
A Lemmas

Lemma 3. Let l be any positive integer. There exists an l-layer ReLU network g with 2n(l − 1)
hidden neurons and a maximum width of 2n such that g(x) = x for all x ∈ Rn. Furthermore,
Algorithm 5 finds such a network in poly(n, l) time.

Proof. Appendix B.6.

Definition 6. Let g(l,n,w) denote an l-layer ReLU network with n hidden neurons and a maximum
width bounded from above by w.
Lemma 4. There exists g(l1+l2−1,n1+n2,max(w1,w2)) that represents any composition of
g(l1,n1,w1) and g(l2,n2,w2). Algorithm 4 finds such a network computing the composition in
poly

(
max(w1, w2),max(l1, l2)

)
time.

Proof. Appendix B.7.

Lemma 5. The sequence r(k) defined by (14) is a strictly increasing sequence.

Proof. Appendix B.8.

Lemma 6. For any positive integer k, the sequence r(k) defined by (14) satisfies

r(k) ≤ 3
(
2⌈log2 k⌉ − 1

)
< 6k − 3. (15)

Proof. Appendix B.9

Lemma 7. Let m1 and m2 be the output dimensions of g(l1,n1,w1) and g(l2,n2,w2), respectively.
Define

l = max(l1, l2), (16)
w = wj +max(wi, 2mi), (17)

and
n = n1 + n2 + 2mi|l1 − l2| , (18)

where i = argmink∈[2] lk and j = [2] \ {i}. Then, there exists g(l,n,w) such that

g(l,n,w)(x) =

[
g(l1,n1,w1)(x)
g(l2,n2,w2)(x)

]
(19)

for all x ∈ Rn.

Proof. Appendix B.10.

Lemma 8. Let m1,m2, · · · ,mk be the output dimensions of g(l1,n1,w1), g(l2,n2,w2), · · · , g(lk,nk,wk),
respectively. Define

l = max
i∈[k]

li, (20)

w =
∑
i∈[k]

max(wi, 2mi), (21)

and
n =

∑
i∈[k]

ni + 2mi(l − li). (22)

Then, there exists g(l,n,w) such that

g(l,n,w)(x) =


g(l1,n1,w1)(x)
g(l2,n2,w2)(x)

...
g(lk,nk,wk)(x)

 (23)

for all x ∈ Rn. Furthermore, Algorithm 3 finds such a network in poly
(
maxi∈[k] wi, k, l

)
time.

15

Proof. Appendix B.11.

Lemma 9. Let f1, f2, · · · , fk be any affine functions such that fi : Rn → R for all i ∈ [k]. Define
the set of feasible ascending orders as

Snf1,f2,··· ,fk =
{
(s1, s2, · · · , sk) ∈ S(k) | fs1(x) ≤ fs2(x) ≤ · · · ≤ fsk(x),x ∈ Rn

}
(24)

where S(k) is the collection of all permutations of the set [k]. It holds true that

∣∣∣Snf1,f2,··· ,fk ∣∣∣ ≤ min

 n∑
i=0

(k2−k
2

i

)
, k!

 . (25)

Proof. Appendix B.12.

Lemma 10. If Definition 1 is satisfied for a non-affine function, then every nonempty subset has a
nonempty intersection with the other subset or at least one of the other subsets.

Proof. Appendix B.13.

Assumption 1. The number of closed connected subsets satisfying Definition 1 is a minimum.

The interior and frontier (boundary) of a set X are denoted as IntX and FrX , respectively.

Lemma 11. Let fi denote the affine function associated with Xi for i ∈ [I] where {Xi}i∈[I] is a
family of closed connected subsets satisfying Assumption 1. Then, for any i ∈ [I], j ∈ [I] such that
i ̸= j and Xi

⋂
Xj ̸= ∅,

(a) fi and fj are different, and {x ∈ Rn| fi(x) = fj(x)} ≠ ∅.

(b) {x ∈ Rn| fi(x) = fj(x)} is an affine subspace of Rn with dimension n− 1.

(c) Xi

⋂
Xj ⊆ {x ∈ Rn| fi(x) = fj(x)}.

(d) x ̸∈ IntXi and x ̸∈ IntXj for all x ∈ Xi

⋂
Xj .

Proof. Appendix B.14, B.15, B.16, and B.17.

Lemma 12. If a family of closed connected subsets {Xi}i∈[I] satisfies Assumption 1, then, for all
i ∈ [I],

(a) IntXi ̸= ∅.

(b) FrXi =
⋃

k∈[I]\i Xk

⋂
Xi.

(c) IntXi

⋂
IntXj = ∅ for all j ∈ [I] such that j ̸= i.

Proof. Appendix B.18, B.19, and B.20.

Lemma 13. Let {Xi}i∈[m] be any finite family of subsets satisfying Assumption 1. Let {Hj}j∈[k] be
any finite family of affine subspaces of Rn with dimension n− 1. Then, for every i ∈ [m],

Xi

⋂Rn \
⋃
j∈[k]

Hj

 ̸= ∅. (26)

Proof. Appendix B.21.

Proposition 1. For any family of closed connected subsets satisfying Definition 1, all subsets are the
largest closed connected subsets if and only if Assumption 1 is satisfied.

Proof. Appendix B.22.

16

B Proofs

B.1 Proof of Lemma 1

Proof. Let the family of closed connected subsets Q̄ = {Xi}i∈[I] satisfy Assumption 1 for any
p ∈ Pn,k. Let the k distinct linear components of p be f1, f2, · · · , fk and Hlm be the intersection
between fl and fm for l ∈ [k],m ∈ [k], l ̸= m. Note that every Hlm is an affine subspace of
Rn with dimension n − 1 (a hyperplane) or an empty set. Because the linear components are
distinct, it must be true that k ≤ I by Definition 2. If p is an affine function, then it follows that
k = minQ̄∈Cn,k(p)

∣∣Q̄∣∣ = ϕ(n, k) = 1, the claim holds. For the non-affine case, we must have k > 1.

