
Supplementary Information for A Kernelised Stein Statistic for
Assessing Implicit Generative Models

A Justification of the Stein operator

Here we justify the two-step approach for constructing a Stein operator.

A.1 Step 1: A non-parametric Stein operator

Suppose we can estimate the conditional distribution from data. Then we can create a Markov
chain with values in (Rd)m as follows. Starting with Z0 = {x1, . . . , xm} with xi ∈ Rd for
i = 1, . . . ,m (often we choose d = 1), we pick an index I ∈ [m] at random. If I = i we
replace xi by X ′

i drawn from the conditional distribution of Xi given (Xj : j ̸= i). This gives
Z1 = (x1, . . . , xi−1, X

′
i, xi+1, . . . , xm)8 see for example Reinert [2005]. To make this a continuous-

time Markov process generator, we wait an exponential(1)-distributed time before every change.

This generator induces a Stein operator for the target distribution as follows. Here we take d = 1 for
clarity; the generalisation to other d is straightforward. Let f : Rm → R and consider the expectation
w.r.t. the one-step evolution of the Markov chain

E−i[f(x
(1), . . . , x(i−1), X(i), x(i+1), . . . , x(m))]

=

∫
f(x(1), . . . , x(i−1), y, x(i+1), . . . , x(m))P(X(i) = y|X(j) = x(j), j ̸= i).

We now consider the index i as the i-th coordinate of multivariate random variables in Rm. The
conditional expectation here, fixing all but the i-th coordinate term, only depends on the univariate
conditional distribution Q(i) given by Q(i)(A) = P(X(i) ∈ A|X(j) = x(j), j ̸= i). Thus, the Stein
operator induced from the Markov chain has the form

Af(z) = A(I)f(z) (16)

where
A(i)f(x) = E−i[f(x

(1), . . . , x(i−1), X(i), x(i+1), . . . , x(m))]− f(x). (17)

From the law of total expectation it follows that the Stein identity holds.

A.2 Step 2: marginal Stein operators

In Eq. (17), the expectation

E−i[f(x
(i), . . . , x(i−1), X(i), x(i+1), . . . , x(m))]− f(x(1), . . . , x(m))

can itself be treated via Stein’s method, by finding a Stein operator T (i) and a function g such that
g = gf solves the T (i)-Stein equation Eq. (1) for f ;

T (i)g(x) = E−i[f(x
(1), . . . , x(i−1), X(i), x(i+1), . . . , x(m))]− f(x(1), . . . , x(m)). (18)

Fixing xj , j ̸= i and setting f (i)(x) = f(x(1), . . . , x(i−1), x, x(i+1), . . . , x(m)), we view T (i) as a
Stein operator for a univariate distribution, acting on functions g = gx(−i) : R → R.

Summarising the approach, the Stein operator A acting on functions f : Rm → R underlying the
non-parametric Stein operator is

Af(x(1), . . . , x(m)) = T (I)gf,x−I (x(I)) (19)

where I ∈ [m] is a randomly chosen index. In view of Eq. (19) we take g : Rm → R, write
gx(−i)(x) : R → R for the univariate function which acts only on the coordinate i and fixes the other

8Denote Z1 = (x(1), . . . , x(i−1), X(i)′, x(i+1), . . . , x(m)) ∈ Rm where the superscript (i) is used for the
coordinate index.
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coordinates to equal x(−i), we as Stein operator (using the same letter A as before, which is abuse of
notation);

Ag(x(1), . . . , x(m)) = T (I)gx−I (x(I)).

This formulation simplifies Eq. (19) in that we no longer have to consider the connection between
f and g. The final step is to note that when we condition on the random index I , again a Stein
operator is obtained, as follows. As

EI [Ag(x(1), . . . , x(m))] =
1

m

m∑
i=1

T (i)gx(−i)(x(i)). (20)

As E[T (i)gX(−i)(X(i))] = 0, the Stein identity is satisfied. The operator in Eq. (20) is the Stein
operator given in Eq. (7).

The strategy of averaging over all coordinate terms i ∈ [m] has also studied in variational inference,
via coordinate ascent variational inference (CAVI); see for example Bishop and Nasrabadi [2006]
which focuses on latent variable inference.

B Proofs and additional results

Assuming that if f ∈ H then −f ∈ H we can assume that the supremum over the expectation is
non-negative, and with Eq. 12,

0 ≤ NP-KSDt(P∥Q) = sup
f∈B1(H)

Ep[ÂB
t,Nf ]

= sup
f∈B1(H)

{EpAtf + Ep[ÂB
t,N −At]f}

= sup
f∈B1(H)

{EpAtf + Ep[ÂB
t,N − Ât,N ]f + Ep[f(ŝ

(i)
t,N − st)]}. (21)

Here Ât,N is the Stein operator using the estimated conditional score function ŝt,N with the estimation
based on N synthetic observations. We now assess the contribution to Eq. 21 which stems from
estimating the score function. Note that here we only need to estimate a one-dimensional score
function and hence the pitfalls of score estimation in high dimensions do not apply. We note however
the contribution of Zhou et al. [2020] for a general framework.

