
Appendix

Due to the page limitation, we put more technical details here for ease of understanding. We will
appreciate it so much if the audience can have a careful reading of the following Appendix.

A More discussions about “Posterior Collapse”

Here, we present a detailed reinterpretation for intuitively understanding the conflict of the optimiza-
tion between the ELBO L and the mutual information Iq(x, z>k). Then, we provide additional
experiments to meausre the “posterior collapse” in higher layer of the latent variables z>k.

A.1 Detailed Derivations for Section 3.1

First, we present a detailed formulation of the aggregated posterior qϕ(z>k) as

qϕ(z>k) = Ep(x)qϕ(z>k|x). (12)

Under the setting of top-down inference structure, with the aggregated posterior qϕ(z>k), where
qϕ(zL|zL+1) := qϕ(zL|x), and pθ(zL|zL+1) := pθ(zL) , the KL term in Eq. (3) can be rewritten
as follows:
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Thus, the ELBO in Eq. (3) can be rewritten as

L =Ep(x)
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(14)

Therefore, maximizing the ELBO will be opposite to maximizing the Iq(x, z>k), which leads the
higher-layers posterior latent variables z>k to be independent of the input data x and collapse to the
uninformative pθ(z>k).

A.2 Quantitative experiments on “Posterior Collapse”

Since the “posterior collapse” of the in-distribution data would lead to a larger Likelihood Ratio
LLR>k in high layers, which is harmful for OOD detection, we add an additional experiment here to
testify the “posterior collapse” with the metric average bits per dim as shown in Table 4. The L>L−1

x
is the ELBO for the partial generative model, which could be used to evaluate the reconstruction
quality of zL, and more details can be found in Eq. (15).

Table 4: The average bits per dim and the OOD detection performance of four hierarchical VAEs.
The average bits per dim is calculated in the testing split of the in-distribution dataset and the OOD
detection performance is tested with LLR>L−1, where L = 5 in the FashionMNIST/MNIST pair
and L = 3 in the CIFAR10/SVHN pair. Note that, LLR>L−1 = Lx − L>L−1

x .
FashionMNIST(in)/MNIST(out)

Avg. bits per dim OOD Detection
Metthod Lx L>4

x AUROC↑ AUPRC↑ FPR80↓
HVAE(5) 2.67 11.0 33.7 38.7 70.8
LVAE(5) 2.61 5.91 64.3 61.5 59.5
BIVA(5) 2.70 11.1 35.3 39.2 69.7
Ours(5) 3.45 3.54 98.2 98.3 1.5

CIFAR10(in)/SVHN(out)
Avg. bits per dim OOD Detection

Method Lx L>2
x AUROC↑ AUPRC↑ FPR80↓

HVAE(3) 3.82 40.01 74.1 76.4 54.7
LVAE(3) 3.85 14.32 80.1 78.8 36.1
BIVA(3) 3.49 20.42 86.1 85.2 22.6
Ours(3) 6.29 6.40 93.0 92.5 10.8

As the results shown in Table 4, although the baselines for comparison (HVAE, LVAE, and BIVA)
can obtain better reconstruction performance on Lx, they still suffer from a large shrink in L>L−1

x ,
which is mainly caused by the “posterior collapse”. On the contrary, the developed informative
HVAE can acquire stable performance from Lx to L>L−1

x , resulting in a smaller Likelihood Ratio
LLR>L−1, which illustrates why our method can achieve much better performance on unsupervised
OOD detection.

B Derivations for analyzing the LLR>k in Section 3.2

For ease of understanding of the Eq. (6), we give a detailed derivation below, which is mostly based
on the Havtorn et al. [27].