LetR = Rn \ H where
H =

⋃
k∈[m],l∈[m],k ̸=l

Hkl. (27)

Note thatH ̸= ∅ according to Lemma 10 and 11(c). By Lemma 12(b), the boundary or frontier of Xi

for i ∈ [I] is given by
FrXi =

⋃
j∈[I]\i

(
Xi

⋂
Xj

)
. (28)

Because every Xi

⋂
Xj for i ∈ [I], j ∈ [I], i ̸= j is a subset of someHlm for l ∈ [k],m ∈ [k], l ̸= m

by Lemma 11(c), it follows that the boundary of Xi, FrXi, satisfies

FrXi ⊆ H (29)

for i ∈ [I]. The interior of Xi, IntXi, is a nonempty subset of Rn according to Lemma 12(a).
Furthermore, by Lemma 13,

Xi

⋂
R ≠ ∅. (30)

Now, define
Zi = (IntXi)

⋂
R (31)

for i ∈ [I]. Note that Zi = Xi

⋂
R ≠ ∅ due to (29) and (30). Let A be any subset of Rn and λ(A)

be the number of connected components of A in Rn. It must be true that

1 = λ(Xi) ≤ λ (IntXi) ≤ λ(Zi). (32)

By Lemma 12(c), IntXi

⋂
IntXj = ∅ for i ∈ [I], j ∈ [I], i ̸= j. We have

I ≤ λ

⋃
i∈[I]

IntXi

 =
∑
i∈[I]

λ(IntXi) ≤
∑
i∈[I]

λ(Zi) = λ

⋃
i∈[I]

Zi

 = λ

⋃
i∈[I]

Xi

⋂
R

 . (33)

Notice that ⋃
i∈[I]

Xi

⋂
R = Rn

⋂
R = R (34)

by the property
⋃

i∈[I] Xi = Rn in Definition 1. Plugging (34) into (33) leads to

I ≤ λ(R) (35)

which states that I is bounded from above by the number of connected components of R in Rn.
Notice that every component is an open convex set because every component is the intersection of a
finite number of open half spaces. Therefore,

I =
∣∣Q̄∣∣ = min

Q′∈C′
n,k(p)

∣∣Q′∣∣ ≤ min
Q∈Cn,k(p)

|Q| ≤ λ(R) (36)

where C′n,k(p) denotes the collection of all families of closed connected subsets satisfying Definition
1 for any p ∈ Pn,k. Because the ascending order of these k linear components does not change within
a connected component ofR, λ(R) can be bounded from above by the number of feasible ascending
orders. Let S(k) be the collection of all permutations of the set [k]. It follows that

λ(R) ≤
∣∣∣{(s1, s2, · · · , sk) ∈ S(k) | fs1(x) ≤ fs2(x) ≤ · · · ≤ fsk(x),x ∈ Rn

}∣∣∣ . (37)

Finally, Lemma 9 proves the statement by bounding the number of feasible ascending orders.

17

B.2 Proof of Lemma 2

Proof. It suffices to show that
g(x) = max

i∈[k]
xi. (38)

for all x =
[
x1 x2 · · · xk

]T ∈ Rk since the composition of affine functions is still affine. The
affine functions can be absorbed into the first layer of the ReLU network g. We prove the case for
taking the maximum of m real numbers since the same procedure below can be applied to prove the
case of taking the minimum due to the following identity

min
i∈[k]

fi(x) = −max
i∈[k]
−fi(x). (39)

Because max(x1, x2) = max(0, x2−x1)+max(0, x1)−max(0,−x1) for any x1 ∈ R and x2 ∈ R,
it holds true that

max
j∈[k]

xj =

maxj∈[k2]
maxi∈{2j−1,2j} xi, if k is even

maxj∈[k+1
2] α(j;x1, x2, · · · , xk), if k is odd

(40)

for xj ∈ R, j ∈ [k] where

α(j;x1, x2, · · · , xk) =

maxi∈{2j−1,2j} xi, if j ∈
[
k−1
2

]
max(0, xk)−max(0,−xk), if j = k+1

2

. (41)

Let r(k) be the number of operations of taking the maximum between a zero and a real number, i.e.,
max(0, x), x ∈ R for computing the maximum of k real numbers using (40). One can find r(2) = 3
and r(3) = 8 by expanding all operations in (40). Because we do not need any maximum operations
to compute the maximum over a singleton, we define r(1) = 0. For any positive integer k such that
k ≥ 2, we have the recursion

r(k) =


3k
2 + r

(
k
2

)
, if k is even

2 + 3(k−1)
2 + r

(
k+1
2

)
, if k is odd

(42)

according to (40). Note that r(n) is the number of ReLUs in a ReLU network g that computes the
maximum of n real numbers or a max-affine function. The number of ReLUs here is equivalent to the
number of hidden neurons according to Definition 4. We shall note that the number of ReLU layers is
equivalent to the number of hidden layers.