Assume that we estimate the univariate conditional density q
(i)
t based on N samples. We assume that

q
(i)
t is differentiable, and we denote its score function by

s
(i)
t (x) =

(q
(i)
t )′(x)

q
(i)
t (x)

.

We next prove an extension of Proposition 3.1.

Proposition B.1. Suppose that for i ∈ [m], ŝ(i)N is a consistent estimator of the univariate score
function s(i). Let T (i) be a Stein operator for the univariate differentiable probability distribution
Q(i) of the generalised density operator form Eq. (8). Let

T̂ (i)
N g(x) = g′(x) + g(x)ŝ

(i)
N

Âg(x) = T̂ (I)
N gx(−I)(x(I)) and

ÂNg(x) =
1

m

∑
i∈[m]

T̂ (i)
N gx(−i)(x(i)).

Then T̂ (i)
N is a consistent estimator for T (i), and Â as well as ÂN are consistent estimators of A.

Proof. Take a fixed x. As ŝ(i)N is a consistent estimator of s(i), it holds that for any ϵ > 0 and for any
x in the range of s(i),

P(|ŝ(i)N (x)− s(i)(x)| > ϵ) → 0
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as N → ∞. Here ω denotes the random element for the estimation, which is implicit in q̂N . On the
set

Aϵ =
{
|ŝ(i)N (x)− s(i)(x)| ≤ ϵ

}
we have that

|T̂ (i)
N g(x)− T (i)g(x)| ≤ ϵf(x).

For every fixed x this expression tends to 0 as ϵ → 0. Hence consistency of T̂N follows. The last two
assertions follow immediately from Eq. 19 and Eq. 20.

B.1 Asymptotic behaviour of NP-KSD

Here we assess the asymptotic behaviour of NP-KSD2. With st denoting the conditional score
function,

NP-KSD2
t (G∥p) = Ex,x′∼p ⟨AQt

k(x, ·),AQt
k(x′, ·)⟩H

where AQtk(x, ·) = Atk(x, ·) can be written as

Atk(x, ·) =
1

m

∑
i∈[m]

{
A

Q̂
(i)
t
k(x, ·) + k(x, ·)(ŝ(i)t,N − s

(i)
t )

}
=

1

m

∑
i∈[m]

{
∂

∂x(i)
k(x, ·) + k(x, ·)ŝ(i)t,N + k(x, ·)(ŝ(i)t,N − s

(i)
t )

}
. (22)

Recall that KSD2 is given in Eq. (5) by

KSD2(q∥p) = Ex,x̃∼p[⟨Aqk(x, ·),Aqk(x̃, ·)⟩H],

where KSD(q∥p) is a deterministic quantity which under weak assumption vanishes when p = q.
Moreover,

KSD2
t (qt∥p) = Ex,x̃∼p[⟨Atk(x, ·), Âtk(x̃, ·)⟩H.

Disentangling this expression in general is carried out using Eq. (7).

Remark B.2. For a Gaussian kernel k = kG as used in this paper, we can exploit its factorisation;

kG(x, x̃) = exp

{
− 1

2σ2

m∑
i=1

(
x(i) − x̃(i)

)2
}

=

m∏
i=1

exp

{
− 1

2σ2

(
x(i) − x̃(i)

)2
}
.

In this situation, taking gx(·) = kG(x, ·), with · denoting an element in Rm, gives

gx;x(−i)(·) = exp

− 1

2σ2

m∑
j:j ̸=i

(
x(j) − (·)(j)

)2

 exp

{
− 1

2σ2

(
x(i) − (·)(i)

)2
}
.

For the operator T (i)
q in Eq. (8) we have

T (i)
q gx(−i)(·) = exp

{
− 1

2σ2

m∑
j=1

(
x(j) − (·)(j)

)2}(
1

σ2
(x(i) − (·)(i)) + (log qt(x(−i)))

′(x(i))

)
.

