounds can be
derived via a covering argument, at the expense of an additive d log(T/��dir) term in the error bound.
Unlike other algorithms proposed in this paper, Theorem 7 accomodates possibly non-realizable
adversaries. It is also slightly more computationally expedient, not requiring the computation of
the center of a John’s ellipsoid. In contrast, its bound is polynomial in T and 1/�dir, rather than
logarithmic in T and 1/�. There are situations where Algorithm 1 performs exponentially better than
the Perceptron approach: suppose xt is uniform on an "-ball whose center is chosen by the adversary.
Then we have � = "�d and so Theorem 5 implies that the John ellipsoid approach gives regret that
scales as O(d log(d/") + log(T )), whereas �dir ⇡ 1/" and so Theorem 7 only ensures regret that is
polynomial in ". For further comparison, consult Remark 4 in Appendix G.

5 Beyond the Linear Case

While the results of Section 4 are technically interesting and have broad applications, they are limited
to the specific linear setting. In this section, we show how our results can be extended, first to the
more general affine setting, where the decision boundaries do not have to go through the origin, and
then to a more general regime where we do not require linear decision boundaries.

5.1 Affine Classification

Our first generalization of Theorem 5 is to the setting where we allow our decision boundaries to be
offset. Thus instead of assuming realizability with respect to F

d

lin, we will assume that the adversary
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isrealizable with respect to

F
d

a↵ =
�
x 7! sign(hw, xi+ b)|w 2 B

d

1 and b 2 R
 
. (5.1)

We have the following result:
Corollary 8. Let µ be the uniform measure on B

d

1 and suppose that we are in the smoothed online
learning setting, where the adversary samples xt from a distribution that is �-smooth with respect to
µ. Suppose that the adversary is realizable with respect to the function class Fd

a↵ defined in (5.1).
Then Algorithm 3 in Appendix E.1 is a computationally efficient algorithm for choosing ft 2 F

d

a↵
such that for all T , with probability at least 1� �, it holds that

Reg
T
 268d log(d) + 34 log (T/(��)) + 56.

As F
d

lin ⇢ F
d

a↵ , the lower bound of Proposition 6 holds and Corollary 8 is tight up to a factor
logarithmic in dimension. The proof is given in Appendix E.1 and proceeds by reducing to the
linear setting of Theorem 5 by imbedding the problem into an online learning problem with contexts
x̃t 2 Rd+1, carefully randomized so as to preserve their smoothness with respect to µd+1.

5.2 Linear Classification Under a Feature map

One limitation of the above discussion has been the assumption of linearity, which can be overly
strong in many cases. In this section, we weaken this assumption in two ways. First, we show
that if we transform the features with a well-behaved function, then we may still apply our above
machinery. Second, we will show that our approach actually generalizes to polynomial decision
boundaries through an elegant reduction. In both cases, the key technical challenge is to show that
our transformed features remain smooth with respect to the uniform measure on a ball. Note that it
is immediate that �(xt) is smooth with respect to �?µd; in order to apply our results, however, we
require smoothness with respect to the uniform measure. As it is not true that �?µd is smooth with
respect to µd for general �, we require additional assumptions. We have the following result:
Theorem 9. Let � : Bd

1 ! B
d

1 be a function such that each coordinate function, �i : R! R satisfies
�0
i
(u) � ↵ for some ↵ > 0. If we run Algorithm 4 in Appendix E.2 then, for all T , with probability at

least 1� �, it holds that
Reg

T
 136d log (d/↵) + 34 log (T/(��)) + 56.

Algorithm 4, the algorithm that achieves the above regret bound, is actually quite simple as it just
runs Algorithm 1 on the data sequence (�(xt), yt). A proof of a more general result, which applies
to a larger class of maps �, is available in Appendix E.2. Even in the setting of Theorem 9, though,
standard transformations like the sigmoid already apply.

We now turn to the more challenging case of polynomial features. We have the following result:
Theorem 10. Let � : Bd

1 ! B
m

1 be an L-Lipschitz function whose coordinates are polynomials of
degree at most ` in the coordinates of x 2 B

d

1. Suppose that we are in the smoothed online learning
setting where the xt are �-smooth with respect to µd and the yt are realizable with respect to F

m

lin ��.
Suppose further that the Jacobian of � satisfies for some ↵ > 0,

det
�
Ex⇠µd

⇥
D�(x)D�(x)T

⇤�
� ↵2.

Then Algorithm 5 in Appendix E.3 is a computationally efficient algorithm such that for all T , with
probability at least 1� �,

Reg
T
. m log(m) + log

✓
1

↵

◆
+ `2m2d log2

✓
d`TL

��

◆
.