First, we define a looser ELBO for each observation x as below of the partial generative model
pθ(x|z>k) = Epθ(z≤k|z>k) [pθ(x|z≤k)], which reconstructs the observation x by taking z>k drawn
from the variational inference network qϕ(z>k|x),

L>k
x = log p(x)−DKL(pθ(z≤k|z>k)qϕ(z>k|x)||pθ(z|x)), (15)
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recall to the common ELBO for each observation x as

Lx = log p(x)−DKL(qϕ(z≤k|z>k)qϕ(z>k|x)||pθ(z|x)), (16)

then, the LLR>k is defined as
LLR>k = Lx − L>k

x . (17)

Further, the detailed derivation for Eq. (7) is as follows:
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when the approximated posterior qϕ(z≤k|z>k) is closer to the true posterior pθ(z≤k|z>k,x) after
training, i.e., DKL(qϕ(z≤k|z>k)||pθ(z≤k|z>k,x)) ≈ 0 and DKL(pθ(z≤k|z>k)||pθ(z≤k|z>k,x))
≈ DKL(pθ(z≤k|z>k)||qϕ(z≤k|z>k)).

C More discussions about LLRada

Recall to the visualization exhibited in Fig. 2, when setting k = 0 or k = 1, we can find that the
quality of the reconstructions generated from pθ(x|z>0) is surprisedly high, indicating that the
KL-divergence between pθ(z≤k|z>k) and qϕ(z≤k|z>k) is small for both in-distribution and OOD
samples, which makes it problematic for OOD detection with single-layer likelihood LLR>0 or
LLR>1; when setting k = 2, the KL divergence between pθ(z≤k|z>k) and qϕ(z≤k|z>k) will be
relative small for in-distribution samples, but large for OOD samples, which is the main reason for
the success of LLR>2; however, when setting k = 3 or k = 4, the latent variables z≤k generated
pθ(z≤k|z>k) will be clearly distinct from those drawn from qθ(z≤k|z>k,x) for both in-distribution
and OOD samples, resulting in that the performance of OOD detection with LLR>3 or LLR>4 will
be worse than LLR>2. The reason why OOD detection based on LLR>3 or LLR>4 can outperform
OOD detection based on LLR>0 or LLR>1 is that the generative model pθ(z≤k|z>k) can still learn
the generation mechanism of in-distribution samples at higher hidden layers, even when “posterior
collapse” occurs.
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Based on these findings, the intuition of designing LLRada is to move beyond the choose of k but
enhance the importance of the score over some discriminative layers, like LLR>2, in the overall
metric for OOD detection. To achieve these goals, we use R(x, z>k) to measure the relevance
between x and z>k, and the adaptive weight R(x,z>k−1)

R(x,z>k)
in LLRada will be relatively large when

the data information drop rapidly at the current hidden layer, like k = 2. We admit that “posterior
collapse” will still hurt the performance of LLRada, leading to worse performance than LLR>k

with the optimal k, but it can avoid the unreasonable hyper-parameter adjustment based on OOD
samples. Moreover, with the informative hierarchical VAE to alleviate “posterior collapse”, the
performance of LLRada will be even better than LLR>2 on some datasets.

D More Details of the Datasets

We use additional datasets to evaluate the OOD detection performance.

For FashionMNIST/MNIST pair, we add KMNIST [43], notMNIST [44], Omniglot [45] and Small-
NORB [46] datasets. KMNIST is a dataset, adapted from Kuzushiji Dataset, as a drop-in replacement
for MNIST dataset, which contains 70,000 28×28 grayscale images. notMNIST is a dataset made
by 547,838 28×28 grayscale images of extracted glyphs from some publicly available fonts with
letters A-J taken from different fonts. Omniglot contains 32,460 28×28 grayscale images of 1623
different handwritten characters from 50 different alphabets. SmallNORB contains 97,200 28×28
grayscale images of 50 toys belonging to 5 generic categories: four-legged animals, human figures,
airplanes, trucks, and cars.

For CIFAR10/SVHN pair, we add CelebA [47], Places365 [48], Flower102 [49] and LFWPeople
[50] datasets. CelebA is a large-scale face attributes dataset with more than 200K celebrity images,
each with 40 attribute annotations. Places365 contains 1.8 million train images from 365 scene
categories, 50 images per category in the validation set, and 900 images per category in the testing
set. Flowers102 is an image classification dataset consisting of 102 flower categories, where flowers
were chosen to be flowers commonly occurring in the United Kingdom and each class consists of
between 40 and 258 images. LFWPeople contains more than 13,000 images of faces collected from
the web. All these datasets’ images would be randomly cropped into the dimension of 32×32×3
before sending into the models.