Thus, the operator At decomposes as

1

m

m∑
i=1

T (i)
q gx(−i)(·) = exp

− 1

2σ2

m∑
j=1

(
x(j) − (·)(j)

)2


1

m

m∑
i=1

{
1

σ2

(
x(i) − (·)(i)

)
+ (log qt(x(−i)))

′(x(i))

}
.
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For a proof of consistency, in our setting the Stein operators are only applied to the observations
z1, . . . ,zn and hence, for our applications, pointwise consistent estimation suffices, in the sense that
that for i = 1, . . . ,m, ŝ(i)t,N = ŝ

(i)
t,N (x(i)) is a consistent estimator of the univariate score function

s
(i)
t = {log(q(x(i))|t(x(−i))}′. Score matching estimators often satisfy not only consistency but

also asymptotic normality, see for example Song et al. [2020]. Such an assumption is required for
Theorem 3.2; recall that we use the notation ŝt,N = (ŝt,N (x(i)), i ∈ [m]). To prove Theorem 3.2 we
re-state it for convenience.
Theorem B.3. Assume that the score function estimator vector ŝt,N is asymptotically normal
with mean 0 and covariance matrix N−1Σs. Then NP-KSD2

t (G∥p) converges in probability to
KSD2

t (qt∥p) at rate at least min(B− 1
2 , N− 1

2 ).

Proof. We have from Eq. (5)

NP-KSD2
t (G∥p) = Ex,x̃∼p[⟨ÂB

t,Nk(x, ·), ÂB
t,Nk(x̃, ·)⟩H.

Expanding this expression, with At denoting the score Stein operator in Eq. 7 for the conditional
distribution qt,

NP-KSD2
t (G∥p) = Ex,x̃∼p[⟨Atk(x, ·),Atk(x̃, ·)⟩H

+Ex,x̃∼p[⟨(ÂB
t,N −At)k(x, ·),Atk(x̃, ·)⟩H

+Ex,x̃∼p[⟨Atk(x, ·), (ÂB
t,N −At)k(x̃, ·)⟩H

+Ex,x̃∼p[⟨(ÂB
t,N −At)k(x, ·), (̂AB

t,N −At)k(x̃, ·)⟩H
= KSD2(qt∥p) + 2Ex,x̃∼p[⟨(ÂB

t,N −At)k(x, ·),Atk(x̃, ·)⟩H
+Ex,x̃∼p[⟨(ÂB

t,N −At)k(x, ·), (ÂB
t,N −At)k(x̃, ·)⟩H

where we used the symmetry of the inner product in the last step. Now, for any function g for which
the expression is defined,

(ÂB
t,N −At)g(x) = (ÂB

t,N − Ât,N )g(x) + (Ât,N −At)g(x) (23)

recalling that Ât,N is the Stein operator using the estimated conditional score function ŝt,N with the
estimation based on N synthetic observations.

To analyse Eq. 23 we first consider (Ât,N −At)g(x);

Ât,Ng(x)−Atg(x) =
1

m

m∑
i=1

g(x(i))(ŝ
(i)
t,N (x(i))− s

(i)
t (x(i))). (24)

As for x(1), . . . , x(m) the vector ŝt,N = (ŝt,N (x(i)), i ∈ [m]) is assumed to be asymptotically
normal with mean 0 and covariance matrix N−1Σs, it follows from Eq. 24 that, asymptotically,√
N(Ât,Ng(x)−Aqtg(x)) has a multivariate normal distribution and, in particular, (Ât,Ng(x)−

Aqtg(x)) has fluctuations of the order N− 1
2 .

For the term (ÂB
t,N − Ât,N )g(x) in Eq. 23 we have

(ÂB
t,N − Ât,N )g(x) =

1

B

B∑
b=1

Tt,N (ib)g(x)−At,Ng(x)

=

m∑
i=1

{
1

B

B∑
b=1

Tt,N (ib)g(x)1(ib = i)− 1

m
Tt,N (i)g(x)

}
.

Let ki =
∑B

b=1 1(ib = i) the number of times that i is re-sampled. Then E(ki) = B
m and we have

(ÂB
t,N − Ât,N )g(x) =

m∑
i=1

T (i)
t,Ng(x)

{
1

B
ki −

1

m

}

=
1

B

m∑
i=1

T (i)
t,Ng(x) {ki − E(ki)} .
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This term is known to be approximately mean zero normal with finite variance Σ(ŝt,N ; g) (which
depends on ŝt,N and g) of order B−1, see for example Holmes and Reinert [2004], where an explicit
bound on the distance to normal is provided. This asymptotic normality holds for the operator given
the estimated conditional score function. As the bootstrap samples are drawn independently of the
score function estimator, without conditioning, the unconditional distribution is a mixture of normal
distributions. For an estimator ŝt,N which is asymptotically normally distributed, the variances
Σ(ŝt,N ; g) will converge to Σ(st; g).