Algorithm 5 is a bit more complicated than simply applying Algorithm 1 to (�(xt), yt) because if
d  m, then �(xt) can never be smooth with respect to µm by dimension constraints. To escape this
difficulty, we define a “meta-point,” x⌧ , which is the average of �(xt) for multiple different t. To
understand why this might fix the problem, consider the identity imbedding of Sd�1 ⇢ B

d

1: if we
sample x uniformly on Sd�1, then the law of x will not even be absolutely continuous with respect
to µd but if we sample two points x, x0 ⇠ Sd�1 then their average is absolutely continuous with
respect to µd. We note that the conditions on � are fairly mild due to the logarithmic dependence on
both the Lipschitz constant and the lower bound on the determinant, which is typically no less than
exponentially small in d and m.
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Proof Sketch of Theorem 10. Algorithm 5 proceeds initially in a similar way to Algorithm 1: we
maintain a version space Ft ⇢ F

m

lin that gets updated every round and, when we change wt, we set it
to be the center of the John ellipsoid of the version space. In contradistinction to the earlier algorithm,
however, we do not update wt every time we make a mistake. Instead, for some parameter p, we
wait until we have misclassified a label p times, i.e., we guessed �1 but yt was 1 p times (or the
reverse) and construct x⌧ to be the average of the �(xt) for each of these p mistakes. Using a novel
anti-concentration bound for determinants of certain random matrices (Proposition 41) as well as
some techniques from geometric measure theory (Proposition 40), we show that x⌧ is smooth with
respect to µm. We then apply the abstract decay lemma (Lemma 3) in much the same way as we did
in the proof of Theorem 5. The details are in Appendix E.3. ⌅

6 Beyond Binary Classification

In the previous sections, we restricted our focus to binary classification; in this section we expand
our scope to a K-class setting and then further extend to a regression setting. Our results for the
regression setting, combined with the reduction of Foster and Rakhlin [2020], are applied to the
setting of contextual bandits in Appendix A.

6.1 Multi-Class Classification

We first generalize our results to multi-class classification. The targets are yt 2 [K] some fixed K
and classifications are assigned by maximum inner-product:3

F
d

K-lin = {x 7! fw(x) = argmax
1iK

⌦
wi, x

↵
| w = (w1, . . . , wK) 2

�
B

d

1

�K}. (6.1)

Our algorithm is a direct reduction to binary classification. For each i < j, we maintain an instance
A

(i,j)
bin of Algorithm 1 which makes binary predictions ŷ(i,j)

t
of y(i,j)

t
= sign(hwi

?
� wj

?, xti). We
then set our K-class prediction ŷt as the first index i for which ŷ(i,j)

t
= 1 for all j > i. The key

insight is that, even though the learner does not recieve feedback on all ŷ(i,j)
t

in this way, we can
always assign a mistake ŷt = yt to an error y(i,j)

t
6= ŷ(i,j)

t
for some i < j. Formal pseudocode is

given Algorithm 6 and a proof of the following regret bound is given Appendix F.1.
Theorem 11. Suppose we are in the realizable, smoothed, online learning setting where the adversary
is realizable with respect to the F

d

K-lin in (6.1). Then, then for all T , with probability at least 1� �,
the regret of Algorithm 6 is at most

Reg
T
 136K2d log(d) + 91K2 log

�
TK2/(��)

�
. (6.2)

The efficiency of the above algorithm follows from the efficiency of the binary classifers A(i,j)
bin . We

conjecture that the dependence on K2 is an artifact of our reduction to
�
K

2

�
base classifiers.

6.2 Piecewise Regression

This section extends K-class classification to piecewise affine regression. We now suppose that the
targets yt are real-valued, and realizable with respect to the following class of functions:

GF =

⇢
x 7! gf (x) =

P
K

i=1gi(x)I[f(x) = i]

����gi(x) = hai, xi for ai 2 Rd and f 2 F
d

K-lin

�
.

(6.3)
In contradistinction to the rest of the paper, where the adversary is allowed to play the yt adaptively
subject only to the condition of realizability, in this section we suppose that the adversary is semi-
oblivious in the sense that there is a ground-truth function chosen before the start of play and after
learning begins, the adversary is only allowed to choose the contexts, xt. This assumption is natural
in the aforementioned contextual bandits application in Appendix A.
Theorem 12. Adopt the semi-oblivious, smoothed online learning setting, where the adversary begins
by choosing g?

f? 2 GF from (6.3), and, at each time t, draws xt from a distribution that is �-smooth

3For simplicity, we interpret the argmax lexicographically.
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with respect to µ and sets yt = g?
f?(xt). Then, Algorithm 7 is an algorithm that is efficient in the

number of calls to an ERM oracle over GF that satisfies for all T , with probability at least 1� �,

Reg
T
 136K2d log(d) + 91K2 log

�
TK2/(��)

�
+K2(`+ 1). (6.4)

In Appendix F.2 we prove a more general version of the above result that allows the regression
functions on each piece to be polynomial. The intuition is to reduce K-piece regression to K-class
classification, but where each of the “classes” materialize sequentially, once there are sufficiently
many points observed to “determine” one of the pieces. The algorithm and proof are considerably
more subtle, and are given in Appendices F.3 and F.4, respectively. We note that Algorithm 7 only
requires the ERM oracle to be called on sets of size independent of T , making the total runtime of
the algorithm logarithmic in the horizon.
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