Obviously, we only need a 1-layer ReLU network with no ReLUs to compute the maximum of a
singleton. Suppose that we aim to compute the maximum of m = 2n real numbers for any positive
integer n. Then, every time the recursion goes to the next level in (42), the number of variables
considered for computing the maximum is halved. Hence, the number of ReLU layers is n. When
m is not a power of two, i.e., 2n < m < 2n+1, then we can always construct a ReLU network with
n+ 1 ReLU layers and 2n+1 input neurons, and set weights connected to the 2n+1 −m “phantom
input neurons” to zeros. Because ⌈log2 m⌉ = n+1 for 2n < m < 2n+1, the number of ReLU layers
is ⌈log2 m⌉ for any positive integer m. By Definition 5, we have l(m) = ⌈log2 m⌉+ 1.

By Lemma 5, r(k) is a strictly increasing sequence. Therefore, the maximum width of the network is
given by the width of the first hidden layer. When L = 1 or m = 1, the width is 0 due to Definition 5.
When L > 1 or m > 1,

max
l∈[L−1]

kl =

{
3m
2 , if m is even
2 + 3(m−1)

2 , if m is odd

=

⌈
3m

2

⌉
.

(43)

Algorithm 2 directly follows from the above construction. Its complexity analysis is deferred to Table
2 in Appendix C.

18

B.3 Proof of Theorem 2

Proof. Let f1, f2, · · · , fk be k distinct linear components of p and Q be any family of closed convex
subsets of Rn satisfying Definition 1. By Theorem 4.2 in [Tarela and Martínez, 1999], p can be
represented as

p(x) = max
X∈Q

min
i∈A(X)

fi(x) (44)

for all x ∈ Rn where
A (X) =

{
i ∈ [k] | fi(x) ≥ p(x),∀x ∈ X

}
(45)

is the set of indices of linear components that have values greater than or equal to p(x) for all x ∈ X .
A thorough discussion of the representation (44) is given in Section 4.2.

According to (44), there are|Q| minima required to be computed where each of them is a minimum of∣∣A (X)
∣∣ real numbers. Then, the value of p can be computed by taking the maximum of the resulting

|Q| minima. We will show that these operations are realizable by a ReLU network. By Lemma 2, an
l(m)-layer ReLU network with r(m) hidden neurons and a maximum width of w(m) can compute
the extremum of m real numbers given by m affine functions.

We realize (44) in three steps. First, we create |Q| ReLU networks where each of them is an
l
(∣∣A (X)

∣∣)-layer ReLU network with r
(∣∣A (X)

∣∣) hidden neurons and a maximum width of

w
(∣∣A (X)

∣∣) that computes mini∈A(X) fi(x) for X ∈ Q. Second, we parallelly concatenate these
|Q| networks, i.e., put them in parallel and let them share the same input to obtain a ReLU network
that takes x and outputs |Q| real numbers. Finally, we create an l

(
|Q|
)
-layer ReLU network with

r
(
|Q|
)

hidden neurons and a maximum width of w
(
|Q|
)

that takes the maximum of|Q| real numbers.

The parallel combination of|Q| networks in the second step can be realized by Lemma 8. The third
step can be fulfilled by Lemma 4. With the above construction, we can now count the number of
layers, the upper bound for the maximum width, and the number of hidden neurons for a ReLU
network that realizes p. The number of layers is given by

l
(
|Q|
)
+max

X∈Q
l
(∣∣A (X)

∣∣)− 1. (46)

The maximum width is bounded from above by

max

∑
X∈Q

max

(
w
(∣∣A (X)

∣∣) , 2) , w
(
|Q|
) . (47)

The number of hidden neurons is given by

r
(
|Q|
)
+
∑
X∈Q

r
(∣∣A (X)

∣∣)+ 2

(
max
Y∈Q

l
(∣∣A (Y)

∣∣)− l
(∣∣A (X)

∣∣)) . (48)

Because A (X) for every X ∈ Q is a subset of [k], it holds that

1 ≤
∣∣A (X)

∣∣ ≤ k (49)

for all X ∈ Q. Therefore, the number of layers in (46) can be bounded from above by

l
(
|Q|
)
+ l (k)− 1 =

⌈
log2|Q|

⌉
+ ⌈log2 k⌉+ 1 (50)

where we have used the definition of the function l in Lemma 2. Again, using (49), the upper bound
for the maximum width in (47) can be further bounded from above by

max

∑
X∈Q

max
(
w (k) , 2

)
, w
(
|Q|
) = max

(
|Q|max

(
w (k) , 2

)
, w
(
|Q|
))

≤ max

|Q|max

(⌈
3k

2

⌉
, 2

)
,

⌈
3|Q|
2

⌉
=

⌈
3k

2

⌉
|Q|

(51)

19

where we have used the definition of the function w in Lemma 2. Note that the maximum width is
zero when the number of layers is one. Finally, again, using (49), the number of neurons in (48) can
be bounded from above by

r
(
|Q|
)
− 2l(k) + 2l(1) +

∑
X∈Q

(
r (k) + 2l (k)− 2l(1)

)
= r

(
|Q|
)
− 2l(k) + 2l(1) +|Q|

(
r (k) + 2l (k)− 2l(1)

)
= r

(
|Q|
)
− 2 ⌈log2 k⌉+|Q|

(
r (k) + 2 ⌈log2 k⌉

)
≤ 3

(
2⌈log2|Q|⌉ − 1

)
− 2 ⌈log2 k⌉+|Q|

(
3
(
2⌈log2 k⌉ − 1

)
+ 2 ⌈log2 k⌉

)
= 3

(
2⌈log2|Q|⌉ − 1

)
+ 3|Q|

(
2⌈log2 k⌉ − 1

)
+ 2

(
|Q| − 1

)
⌈log2 k⌉

(52)

where we have used Lemma 6 for the upper bound in the fourth line of (52). Expanding and
rearranging terms in (52) lead to (9).