Thus, with Eq. 23,

Ex,x̃∼p[⟨(ÂB
t,N −At)k(x, ·),Atk(x̃, ·)⟩H]

= Ex,x̃∼p[⟨(ÂB
t,N − Ât,N )k(x, ·),Atk(x̃, ·)⟩H] + Ex,x̃∼p[⟨(Ât,N −At)k(x, ·),Atk(x̃, ·)⟩H]

with the first term is approximately a variance mixture of mean zero normals tending to 0 in probability
at rate at least B− 1

2 as B → ∞, and the second term approximately a mean zero normal variable
tending to 0 in probability at rate at least N− 1

2 as N → ∞.

It remains to consider

Ex,x̃∼p[⟨(ÂB
t,N −At)k(x, ·), (ÂB

t,N −At)k(x̃, ·)⟩H.

With Eq. 23 we have

Ex,x̃∼p[⟨(ÂB
t,N −At)k(x, ·), (ÂB

t,N −At)k(x̃, ·)⟩H
= Ex,x̃∼p[⟨(ÂB

t,N − Ât,N )k(x, ·), (ÂB
t,N − Ât,N )k(x̃, ·)⟩H (25)

+Ex,x̃∼p[⟨(ÂB
t,N − Ât,N )k(x, ·), (Ât,N −At)k(x̃, ·)⟩H (26)

+Ex,x̃∼p[⟨(Ât,N −At)k(x, ·), (ÂB
t,N − Ât,N )k(x̃, ·)⟩H (27)

+Ex,x̃∼p[⟨(Ât,N −At)k(x, ·), (Ât,N −At)k(x̃, ·)⟩H. (28)

In Xu and Reinert [2021], Proposition 2, the following result is shown, using the notation as above.

Let
Y =

1

B2

∑
s,t∈[m]

(kskt − E(kskt))hx(s, t).

Assume that hx is bounded and that V ar(Y ) is non-zero. Then if Z is mean zero normal with
variance V ar(Y ), there is an explicitly computable constant C > 0 such that for all three times
continuously differentiable functions g with bounded derivatives up to order 3,

|E[g(Y )]− E[g(Z)] ≤ C

B
.

Moreover, using Equations (17)-(21) from Ouimet [2021], it is easy to see that V ar(Y ) is of the
order B−1. Hence, Term (25) tends to 0 in probability at rate at least B−1. Similarly, using that the
bootstrap sampling is independent of the score function estimation, Terms (26) and (27) tend to 0 in
probability at rate at least (NB)−

1
2 . For Term (28), from Eq. (24),

Ex,x̃∼p[⟨(Ât,N −At)k(x, ·), (Ât,N −At)k(x̃, ·)⟩H]

=
1

m2

m∑
i=1

m∑
j=1

Ex,x̃∼p[⟨(ŝ(i)t,N (x(i))− s
(i)
t (x(i)))k(x(i), ·), (ŝ(j)t,N (x(j))− s

(j)
t (x(j)))k(xj , ·)⟩H].

If ŝt,N is approximately normal as hypothesised, then the inner product is approximately a covariance
of order N−1, and hence the overall contribution from Term (28) is of order at most N−1. This
finishes the proof. □

C Additional experimental details and results

C.1 Additional experiments

Runtime The computational runtime for all tests are shown in Table 3. MMDAgg runtime is also
shown as a comparison. From the result, we can see that NP-KSD runs generally slower than the
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NP-KSD resampling size B=5 B=10 B=20 B=40 (MMDAgg)

Runtime(s) 4.65 6.56 8.43 10.44 5.02

Rejection Rate 0.24 0.40 0.51 0.55 0.27

Table 3: Computational runtime for various re-sample size B: observed sample size n = 100;
bootstrap size b = 200; dimension m = 40. The rejection rate is used for power comparison; higher
rejection rates indicate higher power.

permutation-based test MMDAgg. This is mainly due to the learning of conditional score functions
and the Monte-Carlo based bootstrap procedure. As the re-sample size B increases, NP-KSD test
requires longer runtime. However, the rejection rate B = 20 is close to that of B = 40 (echoing the
results shown in Figure 1(d)). While MMDAgg generally has faster computational runtime, it has
lower test power, which is only comparable to that of NP-KSD with B = 5, at which the runtime
advantage is not that obvious.

Training on synthetic distributions We also train the deep generative models on the synthetic
distributions studied in Section 4 and perform model assessment on the trained models. We consider
the standard Gaussian and Mixture of two-component Gaussian problems. We train a generative
adversarial network with multi-layer perceptron (GAN_MLP)9 and a variational auto-encoder (VAE)
[Kingma and Welling, 2013]. A Noise-Contrastive Score Network NCSN is also trained to learn
the score function, followed by annealed Langevin dynamics [Song and Ermon, 2019, 2020]. All
trainin is carried out via the optimiser Adam [Kingma and Ba, 2014] with adaptive learning rate. The
rejection rates are reported in Table 4.