E Details of the Baselines

Due to the space limitation, we use the abbreviation for each baseline in Table 1. Here, we give a
detailed description for each baseline of the three categories:

• “Labels” (Methods using in-distribution data labels y): maximum softmax classification
probability (CP) method [5] and its variants, denoted as "CP", "CP(OOD)" with OOD
as noise class, "CP(Cal)" with calibration on OOD and "CP(Ent)" with entropy of soft-
max classification probability p(y|x), and Mahalanobis distance (MD) method [9], latent
Mahalanobis distance (LMD) method [38], ODIN method [8], VIB method [6] and deep
ensembles (DE) method [51] with 20 classifiers;

• “Prior” (Methods using prior knowledge assumption of OOD): Likelihood Ratio (LR)
method [1] with different backbones, denoted as "LR(PC)" with backbone PixcelCNN,
"LR(VAE)" with VAE and "LR(BC)" with binary classifier), Outlier exposure (OE) method
[28] and Input complexity (IC) method [33] with different backbones, denoted as "IC(PC)"
with backbone PixcelCNN, "IC(Glow)" with backbone Glow and "IC(HVAE)" with back-
bone HVAE;

• “Unsupervised” (Methods with no OOD-specific assumptions): Ensemble methods: WAIC
method [24] with different backbones, denoted as "WAIC(5Glow)" with 5 Glow models,
"WAIC(5VAE)" with 5 VAE models and "WAIC(5PC)" with 5 PixcelCNN models; Not
ensembles methods: Likelihood regret method [32] and its variant "Likelihood regret(z)",
Log-Likelihood Ratio (LLR) method [27], which achieved the best performance with
"LLR>1(HVAE)" (hyperparameter k = 1 and backbone method 3-layer HVAE trained on
binarized data) for FashionMNIST(in)/MNIST(out) pair and "LLR>2(BIVA)" (hyperparam-
eter k = 2 and backbone method 10-layer BIVA) for CIFAR10(in)/SVHN(out) pair. For this
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LLR method, we denote their best combinations’ result in Tab. 1 as "HVK" (Hierarchical
VAEs Know what they don’t know).

F Details of the Implementation

To make sure the new training objective in Eq. (10) can really lead to an informative hierarchical
VAE, we do not use the warm-up trick or the free bits trick. However, we apply the warm-up trick
(200 epochs for the Warmup anneal period) and free bits trick (2 nats per zi and 400 epochs for
the free bits period) to the other three hierarchical VAEs (HVAE, LVAE, and BIVA) to empirically
alleviate the posterior collapse, which is proven in Havtorn et al. [27] and we follow their procedure
to train these three hierarchical VAEs.

Following Havtorn et al. [27], the VAE-based methods’ results are computed with 1000 importance
samples. However, our method’s results only get slight improvement after sampling, considering the
computation burden brought by it, we report the results of our method without importance sampling.
But we also use the importance sampling for other baseline hierarchical VAEs (HVAE, LVAE, and
BIVA).

G Error Bar

We randomly run 5 seeds for our method in experiments and report the error bar as below.

Table 5: Error bar for our method (3 layer) on the performance of OOD detection under the metric
AUROC↑, AUPRC↑, and FPR80↓.

Trained on FashionMNIST. Use LLRada.

OOD MNIST KMNIST Omniglot notMNIST SmallNORB

Metric AUROC↑ AUPRC↑ FPR80↓ AUROC↑ AUPRC↑ FPR80↓ AUROC↑ AUPRC↑ FPR80↓ AUROC↑ AUPRC↑ FPR80↓ AUROC↑ AUPRC↑ FPR80↓
Ours 97.0±0.5 97.6±0.6 0.9±0.05 95.0±1.1 95.1±0.9 7.1±0.8 100±0.0 100±0.0 0.00±0.0 99.7±0.1 99.8±0.1 0.00±0.01 100±0.0 100±0.0 0.1±0.0

Trained on CIFAR10. Use LLRada.