Algorithm 1 directly follows from the above construction. Its complexity analysis is deferred to Table
1 in Appendix C.

B.4 Proof of Theorem 1

Proof. By Lemma 1, the number of distinct linear components k is bounded from above by the
number of pieces, i.e., k ≤ q, implying that the bounds in Theorem 2 can be written in terms of q.
Substituting k with q in Theorem 2 proves the claim.

According to Theorem 2, the time complexity of Algorithm 1 is poly(n, k, q, L). Using the bound
k ≤ q proves the claim for the time complexity.

B.5 Proof of Theorem 3

Proof. By Lemma 1, the minimum number of closed convex subsets q of a CPWL function p : Rn →
R can be bounded from above by ϕ(n, k), i.e.,

q ≤ ϕ(n, k) = min

 n∑
i=0

(k2−k
2

i

)
, k!

 . (53)

Substituting q with ϕ(n, k) in Theorem 2 proves the claim.

B.6 Proof of Lemma 3

Proof. Obviously, a one-layer ReLU network is an affine function whose weights can be set to fulfill
the identity mapping in Rn. We prove the case when the number of layers is more than one in the
next paragraph. We start with a scalar case, and then work on the vector case.

For any x ∈ R, it holds that max(0, x) −max(0,−x) = x. In other words, a hidden layer of two
ReLUs with +1 and−1 weights can represent an identity mapping for any scalar. For any vector input
in Rn, we can concatenate such structures of two ReLUs in parallel because the identity mapping can
be decomposed into n individual identity mappings from n coordinates. Therefore, a two-layer ReLU
network with 2n hidden neurons can realize the identity mapping in Rn. Stacking such a hidden layer
any number of times gives a deeper network that is still an identity mapping. Algorithm 5 follows
from the above construction. Its complexity analysis is deferred to Table 5 in Appendix C.

B.7 Proof of Lemma 4

Proof. Because a composition of two affine mappings is still affine, the first layer of either one of the
two networks can be absorbed into the last layer of the other one if their dimensions are compatible.
The resulting new network still satisfies Definition 4. The number of layers of the new network is
l1 + l2 − 1. The number of hidden neurons of the new network is n1 + n2. The maximum width
of the new network is at most max(w1, w2). Algorithm 4 follows from the above construction. Its
complexity analysis is deferred to Table 4 in Appendix C.

20

B.8 Proof of Lemma 5

Proof. For any positive even integer k ≥ 4, it holds true that

r(k)− r(k − 1) =
3k

2
+ r

(
k

2

)
− 2− 3(k − 2)

2
− r

(
k

2

)
= 1. (54)

For any positive odd integer k such that k ≥ 3, we have

r(k)− r(k − 1) = 2 +
3(k − 1)

2
+ r

(
k + 1

2

)
− 3(k − 1)

2
− r

(
k − 1

2

)

=

3, if k+1
2 is even

2 + r
(

k+1
2

)
− r

(
k+1
2 − 1

)
, otherwise

(55)

which is strictly greater than zero. Note that (55) is greater than 0 because the equality in (55) can be
applied over and over again to reach (54) or the base case r(2)− r(1) = 3.

B.9 Proof of Lemma 6

Proof. By Lemma 5, r(k) is a strictly increasing sequence. Then, it must be true that

r(k) = r
(
2log2 k

)
≤ r

(
2⌈log2 k⌉

)
. (56)

According to the recursion (14), it holds that

r
(
2⌈log2 k⌉

)
=

3

2

⌈log2 k⌉∑
i=1

2i

=
3

2

(
2⌈log2 k⌉+1 − 2

)
= 3

(
2⌈log2 k⌉ − 1

)
< 3

(
2(log2 k)+1 − 1

)
= 3 (2k − 1) .

(57)

B.10 Proof of Lemma 7

Proof. Two ReLU networks can be combined in parallel such that the new network shares the same
input and the two output vectors from the two ReLU networks are concatenated together. To see this,
we show that the weights of the new network can be found by the following operations. Let W1

i and
b1
i be the weights of the i-th layer in g(l1,n1,w1), and W2

i and b2
i are the weights of the i-th layer in

g(l2,n2,w2). Let Wi and bi be the weights of the new network. Now, we find the weights for the new
network. In the first layer, we construct

W1 =

[
W1

1

W2
1

]
(58)

and

b1 =

[
b1
1

b2
1

]
. (59)

For the i-th layer such that 1 < i ≤ min(l1, l2), we use

Wi =

[
W1

i 0
0 W2

i

]
(60)

and

bi =

[
b1
i

b2
i

]
. (61)

21

If l1 = l2, then the claim is proved. If l1 ̸= l2, then we stack a network that implements the
identity mapping to the shallower network such that the numbers of layers of the two networks
are the same. Because the network g(li,ni,wi) is shallower than the other network, we append
|l1 − l2| hidden layers to g(li,ni,wi) such that the procedure in (60) and (61) can be used. By Lemma
3, there exists an

(
|l1 − l2|+ 1

)
-layer ReLU network g(|l1−l2|+1,2mi|l1−l2|,2mi) with 2mi|l1 − l2|

hidden neurons and a maximum width bounded from above by 2mi for representing the identity
mapping in Rmi . By Lemma 4, there exists a network g(li+|l1−l2|,ni+2mi|l1−l2|,max(wi,2mi)) that
represents the composition of g(|l1−l2|+1,2mi|l1−l2|,2mi) and g(li,ni,wi). Now, (60) and (61) can be
used to combine g(lj ,nj ,wj) and g(li+|l1−l2|,ni+2mi|l1−l2|,max(wi,2mi)) in parallel because the number
of layers in network g(li+|l1−l2|,ni+2mi|l1−l2|,max(wi,2mi)) is equal to lj according to the fact that
li +|l1 − l2| = max(l1, l2) = lj . Such a new network has max(l1, l2) layers and

nj + ni + 2mi|l1 − l2| = n1 + n2 + 2mi|l1 − l2| (62)

hidden neurons. The maximum width of the new network is at most wj +max(wi, 2mi).