As shown in Table 4, the unimodal Gaussian distribution is easier to be learned by the generative
modelling procedures, as compared to the two-component Mixture of Gaussian (MoG) model. As a
result, the NP-KSD_m testing procedure shows a higher rejection rate on trained MoG generative
models compared to that of Gaussian.10. However, as these deep models are not designed for training
and sampling a simple low-dimensional distribution, it is not surprising that the procedure produce
samples that not pass the NP-KSD tests.

Inspired by the settings in Gorham and Mackey [2017], where KSD is used to measure sample quality,
we also apply NP-KSD tests on the Stochastic Gradient Langevin Dynamics (SGLD) [Welling and
Teh, 2011] sampling procedure studied in Gorham and Mackey [2017]; in Gorham and Mackey
[2017], SGLD is referred to as Stochastic Gradient Fisher Scoring (SGFS). SGLD is capable of
sampling unimodal distributions, while it can have problems sampling multimodal data. The rejection
rates shown in Table 4 are slightly higher than the test level for MoG, while the type-I error is well
controlled for the Gaussian case. Generated samples from SGLD are visualised Figure 2, illustrating
that the SGLD samples look plausible for the Gaussian model, but less so for the MoG model.

GAN_MLP VAE NCSN SGLD Real

Gaussian 0.36 0.61 0.25 0.06 0.03

MoG 0.78 0.92 0.45 0.12 0.04

Table 4: NP-KSD_m rejection rate: observed sample size n = 100; bootstrap size is 200. Here a low
rejection rate indicates a good type-1 error. Among deep generative models NCSN performs best on
both tasks but it still has a very high rejection rate. SGLD outperforms the deep generative models.

9DCGAN studied in the main text is particularly useful for the (high-dimensional) image dataset due to the
convolutional neural network (CNN) layers; DCGAN is not applicable for the problem in R2.

10We note that NP-KSD and NP-KSD_m with summary statistics taken to be the mean are equivalent in the
two-dimensional problem.
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x1
x 2

x N( , )

x1

x 2

SGLD Samples

x1

x 2

x 0.5 * N( , ) + 0.5 * N( , ) 

x1
x 2

SGLD Samples

Figure 2: Visualisation of samples generated from Stochastic Gradient Langevin Dynamics (SGLD);
top: Gaussian model, bottom: MoG model.

C.2 Data visualisation

In Figure 3 and Figure 4 we show samples from the MNIST and CIFAR10 dataset, together with
samples from trained generative models, respectively.
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(a) Real MNIST samples

(b) NCSN samples (c) DCGAN samples

(d) GAN samples (e) VAE samples

Figure 3: MNIST samples
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(a) Real samples (b) DCGAN samples

(c) CIFAR10.1 samples (d) NCSN samples

Figure 4: CIFAR10 samples

D Equivalence to the multivariate score-Stein operator

Here we show that the operator in Eq. 7 and the corresponding multivariate score-Stein operator in
Eq. 2 are equivalent, when they exist; the difference being the factor 1

m . First we recall the set-up for
score-Stein operators. Let q with smooth support Ωq be differentiable. The score function of q is the
function

sq = T∇,q1 = ∇ log q =
∇q

q

(with the convention that sq ≡ 0 outside of Ωq). The score-Stein operator is the vector-valued
operator

Aq = ∇+ sqIm (29)

acting on differentiable functions g : Rm → R, with Im denoting the m×m identity matrix.
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Proposition D.1. When they exist, then the operators in Eq. 7 and in Eq. 2 differ only by a factor 1
m .

Proof. Writing ∂i for the derivative in direction x(i), the score operator acting on differentiable
functions g : Rm → R can be written as

Apg(x) =

m∑
i=1

{∂ig(x) + g(x)∂i(log q(x))} . (30)

Now, for i ∈ [m],

q(x) = q(x(i)|x(j), j ̸= i)q(x(j), j ̸= i)

and hence
∂i(log q(x)) = ∂i log q(x

(i)|x(j), j ̸= i).

The assertion follows. □

Example D.2 (Bi-variate Gaussian). Consider x = (x(1), x(2))⊤ ∈ R2, i.e. m = 2 and x ∼ N (µ,Σ)

where µ = (µ(1), µ(2))⊤ ∈ R2, Σ =

(
1 σ
σ 1

)
. With the corresponding precision matrix Σ−1 =

1
1−σ2

(
1 −σ
−σ 1

)
, it is easy to check Q(1)(X(1)|X(2) = x(2)) ∼ N (µ(1)+σ(x(2)−µ(2)), 1−σ2).