SVHN CelebA Places365 Flower102 LFWPeople

Metric AUROC↑ AUPRC↑ FPR80↓ AUROC↑ AUPRC↑ FPR80↓ AUROC↑ AUPRC↑ FPR80↓ AUROC↑ AUPRC↑ FPR80↓ AUROC↑ AUPRC↑ FPR80↓
Ours 92.6±0.4 91.8±0.5 11.1±0.2 72.1±0.8 70.5±0.7 49.0±0.5 63.3±0.5 62.1±0.4 62.6±1.0 63.4±0.3 70.1±0.4 71.2±1.2 83.0±1.3 83.40.9 29.0±0.6

H Limitation

The developed informative hierarchical VAE can alleviate “posterior collapse” to a certain degree,
but still cannot completely avoid the appearing of this phenomenon in VAEs. Then, the developed
LLRada is not the optimal choice of score function of unsupervised OOD detection, which needs to
be investigated in the future work.

Considering the computational footprint change, we take the vanilla VAE equipped with Like-
lihood Ratio as the baseline for analysis. For the space complexity, our method doesn’t in-
troduce any additional model parameters or memory cost. For the time complexity, com-
pared to the baseline, our method requires additional L − 1 times computation cost to cal-
culate those expected log-likelihood terms in the loss function during training, specifically
1
L

∑L−1
k=0 Epθ(z≤k|z>k)qϕ(z>k|x)[log pθ(x|z≤k)], where L denotes the number of layers and will

be a relative small number in practice.

I Broader Impact

The developed method in this paper can be straightforwardly applied to real-word applications based
on hierarchical VAEs, and alleviate their “posterior collapse” to achieve better model performance.
The adaptive score function can be used for purely unsupervised OOD detection, which can boost the
reliability and safety of recent machine learning (ML) systems.
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J Comparison with other methods to alleviate “posterior collapse”

We provide more comparisons with the methods designed for alleviating the “posterior collapse”,
including "Warm-up", "OverSmooth", "BIVA", and Our method "Informative". "Warm-up" [30]
gradually increases the weight of the KL-divergence term in the learning objective from 0 to 1
and we set the warm-up epochs as 200 with a total training epoch as 1000. "OverSmooth" [54]
sets the σx as a one-dimensional parameter and updated according to the training objective, where
the reconstruction likelihood function is pθ(x|z) = N (x|µx(z), σ

2
xI). "BIVA" [29] introduces a

bidirectional inference and generative network architecture, but it changes the original structure of
vanilla hierarchical VAE and may hurt the hierarchy of the latent variables. To provide an intuitive
comparison of these methods’s effect on alleviating “posterior collapse”, we introduce the OOD
detection performance on a vanilla hierachical VAE, termd as "Vanilla", as an additional baseline.
Then, we testify these methods’ performance under 3 different score methods for OOD detection,
where Lx represents the evidence lower bound (ELBO) of the VAE, LLR>L−1 represents the gap
between partial ELBO of the highest-level latent variables and the the ELBO of lowest-level latent
variables, and LLRada is an adaptive score that evalutes the whole hierarchy of the latent variables.

As shown in Table 6 and Table 7, the developed informative hierarchical VAE, termed as "Informative",
outperforms other methods significantly especially under the score LLR>L−1 and LLRada.