B.11 Proof of Lemma 8

Proof. The case k = 1 is trivial. The case k = 2 is proved by Lemma 7, which gives a tighter bound
on the maximum width. The number of layers and hidden neurons of the claim agree with Lemma 7
when k = 2. The claim can be proved by following a similar procedure from the proof of Lemma
7. By Lemma 3, we can stack an identity mapping realized by an (l − li + 1)-layer ReLU network
with 2mi(l − li) hidden neurons and a maximum width of 2mi on the i-th network for all i ∈ [k]
such that li < l. In other words, we increase the number of hidden layers for any network whose
number of layers is less than l such that the cascade of the network and the corresponding identity
mapping has l layers. For all i ∈ [k] such that li < l, the extended network has ni + 2mi(l − li)
hidden neurons and a maximum width at most max(wi, 2mi) according to Lemma 4. Because all the
networks now have the same number of layers, we can directly combine them in parallel. Hence, the
resulting new network has maxi∈[k] li layers and∑

i∈[k]

ni + 2mi(l − li) (63)

hidden neurons and a maximum width at most∑
i∈[k]

max(wi, 2mi). (64)

Algorithm 3 directly follows from the above construction. Its complexity analysis is deferred to Table
3 in Appendix C.

B.12 Proof of Lemma 9

Proof. Because Snf1,f2,··· ,fk is a subset of S(k) and
∣∣S(k)

∣∣ = k! is the number of permutations of k
distinct objects, it follows that ∣∣∣Snf1,f2,··· ,fk ∣∣∣ ≤ k!. (65)

On the other hand, the number of hyperplanes, or affine subspaces of Rn with dimension n − 1,
induced by the distinct intersections between any two different affine functions is bounded from
above by (

k

2

)
. (66)

Let the arrangement of these hyperplanes be A, and |A| be the number of hyperplanes in the
arrangement. By Zaslavsky’s Theorem [Zaslavsky, 1975], the number of connected components of
the set

Rn \
⋃

H∈A
H (67)

is bounded from above by
n∑

i=0

(
|A|
i

)
(68)

22

Because there are at most
(
k
2

)
hyperplanes in Rn, it follows that∣∣∣Snf1,f2,··· ,fk ∣∣∣ ≤ n∑

i=0

((k
2

)
i

)
. (69)

Combining (65) and (69) proves the claim. Notice that the ascending order does not change within a
connected component.

B.13 Proof of Lemma 10

Proof. Let X1,X2, · · · ,XI be a family of nonempty subsets satisfying Definition 1 for a non-affine
function. We prove the claim by contradiction. Suppose that there exists at least one nonempty closed
subset, say Xi, that is disjoint with every other closed subset Xj , j ∈ [I] \ i. It follows that

Xi

⋂ ⋃
j∈[I]\i

Xj = ∅ (70)

which implies (
Rn \ Xi

)⋃Rn \
⋃

j∈[I]\i

Xj

 = Rn. (71)

Because the union of any finite collection of closed sets is closed, it must be true that
⋃

j∈[I]\i Xj

is closed. Notice that Xi is never the whole space Rn because the CPWL function is assumed to
be non-affine.

⋃
j∈[I]\i Xj must be nonempty due to Definition 1. Therefore, both Rn \ Xi and

Rn \
⋃

j∈[I]\i Xj are nonempty and open. Since Rn is connected, it cannot be represented as the
union of two disjoint nonempty open subsets. It follows that the intersection between Rn \ Xi and
Rn \

⋃
j∈[I]\i Xj is nonempty. In other words, there exists an element of Rn that is not in Xi and⋃

j∈[I]\i Xj , contradicting Definition 1.

B.14 Proof of Lemma 11(a)

Proof. If the CPWL function is affine, then there are no intersecting closed subsets because the
only closed subset satisfying Assumption 1 is Rn. On the other hand, if the CPWL function is
non-affine, then there exist at least two intersecting closed subsets according to Lemma 10. For any
two intersecting closed subsets, say Xi and Xj , we first show that

{x ∈ Rn | fi(x) = fj(x)} ≠ ∅ (72)

where fi and fj are the affine functions corresponding to Xi and Xj . We prove this statement by
contradiction. Suppose that the intersection is empty, i.e., the linear equation

(
ai − aj

)T
x+bi−bj =

0 does not have a solution where fi(x) = aTi x + bi and fj(x) = aTj x + bj for ai,aj ∈ Rn and
bi, bj ∈ R. Then, it is necessary that ai = aj and bi ̸= bj . In other words, the two affine functions
are parallel, implying that every point in Xi ∩ Xj gives two different values, which cannot be true for
a valid function.

Next, we prove that there does not exist an intersection that is Rn by contradiction. Let us assume
that there exists at least one intersection that is Rn between the affine functions corresponding to two
intersecting closed subsets, say Xi and Xj . Then, we can always replace Xi and Xj with their union.
Such a replacement still satisfies Definition 1 but reduces the number of closed (connected) subsets
by at least one, contradicting the fact that the number of closed subsets is a minimum. Because the
two affine functions are identical if and only if the intersection is Rn, the two affine functions must
be different.