For a bi-variate differentiable test function g : R2 → R, applying the Stein operator of the form in
Section 3,

Ag(x(1), x(2)) =
1

2

{
T (1)gx(2)(x(1)) + T (2)gx(1)(x(2))

}
=

1

2

{
(gx(2))′(x(1))− x(1) − µ(1) − σ(x(2) − µ(2))

1− σ2
gx(2)(x(1))

+(gx(1))′(x(2))− x(2) − µ(2) − σ(x(1) − µ(1))

1− σ2
gx(1)(x(2))

}
=

1

2

{
∂1g(x

(1), x(2))− x(1) − µ(1) − σ(x(2) − µ(2))

1− σ2
gx(2)(x(1))

+∂2g(x
(1), x(2))− x(2) − µ(2) − σ(x(1) − µ(1))

1− σ2
gx(1)(x(2))

}
=

1

2

{
∇× g(x(1), x(2))− Σ−1(x(1) − µ(1), x(2) − µ(2))T g(x(1), x(2))

}
where ∂i denotes the derivative with respect to x(i). Thus, we recover the score operator given in
Eq. 2.

E Energy-based models and score matching

An Energy-based model (EBM) has density given by

q(x) =
1

Z
exp{−E(x)}, (31)

where Z is the (generally) intractable normalisation constant (or partition function) and E(x) is called
the energy function. EBMs [LeCun et al., 2006] have been used in machine learning contexts for
modelling and learning deep generative models. In particular, learning and training EBMs has been
studied in machine learning, see for example Song and Kingma [2021]. One of the most popular and
relatively stable training objectives is the score-matching (SM) objective given in Eq. (10) [Hyvärinen,
2005],

J(p∥q) = Ep

[
(log p(x)′ − log q(x)′)

2
]
.

For an EBM, the SM objective only requires computing ∇E(x) and ∇ · ∇E(x) (or ∆E(x)), but it
does not require computing the partition function Z. Moreover, by learning the SM objective, we can
obtain ∇ log q(x) directly, to construct an approximate Stein operator. We use this method for the
univariate score function estimation.
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F More on kernel-based hypothesis tests

F.1 Maximum-mean-discrepancy tests

Maximum-mean-discrepancy (MMD) has been introduced as a kernel-based method to tackle
two-sample problems [Gretton et al., 2007], utilising the rich representation of the functions in a
reproducing kernel Hilbert space (RKHS) via a kernel mean embedding. Let k : X × X → R be
the kernel associated with RKHS H. The kernel mean embedding of a distribution p induced by k is
defined as the function

µp := Ex∼p[k(x, ·)] ∈ H, (32)
whenever µp exist. The kernel mean embedding in Eq.32 can be estimated empirically from indepen-
dent and identically distributed (i.i.d.) samples. Given x1, . . . , xn ∼ p:

µ̂p :=
1

n

n∑
i=1

k(xi, ·) (33)

replacing p by its empirical counterpart p̂ = 1
n

∑n
i=1 δxi

where δxi denotes the Dirac measure at
xi ∈ X . For i.i.d. samples, the empirical mean embedding µ̂p is a

√
n-consistent estimator for µp in

RKHS norm [Tolstikhin et al., 2017], and with n denoting the number of samples, ∥µp − µ̂p∥H =

Op(n
− 1

2 ). When the sample size n is small, the estimation error may not be negligible.

The MMD between two distributions p and q is defined as

MMD(p∥q;H) = sup
∥f∥H≤1

Ex∼p[f(x)]− Ex̃∼q[f(x̃)]

= sup
∥f∥H≤1

⟨f, µp − µq⟩H = ∥µp − µq∥H. (34)

One desirable property for MMD is to be able to distinguish distributions in the sense that
MMD(p∥q;H) = 0 ⇐⇒ p = q11. This property can be achieved via characteristic kernels
[Sriperumbudur et al., 2011].

It is often more convenient to work with the squared version of MMD:

MMD2(p∥q;H) = ∥µp − µq∥2H = ⟨µp, µp⟩+ ⟨µq, µq⟩ − 2 ⟨µp, µq⟩
= Ex,x̃∼pk(x, x̃) + Ey,ỹ∼qk(y, ỹ)− Ex∼p,y∼qk(x, y). (35)

Given two sets of i.i.d. samples Sp = {x1, . . . , xn}
i.i.d.∼ p and Sq = {y1, . . . , yl}

i.i.d.∼ q, an unbiased
estimator of Eq.35, based on the empirical estimate of kernel mean embedding in Eq.33, is given by

MMD2
u(Sp∥Sq;H) =

1

n(n− 1)

∑
i̸=i′

k(xi, xi′) +
1

l(l − 1)

∑
j ̸=j′

k(yj , yj′)−
2

nl

∑
ij

k(xi, yj).