HVAE: FashionMNIST (in) / MNIST (out))
Score + Methods AUROC% ↑ AUPRC% ↑ FPR80% ↓
Lx + Vanilla [20] 15.3 33.2 96.0
Lx + Warm-up [30] 26.3 36.2 86.8
Lx + OverSmooth [54] 45.4 31.2 90.4
Lx + BIVA [29] 26.1 35.9 91.3
Lx + Informative(ours) 49.9 51.0 79.4
LLR>L−1 + Vanilla 33.3 38.7 71.3
LLR>L−1 + Warm-up 47.9 44.0 66.4
LLR>L−1 + OverSmooth 81.1 66.5 23.4
LLR>L−1 + BIVA 35.3 39.2 69.7
LLR>L−1 + Informative(ours) 98.2 98.3 1.5
LLRada + Vanilla 59.8 50.6 52.9
LLRada + Warm-up 68.1 59.0 49.5
LLRada + OverSmooth 80.9 66.3 23.5
LLRada + BIVA 35.1 38.8 69.0
LLRada + Informative(ours) 98.0 97.6 1.6

Table 6: Comparison of the OOD detection performance with 3 score methods for different methods
designed for alleviating posterior collapse. All these methods are based on a 5-layer (L = 5) HVAE
trained on FashionMNIST (in-distribution) for detecting MNIST as OOD data.

K Comparison with non-VAE methods

Likelihood-based methods are promising to detect the OOD data in an unsupervised manner, since
they could give an estimation of the data x’s likelihood p(x) under the learned distribution p of
in-distribution data. Among likelihood-based methods, Flow-based models [17], auto-regressive
models [18], and variational auto-encoder (VAE) models are popular for OOD detection tasks. HVK
[27] achieves the state-of-the-art of OOD detection under the unsupervised setting. Though our
method could outperform HVK, it is still interesting to have an comparison with other two type of
models (Flow-based and auto-regressive models) to see whether our methods could also outperform
them.

We add 3 non-VAE methods as our baselines for comparison: "Glow", "Flow+Group", and "Pix-
celCNN++". "Glow" [25] try to do OOD detection with Glow model and find the counterfactual
behaviour of assigning high likelihood to OOD data specially in the model family of Flow models.
"FLow+Group" [55] is an SOTA flow-based OOD detection method but is not initially designed for
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HVAE: CIFAR10 (in) / SVHN (out)
Score + Methods AUROC% ↑ AUPRC% ↑ FPR80% ↓
Lx + Vanilla 49.5 51.2 82.6
Lx + Warm-up 49.5 51.3 70.3
Lx + OverSmooth 14.4 32.9 98.3
Lx + BIVA 13.3 32.6 99.6
Lx + Informative(ours) 49.9 51.0 79.4
LLR>L−1 + Vanilla 63.2 66.7 70.3
LLR>L−1 + Warm-up 75.2 79.1 49.4
LLR>L−1 + OverSmooth 83.4 79.8 25.6
LLR>L−1 + BIVA 86.3 86.5 22.2
LLR>L−1 + Informative(ours) 93.0 92.5 10.8
LLRada + Vanilla 63.1 65.2 69.5
LLRada + Warm-up 80.1 81.6 37.7
LLRada + OverSmooth 83.3 80.7 25.8
LLRada + BIVA 86.3 86.6 21.9
LLRada + Informative(ours) 92.6 91.8 11.1

Table 7: Comparison of the OOD detection performance with 3 score methods for different methods
designed for alleviating posterior collapse. All these methods are based on a 3-layer (L = 3) HVAE
trained on CIFAR10 (in-distribution) for detecting SVHN as OOD data.

our setting, but for group OOD detection, where their model needs to justify whether a batch of
sample {x1, x2, ..., xn}, (n > 1) is an OOD batch. Note that, the batch size n is set as 5, 10, and 20
in their paper. Luckily, "FLow+Group" also modify their method via data augmentaion to the point
OOD detection situation, i.e., n = 1, which is the same as our setting, and we directly report their
OOD detection results in their Appendix F. "PixcelCNN++" [1] propose to use an auto-regressive
model (PixcelCNN++) for OOD detection with the help of additional OOD datasets like NotMNIST
dataset, and we report the results of this model under our setting (no additional datasets to help
training).

As shown in Table 8 and Table 9, Our method could also outperform other non-VAE methods.