B.15 Proof of Lemma 11(b)

Proof. The claim follows from Lemma 11(a). Because the two affine functions have a nonempty
intersection, their intersection must be Rn or an affine subspace of Rn with dimension n−1. However,
the two affine functions must be different, implying that Rn is never the intersection.

23

B.16 Proof of Lemma 11(c)

Proof. Let any given two intersecting subsets be Xi and Xj . The intersection between their corre-
sponding affine functions, say fi and fj , is given byHij = {x ∈ Rn | fi(x) = fj(x)}. Suppose that
there exists a point a ∈ Xi

⋂
Xj such that a ̸∈ Hij , then it follows that fi(a) ̸= fj(a). Such a result

cannot be true for a valid function. We conclude that Xi

⋂
Xj ⊆ Hij .

B.17 Proof of Lemma 11(d)

Proof. We prove the statement by contradiction. Suppose there exists a point c ∈ Rn in the
intersection of two intersecting closed connected subsets, say Xi and Xj , such that c is an interior
point of Xi, then there exists an open ϵ-radius ball B(c, ϵ) such that x ∈ Xi,∀x ∈ B(c, ϵ) for some
ϵ > 0. By Lemma 11(b), the intersection between the two affine functions corresponding to Xi and
Xj must be an affine subspace of Rn with dimension n− 1. Let such an affine subspace be denoted
as Hij and its corresponding linear subspace be denoted as V(Hij). Then, there exists a nonzero
vector d ∈ Rn such that αd ⊥ v for all v ∈ V(Hij) and any α ̸= 0. Therefore, it follows that
αd+ a ̸∈ Hij for any a ∈ Hij and any α ̸= 0. According to Lemma 11(c), Xi ∩ Xj ⊆ Hij , so we
have αd+ c ̸∈ Xi ∩Xj for any α ̸= 0. When α = ϵ

2∥d∥2
or α = −ϵ

2∥d∥2
, αd+ c ∈ B(c, ϵ). However,

one of them must satisfy αd+ c ̸∈ Xi, contradicting the existence of a point in Xi ∩ Xj that is an
interior point of Xi. The same procedure can be applied to prove that there does not exist a point in
Xi ∩ Xj such that it is an interior point of Xj . We conclude that every element in Xi ∩ Xj is not an
interior point of Xi or Xj .

B.18 Proof of Lemma 12(a)

Proof. The boundary or frontier of Xi is given by

FrXi = Xi

⋂
Rn \ Xi

= Xi

⋂ ⋃
k∈[I]

Xk

 \ Xi

= Xi

⋂ ⋃
k∈[I]\i

(
Xk \ Xk

⋂
Xi

)
= Xi

⋂ ⋃
k∈[I]\i

(
Xk \ Xk

⋂
Xi

)
= Xi

⋂ ⋃
k∈[I]\i

Xk

= Xi

⋂ ⋃
k∈[I]\i

Xk

=
⋃

k∈[I]\i

Xk

⋂
Xi

(73)

where A denotes the closure of a subset A. We have used Lemma 11(d) for the equality between
the 4-th and 5-th line of (73). Now, we prove that the interior of Xi is nonemtpy by contradiction.
Suppose that the interior of Xi is empty, then it follows that Xi = Xi = FrXi because the closure
of Xi is the union of the interior and the boundary of Xi. Combining that with (73), we have
Xi =

⋃
k∈[I]\i Xk

⋂
Xi. which implies every element in Xi is at least covered by one of the other

closed subsets Xk for some k ∈ [I] \ i. In this case, we can delete Xi from X1,X2, · · · ,XI ; and the
remaining I − 1 closed subsets still satisfy Definition 1. Such a valid deletion of Xi contradicts the
fact that I is the minimum number of closed subsets. Hence, the interior of Xi must be nonempty.

B.19 Proof of Lemma 12(b)

Proof. The statement is proved by (73) in Lemma 12(a).

24

B.20 Proof of Lemma 12(c)

Proof. By Lemma 12(a), the interior of every subset is nonempty. Next, by Lemma 11(d), every
point in the intersection between any two subsets is a boundary point of both subsets. It follows that
the interiors of any two subsets are disjoint.

B.21 Proof of Lemma 13

Proof. By Lemma 12(a), the interior of Xi is nonempty. Therefore, there exists an open ϵ-radius ball
B(c0, ϵ) such that x ∈ Xi,∀x ∈ B(c0, ϵ) for some ϵ > 0 and c0 ∈ Xi. Let us consider the set⋂

j∈[k]

(
B(c0, ϵ)

⋂(
H+

j

⋃
H−

j

))
(74)

where H+
j and H−

j are two open half spaces created by Hj . It suffices to show the nonemptyness
of the set in (74) to prove the claim. If Hj and B(c0, ϵ) do not intersect, then B(c0, ϵ) completely
belongs toH+

j orH−
j . Without loss of generality, we can remove all j such thatHj does not intersect

B(c0, ϵ) and assume there are k affine subspaces of Rn with dimension n− 1 intersecting B(c0, ϵ).
Let us sequentially carry out the intersection in (74). Every time before the operation of the j-th
intersection between B(cj−1,

ϵ
2j−1) and

(
H+

j

⋃
H−

j

)
, there exists an open ϵ

2j -radius ball B(cj ,
ϵ
2j)

for some cj ∈ B(cj−1,
ϵ

2j−1) such that it does not intersect with Hj . Therefore, at the end of the
sequential process, there exists an open ball that does not intersect any of these k affine subspaces of
Rn with dimension n− 1. The set in (74) is nonempty, implying (26) holds true.