(36)

A two-sample test (or two-sample problem) aims to test the null hypothesis H0 : p = q against the
alternative hypothesis H1 : p ̸= q. It has been shown that the asymptotic distribution of the n-scaled
statistic n · MMD2

u(Sp∥Sq;H) under the null (p = q) is that of an infinite weighted sum of χ2-
distribution [Gretton et al., 2012a, Theorem 12], while under the alternative (p ̸= q), the

√
n-scaled

statistic
√
n ·MMD2

u(Sp∥Sq;H) is asymptotically normally distributed with the mean centered at
MMD(p∥q;H) > 0. Thus, n ·MMD2

u(Sp∥Sq;H) is taken as a test statistic to be compared against
the rejection threshold. If the test statistic exceeds the rejection threshold, the empirical estimation of
the MMD statistic is thought to exhibit significant departure from the null hypothesis so that H0 is
rejected.

As the null distribution is given by an infinite weighted sum of χ2 random variables which does not
have a closed form expression, the null distribution is often simulated via a permutation procedure
[Gretton et al., 2008]: Combine and order two sets of samples as zi = xi, i ∈ [n] and zj =
yj−n, n+1 ≤ j ≤ n+l. Let µ : [n+l] → [n+l] be a permutation, and write zµ = {zµ(1)

, . . . zµ(n+l)
}.

11Note that MMD is symmetric with respect to p, q, while KSD is not symmetric with respect to p, q.
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Sample size N 20 50 100 200 500 1000

MMD 0.08 0.06 0.36 0.9 1.00 1.00
MMDAgg 0.06 0.07 0.02 0.03 0.02 0.05

KSD 0.07 0.04 0.04 0.02 0.08 0.06
NP-KSD 0.06 0.03 0.04 0.06 0.05 0.04

Table 5: Type-I error with increasing sample size N for 100 tests. H0 is Standard Gaussian with
m = 3; n = 50; the test level is α = 0.05; nsim = 500.Bold values show uncontrolled type-I errors.

Then zµ is re-split into Sµ
p = {zi}1≤i≤n and Sµ

q = {zj}n+1≤j≤n+l. The permuted MMD is
computed via Eq. 36 as

MMD2
u(z

µ) = MMD2
u(S

µ
p∥Sµ

q ;H). (37)

For µ1, . . . , µB , we obtain MMD2
u(z

µ1), . . . ,MMD2
u(z

µB ) and use these values to compute the
empirical quantile of the test statistics MMD2

u(Sp∥Sq;H).

To test whether the implicit generative model can generate samples following the same distribution as
the observed sample, it is natural to consider the two-sample problem described above, which tests
whether two sets of samples are from the same distribution. In the model assessment context, one set
of samples (of size N ) are generated from the implicit model, while the other set of samples (of size
n) are observed.

The MMD test often assumes that the sample sizes n and l are equal; its asymptotic theoretical
guarantees including consistency are valid under the regime that n, l → ∞ [Gretton et al., 2009,
2012b, Jitkrittum et al., 2016]; also the relative model comparisons in Jitkrittum et al. [2018] only
considered the cases n = l. In our setting, the sample size l is usually denoted by N . For our model
assessment problem setting, when n is fixed and N → ∞ is allowed to be asymptotically large, i.e.
n ≪ N , we find that the type-I error may not be controlled. Hence it is not always the case that MMD
is able to pick up the distributional difference between two sets of samples under the null hypothesis.
A simple experiment in Table 5 shows an example in which the type-I error is not controlled when N
is increasing. Hence, MMD is not used as comparison for NP-KSD.

The high type-I error of the MMD statistic as N increases, shown in Table 5 can be heuristically
explained as follows. Let {x1, . . . , xn}, {x̃1, . . . , x̃N} i.i.d.∼ p where the two sets of samples are
generated from the same distribution. Let µ̂p,n = 1

n

∑
i∈[n] k(xi, ·), and µ̂p,N = 1

N

∑
j∈[N ] k(x̃j , ·).

The empirical MMD between µ̂p,n and µ̂p,N can be seen as

∥µ̂p,n − µ̂p,N∥2H = ∥(µ̂p,n − µp)− (µ̂p,N − µp)∥2H, (38)

where MMD aims to detect the asymptotic equality of (µ̂p,n − µp) and (µ̂p,N − µp). When n is
small and fixed, and n ≪ N , the difference is non-trivial and a rich-enough kernel is able detect this
difference, leading to MMD rejecting the null hypothesis although it is true.