FashionMNIST (in) / MNIST (out)
Models AUROC % ↑ AUPRC % ↑ FPR80 % ↓
- non-VAE methods
Glow [25] 6.29 31.5 99.2
Flow+Group [55] 90.0 - -
PixcelCNN++ [1] 8.90 32.0 99.0
Ours 98.0 97.6 1.60

Table 8: Comparison of 3 non-VAE methods for the unsupervised OOD detection task of detecting
MNIST as OOD data with models trained on in-distribution dataset FashionMNIST.

CIFAR10 (ID) / SVHN (OOD)
Models AUROC % ↑ AUPRC % ↑ FPR80 % ↓
- non-VAE methods
Glow 7.62 31.7 98.6
Flow+Group 85.0 - -
PixcelCNN++ 9.50 32.0 100.
Ours 92.6 91.8 11.1

Table 9: Comparison of 3 non-VAE methods for the unsupervised OOD detection task of detecting
SVHN as OOD data with models trained on in-distribution dataset CIFAR10.
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L Comparisons of Score Functions

OOD detection methods need to assign a score for each data sample and detect the OOD data out
according to this score. However, since the score method LLR>k proposed by HVK [27] needs
to select the optimal hyperparameter k to achieve the best OOD detection performance, which is
unreasonable under the unsupervised setting, we design a novel score function named LLRada that
does not need to select the k. Thanks for the Reviewer 9EQd’s awesome suggestion, there could be
another way for automatically selecting the k, where the k is selected based on the largest R-ratio
in Eq. (11). To make a further investigation, we provide a comparison between this score function,
termed "LLRoptk", and our LLRada.

As shown in Table 10 and Table 11, LLRoptk could achieve a promising OOD detection performance
but still underperform our developed LLRada.

A more intuitive and numerical analysis about these methods has been provided in Appendix M.

FashionMNIST (in) / MNIST (out)
Score AUROC % ↑ AUPRC % ↑ FPR80 % ↓
Lx 55.3 51.8 67.9
LLR>1 97.5 97.0 2.8
LLR>2 97.4 97.7 1.2
LLRoptk 94.3 94.0 6.13
LLRada 97.0 97.6 0.9

Table 10: Comparison of different score methods for OOD detection based on a 3-layer HVAE trained
with informative loss on in-distribution dataset FashionMNIST.

CIFAR (in) / SVHN (out)
Score AUROC % ↑ AUPRC % ↑ FPR80 % ↓
Lx 49.9 51.0 79.4
LLR>1 68.4 71.3 61.8
LLR>2 93.0 92.5 10.8
LLRoptk 88.4 90.7 11.5
LLRada 92.6 91.8 11.1

Table 11: Comparison of different score methods for OOD detection based on a 3-layer HVAE trained
with informative loss on in-distribution dataset CIFAR10.

M Measure LLRada on vanilla HVAE without Informative loss

It would be interesting to see whether the LLRada will be effective on a vanilla hierarchical VAE
trained without the informative loss. Take a 5-layer HVAE trained on FashionMNIST for example,
we give a comparison with different score functions for OOD detection as shown in Table 12.

To better undertand the underlying mechanism of these score methods, we compute the mean negative
log-likelihood − log pθ(x|z>k) for reconstruction and log-likelihood ratio (LLR>k) for each layer
of a 5-layer vanilla HVAE in Table 13.

Since the values LLR>k of in-distribution data is closer or larger than OOD data, it is not surprising
that the LLR>k cannot achieve promising OOD detection performance.

However, the performance could be significantly improved with the score LLRoptk and LLRada.
Specifically, for score LLRoptk , it would highly possible to assign LLR>1 (1.65×103) for in-
distribution data and assign LLR>2 (2.90×103) for OOD data, which makes it easier to detect OOD
data. For score LLRada, its average score for in-distribution data is 1.65 + 4.87

3.50 ∗ (2.97− 1.65) +
7.81
4.87 (5.90 − 2.97) + 7.81

7.81 ∗ (5.90 − 5.90) = 8.173(103), but for OOD data, the average score is
0.74 + 4.32

2.05 (2.9− 0.74) + 6.89
4.32 (5.46− 2.9) + 6.89

6.89 (5.46− 5.46) = 11.869(103). Since the average
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score LLRada of OOD data is much larger than in-distribution data, our developed LLRada could
be a more promising score function to achieve better OOD detection performance.