B.22 Proof of Proposition 1

Proof. We prove the claim by contraposition. If the number of closed connected subsets is not a
minimum, i.e., Assumption 1 is not satisfied, then such a number can be decreased by merging
some of the intersecting closed connected subsets that have the same corresponding affine functions.
Therefore, there exist at least two closed connected subsets that can be made larger.

On the other hand, if the closed connected subsets, say X1,X2, · · · ,XI , have at least one of the
subsets that can be made larger, then there exist at least two intersecting closed connected subsets,
say Xi and Xj , from X1,X2, · · · ,XI such that their corresponding affine functions are the same.
Otherwise, any closed connected subset cannot be made larger than itself. Therefore, Xi and Xj can
be replaced with Xi

⋃
Xj and these I − 1 closed connected subsets still satisfy Definition 1, implying

that I is not the minimum.

C Algorithms and time complexities

Table 1: The running time of Algorithm 1 is upper bounded by poly(n, k, q, L).
Line Operation count Explanation

1 O
(
nqmax(n2, q)

)
Algorithm 6 (see Table 6).

2 O(q) Repeat Line 3 to Line 9 q times.
3 O(1) Initialize an empty placeholder.
4 O(k) Repeat Line 5 to Line 7 k times.
5 poly (n, q, L) Solve a linear program [Vavasis and Ye, 1996].
6 O(1) Add an index.
7 - -
8 - -
9 O

(
k2 max(k log2 k, n)

)
Algorithm 2 (see Table 2).

10 - -
11 O

(
qmax(n, k)2 max(n, k, q) log2 k

)
Algorithm 3 (see Table 3).

12 O
(
q3 log2 q

)
Algorithm 2 (see Table 2).

13 O
(
q3 max(n, k)3 log2 q

)
Algorithm 4 (see Table 4).

25

Algorithm 2 Find a ReLU network that computes the extremum of affine functions

Input: Scalar-valued affine functions f1, f2, · · · , fm on Rn and the type of extremum (max or min).
Output: Parameters of an l-layer ReLU network g computing g(x) = maxi∈[m] .fi(x) or g(x) =

mini∈[m] .fi(x) for all x ∈ Rn.

1: A←

−1 1
1 0
−1 0

 ,B←
[
1 1 −1

]
,C←

[
1
−1

]
▷ Constant matrices

2: Ψ(Y,Z)←
[
Y 0
0 Z

]
▷ A function generating a block diagonal matrix composed of Y and Z

3: Φ(Y, s)←


Y(1) 0 · · · 0
0 Y(2) · · · 0
...

...
. . .

...
0 0 · · · Y(s)

 ▷ A block diagonal matrix with Y repeated s times

4: l← ⌈log2 m⌉+ 1, k0 ← n, kl ← 1, c0 ← m ▷ l is the number of layers of g
5: for i = 1, 2, · · · , l − 1 do
6: if ci−1 is even then
7: ci ← ci−1

2
8: ki ← 3ci ▷ Output dimension of the i-th layer
9: else

10: ci ← ci−1+1
2

11: ki ← 3ci − 1 ▷ Output dimension of the i-th layer
12: end if
13: end for
14: W1 ←

[
∇f1 ∇f2 · · · ∇fm

]T
,b1 ←

[
f1(0) f2(0) · · · fm(0)

]T
15: if l > 1 then ▷ Find the weights of input and output layers, if any
16: if c0 is even then
17: W1 ← Φ (A, c1)W1,b1 ← Φ (A, c1)b1

18: else
19: W1 ← Ψ

(
Φ (A, c1 − 1) ,C

)
W1,b1 ← Ψ

(
Φ (A, c1 − 1) ,C

)
b1

20: end if
21: Wl ← B,bl ← 0kl

22: end if
23: if l > 2 then ▷ Find the weights of remaining layers, if any
24: for i = 2, 3, · · · , l − 1 do
25: if ci−1 is even then
26: T← Φ (A, ci)
27: else
28: T← Ψ

(
Φ (A, ci − 1) ,C

)
29: end if
30: if ci−2 is even then
31: Wi ← TΦ (B, ci−1)
32: else
33: Wi ← TΨ

(
Φ (B, ci−1 − 1) ,CT

)
34: end if
35: bi ← 0ki

36: end for
37: end if
38: if type of extremum is the minimum then
39: W1 ← −W1,b1 ← −b1

40: Wl ← −Wl,bl ← −bl

41: end if ▷ See Table 2 in Appendix C for complexity analysis

26

Algorithm 3 Find a ReLU network that concatenates a number of given ReLU networks

Input: Weights of k ReLU networks g1, g2, · · · , gk denoted by {Wj
i ,b

j
i}

lj
i=1 for j ∈ [k].

Output: Parameters of an l-layer ReLU network g computing g(x) =


g1(x)
g2(x)

...
gk(x)

 ,∀x ∈ Rn.

1: l← maxj∈[k] lj

2: W1 ←


W1

1

W2
1

...
Wk

1

 ,b1 ←


b1
1

b2
1
...
bk
1

 ▷ Weights of the input layer

3: for j = 1, 2, · · · , k do
4: if lj < l then ▷ Append an identity mapping network to the network if it is shallower
5: m← output dimsion of gj
6: gcj ← run Algorithm 5 with an input dimension m and a number of layers l − lj + 1
7: g′j ← run Algorithm 4 with gj and gcj
8: {Wj

i ,b
j
i}li=1 ← weights of g′j

9: end if
10: end for
11: for i = 2, 3, · · · , l do ▷ Find the remaining weights

12: Wi ←


W1

i 0 · · · 0
0 W2

i · · · 0
...

...
. . .