MMDAgg, a non-asymptotic MMD-based test Recently, Schrab et al. [2021] proposed an
aggregated MMD test that can incorporate the setting n ̸= N as long as there exists a constant C > 0
such that n ≤ N ≤ cn. Under this condition, MMDAgg is a consistent non-asymptotic test with
controlled type-I error, see Table 5. We use it as the competitor method in the main text and in
Table 5; in Table 5 KSD is also included, as preferred method when the underlying null distribution
is known.

The MMDAgg test statistic is computed by aggregating a set of MMD statistic based on different
choices of kernel, e.g. Gaussian kernels with different bandwidth. MMDAgg takes into account a
number of choices of bandwidth λ ∈ Λ where Λ is a finite set. Let M̂λ denote the empirical MMD
using a kernel with bandwidth λ. Each λ is weighted, via wλ, where

∑
λ∈Λ wλ = 1. In Schrab et al.

[2021] (as well as in our implemented experiments), uniform weights are chosen; wλ ≡ w = 1
|Λ| .

Denote by B1 the number of samples used to simulate the null distribution for quantile estimation 12

and denote by B2 the number of simulated samples used to estimate the empirical rejection probability.

12This is the same as notion B in the main text as well as in Eq. 37.
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Define q̂B1

λ,1−α(z
B1) as the conditional empirical (1 − α)-quantile when MMD uses a kernel with

bandwidth λ, estimated from the permutation procedure with B1 permutations using Eq.37. Then for
a fixed test level α, a quantity u is estimated via the bi-section method such that

P

(
max
λ∈Λ

(M̂λ − q̂B1

λ,uw(z
B1)) > 0

)
≤ α. (39)

We reject H0 if for any λ ∈ Λ and with the estimated û, we have that M̂λ exceeds the rejection
probability in Eq. 39; otherwise we do not reject H0. In this way, MMDAgg does not only achieve
the desired non-asymptotic type-I error but is also able to explore a wide range of kernels in order to
produce stronger test power. The estimation and adjustment in Eq. 39 is absent in standard MMD
testing procedures Gretton et al. [2012a] and is crucial for the MMDAgg being a non-asymptotic test.

F.2 Wild-bootstrap on KSD testing procedures

In Chwialkowski et al. [2014] a wild bootstrap procedure is proposed to simulate the null distribution
via so-called wild-bootstrap samples. For KSD, Chwialkowski et al. [2014] have shown weak
asymptotic convergence to the null distribution for deterministic and bounded kernels. For the
NP-KSD test statistic, wild-bootstrap samples do not necessarily converge to the null distribution, due
to the estimation difference (ŝt − s), creating a random Stein kernel for NP-KSD. Perhaps therefore
unsurprisingly, the wild bootstrap procedure NP-KSD does not control the type-I error correctly.
Instead, we consider a Monte Carlo procedure to simulate the null distribution of NP-KSD. While
Monte Carlo estimation is more computationally intensive than wild-bootstrap, it is an accurate
method by design.

Figure 5 illustrates this point. Figure 5(a) shows samples from a Gaussian distribution. The true
density is plotted in red. Two score matching density estimates, SM1 and SM2, are calculated; SM1
presents a good fit whereas SM2 is a less accurate estimate. For KSD, which is applicable when
the underlying null distribution is known, Figure 5(b) shows that the Monte Carlo distribution and
the wild-bootstrap distribution are close and reach the same conclusion for the KSD test statistic.
Using the well-fitting SM1 score density estimate, Figure 5(c) gives the Monte Carlo distribution
and the wild-bootstrap distribution. The wild-bootstrap distribution is close to the wild-bootstrap
distribution for the KSD. In contrast, it differs considerably from the Monte Carlo distribution and
would reject the null hypothesis although it is true. Figure 5(d) shows a similar result for the not so
well fitting estimate SM2. The wild-bootstrap distribution is now more spread out but the observed
test statistic is still in the tail of this distribution, whereas it is close to the center of the Monte
Carlo distribution. In the synthetic experiments for the MoG model in the main text, the model
misspecification NP-KSD_G falls under this setting. These plots illustrate that using wild-bootstrap
samples in this scenario could lead to erroneous conclusions. Hence we use Monte Carlo samples.
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(a) Samples and fitted densities
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(c) Simulated null distributions from fitted SM1
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(d) Simulated null distributions from fit SM2

Figure 5: Visualisation for NP-KSD and KSD testing procedures. For KSD, the wild-bootstrap
distribution roughly agrees with the Monte Carlo distribution, whereas for NP-KSD, the wild-
bootstrap distribution deviates strongly from the Monte Carlo distribution, indicating a danger of
reaching an erroneous conclusion when using wild-bootstrap samples in this scenario.
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