(Vanilla) HVAE: FashionMNIST (in) / MNIST (out)
Method AUROC % ↑ AUPRC % ↑ FPR80 % ↓
Lx 15.3 33.3 96.0
L>1
x 14.7 33.2 94.7

L>2
x 37.0 39.6 79.7

L>3
x 23.2 35.6 80.6

L>4
x 23.1 35.6 80.6

LLR>1 18.2 34.0 91.8
LLR>2 45.5 43.3 72.4
LLR>3 33.2 38.6 71.3
LLR>4 33.3 38.6 71.3
LLRoptk 49.2 45.8 67.5
LLRada 59.8 50.6 52.9

Table 12: Comparison of the effect of different score methods on Vanilla VAE.

5-Layer Vanilla HVAE
FashionMNIST (in) MNIST (out)

Layer # − log p(x|z>i) LLR>i − log p(x|z>i) LLR>i

0 1.59×103 N/A 1.15×103 N/A
1 3.50×103 1.65×103 2.05×103 7.40×102

2 4.87×103 2.97×103 4.32×103 2.90×103

3 7.81×103 5.90×103 6.89×103 5.46×103

4 7.81×103 5.90×103 6.89×103 5.46×103

Table 13: The mean negative log-likelihood for reconstruction and log-likelihood ratio (LLR) for
each layer on a 5-layer Vanilla HVAE.

N Numerical analysis to illustrate “posterior collapse” in Fig. 2

It is interesting to investigate the numerical changes when the “posterior collapse” occurs, such as the
data samples visualized in Fig. 2. As shown in Table 14, from shallow to deep (Layer 1 to Layer
4), we can find that the KL-divergence of HVAE gradually reduces to 0, which indicates that the
posteriors of 4-th and 5-th hidden layers collapse to their priors, resulting in that the high-level latent
variables z4 and z5 sampled from the posterior qϕ(zk|z>k) have no information of input data x.

Further, we use t-SNE method to visualize the learned latent data representations in Fig. 7. Note that,
different colors in Fig. 7 indicates different classes of data samples. As shown in Fig. 7, we can find
that the latent space of HVAE gradually collapses to a non-informative prior distribution, while the
learned latent space of our method is still informative at higher layers.

To see more reconstructed data samples of the partial generative models p(x|z>3) and p(x|z>4),

To intuitively demonstrate that the posterior of our method does not collapse to a single point, we
visualize the data samples generated from pθ(x|z>k) by taking the latent variables zk sampled
from the posterior qϕ(zk|z>k,x) as input, where x is a fixed data point. As shown in Fig. 8, the
diversity of the generated samples demonstrate that the posterior qϕ(zk|z>k,x) collapses to its prior
distribution pθ(zk|z>k) rather than a single point.

O Comparisons of Reconstruction and Generation quality

The reconstruction and generation capability are two important model properties of VAE, and here
we compare our method with the vanilla HVAE on both these two aspects.

23



KL-divergence in different layers
Layer index # HVAE Ours

1 2.59× 102 2.28× 101

2 4.99× 101 1.42× 101

3 1.02× 101 2.74× 102

4 5.75× 10−4 4.09× 101

5 5.00× 10−4 1.97× 101

Table 14: The KL-divergence for each layer’s latent variables.

Avg. bits per dim for reconstruction log-likelihood log pθ(x|z>k)
HVAE Ours

Dataset z>0 z>1 z>2 z>0 z>1 z>2

FashionMNIST 2.953 7.656 9.608 3.025 4.019 4.233
CIFAR 2.181 9.207 18.22 2.193 2.508 5.778

Table 15: Comparison of the reconstruction quality under the metric "Average bits per dim" of the
reconstruction log-likelihood for a 3-layer HVAE and our method.

Firstly, we quantitatively evaluate the reconstruction capability of the partial generative models
pθ(x|z>k) conditioned on latent variables z>k at different hidden layers, and report the average bit
per dim results in Table 15. From the results, we can see that our method can achieve a comparable
reconstruction quality with other baselines on pθ(x|z>0) and significantly outperform them on the
reconstruction conditioned on higher-layer latent variables.

For the generation capability, we qualitatively visualize the data samples generated from artial
generative models pθ(x|z>k) conditioned on z>k drawn from the prior distribution pθ(zL) =
N (0, I). From the results shown in in Fig. 9, we can find that the quality and diversity of data
samples generated by our model significantly outperform those generated by HVAE, indicating the
benefits of alleviating “posterior collapse.”

Thus, the aforementioned experimental results demonstrate that our method can perverse the versatility
of VAE.

P Comparison on more natural images

To investigate the effectiveness of our method on more natural images, we provide additional
comparisons on the other datasets, including LFWPeople [50] (people’s faces in the wild), Flower102
[49] (102 types of flowers), Food101 [56] (101 types of food), Places365 [48] (365 scene categories),
and Tiny-ImageNet [57] (containing 200 categories of images). With the same score function
LLRada, we train the VAE-based model on each of these datasets, where each image is resized as
32×32×3 before training, and then use it for OOD detection on SVHN dataset. The unified network
structure of these 3-layer models are [64, 32, 16] from shallow to deep.

As shown in Table 16, LVAE, BIVA, and our method can generally outperform the vanilla HVAE,
while our method could still significantly achieve the best performance on these dataset pairs, which
indicates the generality of our method on unsupervised OOD detection.
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Trained on ID dataset and Detecting SVHN as OOD data
ID Dataset Methods AUROC % ↑ AUPRC % ↑ FPR80 % ↓

HVAE 75.2 75.5 50.7
Tiny-ImageNet LVAE 78.8 75.2 34.9

BIVA 80.7 76.8 32.5
Ours 91.6 92.6 11.0
HVAE 78.4 79.0 46.1

LFWPeople LVAE 79.0 82.6 39.0
BIVA 75.6 81.3 57.0
Ours 88.5 91.8 14.5
HVAE 73.2 77.9 60.3

Flower102 LVAE 73.3 74.5 48.6
BIVA 88.2 87.5 21.6
Ours 91.6 91.7 11.4
HVAE 54.2 55.7 82.0

Places365 LVAE 58.2 60.5 80.2
BIVA 72.9 74.3 51.6
Ours 87.3 89.6 19.1
HVAE 74.6 74.0 47.7

Food101 LVAE 80.3 84.5 35.6
BIVA 75.7 79.7 46.2
Ours 92.1 93.2 9.54

Table 16: Comparison on more dataset pairs. All these methods are trained on in-distribution (ID)
dataset and then evaluated on the OOD detection performance with detecting SVHN as OOD dataset.
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(a) latent space of z1 of HVAE (b) latent space of z1 of Ours

(c) latent space of z2 of HVAE (d) latent space of z2 of Ours

(e) latent space of z3 of HVAE (f) latent space of z3 of Ours

(g) latent space of z4 of HVAE (h) latent space of z4 of Ours

(i) latent space of z5 of HVAE (j) latent space of z5 of Ours

Figure 7: The learned each layer’s latent space of zi of HVAE and Our method. Different colors
indicates that the z is inferred from different classes of input x.

26



(a) Input data x (b) Partial Generation samples
from p(x|z>3)

(c) Partial Generation samples
from p(x|z>4)

Figure 8: Partial generation samples from p(x|z>3) and p(x|z>4) of HVAE by taking the latent
variables zk sampled from the posterior qϕ(zk|z>k,x) as input, where x is a fixed data point.
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(a) Generated from a 3-layer HVAE (b) Generated from a 3-layer our model

(c) Generated from a 5-layer HVAE (d) Generated from a 5-layer our model

Figure 9: Generated samples from Prior distribution.
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