...
0 0 · · · Wk

i

 ,bi ←


b1
i

b2
i
...
bk
i


13: end for ▷ See Table 3 in Appendix C for complexity analysis

Algorithm 4 Find a ReLU network computing a composition of two given ReLU networks

Input: Weights of two ReLU networks g1 and g2 denoted by {W1
i ,b

1
i }

l1
i=1 and {W2

i ,b
2
i }

l2
i=1.

Output: Parameters of an l-layer ReLU network g computing g(x) = g2
(
g1(x)

)
,∀x ∈ Rn.

1: l← l1 + l2 − 1
2: for i = 1, 2, · · · , l do
3: if i < l1 then ▷ The first l1 − 1 layers are identical to the corresponding layers in g1
4: Wi ←W1

i ,bi ← b1
i

5: else if i = l1 then ▷ A composition of affine functions is still an affine function
6: Wi ←W2

1W
1
l1
,bi ←W2

1b
1
l1
+ b2

1
7: else ▷ The last l2 − 1 layers are identical to the corresponding layers in g2
8: Wi ←W2

i−l1+1,bi ← b2
i−l1+1

9: end if
10: end for ▷ See Table 4 in Appendix C for complexity analysis

27

Algorithm 5 Find a ReLU network that computes an identity mapping for a given depth

Input: The input dimension n and the number of layers l of the target ReLU network.
Output: Parameters of an l-layer ReLU network g computing g(x) = x,∀x ∈ Rn.

1: A←
[
1
−1

]
,B←

[
1 −1

]
,C←

[
1 −1
−1 1

]
▷ Constant matrices

2: Φ(Y, s) =


Y(1) 0 · · · 0
0 Y(2) · · · 0
...

...
. . .

...
0 0 · · · Y(s)

 ▷ A block diagonal matrix with Y repeated s times

3: k0 ← n, kl ← n,bl ← 0n

4: for i = 1, 2, · · · , l − 1 do
5: ki ← 2n ▷ The number of hidden neurons at the i-th hidden layer
6: bi ← 0ki

7: end for
8: if l = 1 then ▷ Find the weights of input and output layers, if any
9: W1 ← In×n ▷ An identity matrix

10: else
11: W1 ← Φ (A, k0)
12: Wl ← Φ (B, kl)
13: end if
14: if l > 2 then ▷ Find the weights of hidden layers, if any
15: for i = 2, 3, · · · , l − 1 do
16: Wi ← Φ (C, n)
17: end for
18: end if ▷ See Table 5 in Appendix C for complexity analysis

Algorithm 6 Find all distinct linear components of a CPWL function

Input: An unknown CPWL function p whose output can be observed by feeding input from Rn

to the function. A center ci and radius ϵi > 0 of any closed ϵi-radius ball B(ci, ϵi) such that
B(ci, ϵi) ⊂ Xi for i = 1, 2, · · · , q where {Xi}i∈[q] are all pieces of p.

Output: All distinct linear components of p, denoted by F .
1: F ← ∅ ▷ Initialize the set of all distinct linear components
2: for i = 1, 2, · · · , q do
3: x0 ← ci ▷ select the center of B(ci, ϵi)
4: y0 ← p(x0)
5:

[
s1 s2 · · · sn

]
← ϵiIn×n ▷ scale the standard basis of Rn

6: S←
[
s1 s2 · · · sn

]
7: z←


p(s1 + x0)− y0
p(s2 + x0)− y0

...
p(sn + x0)− y0


8: a← S−Tz ▷ Find the linear map by solving a system of linear equations
9: b← y0 − aTx0 ▷ Find the translation

10: f ← x 7→ aTx+ b ▷ The affine map on Xi

11: if f ̸∈ F then ▷ Only add the affine map f to the set F if f is distinct to all elements of F
12: F ← F

⋃
{f}

13: end if
14: end for ▷ See Table 6 in Appendix C for complexity analysis

28

Table 2: The time complexity of Algorithm 2 is O
(
m2 max(m log2 m,n)

)
.

Line Operation count Explanation

1 O(1) Initialize constant matrices.
2 O

(
d21
)

Let d1 be the maximum dimension of Y and Z.
3 O(s2d22) Let d2 be the maximum dimension of Y.
4 O(1) Scalar assignments.
5 O(log2 m) Repeat Line 6 to Line 12 ⌈log2 m⌉ times.
6 O(1) Check a scalar is even or not.
7 O(1) Compute a scalar.
8 O(1) Compute a scalar.
9 - -

10 O(1) Compute a scalar.
11 O(1) Compute a scalar.
12 - -
13 - -
14 O(mn) Assign a matrix and a vector.
15 O(1) Check a scalar inequality.
16 O(1) Check a scalar is even or not.
17 O(m2n) Matrix creation and multiplication.
18 - -
19 O(m2n) Matrix creation and multiplication.
20 - -
21 O(1) Assign a constant matrix and vector.
22 - -
23 O(1) Check a scalar inequality.
24 O(log2 m) Repeat Line 25 to Line 30 ⌈log2 m⌉ − 1 times.
25 O(1) Check a scalar is even or not.
26 O(m2) Matrix creation.
27 - -
28 O(m2) Matrix creation.
29 - -
30 O(1) Check a scalar is even or not.
31 O(m3) Matrix creation and multiplication.
32 - -
33 O(m3) Matrix creation and multiplication.
34 - -
35 O(m) Assign a vector whose length is at most

⌈
3m
2

⌉
.

36 - -
37 - -
38 O(1) Check the binary data type.
39 O(mn) Reverse the sign of W1 and b1.
40 O(1) Reverse the sign of a constant matrix and a constant bias.
41 - -

29

Table 3: The time complexity of Algorithm 3 is O
(
d2klmax(d, k)

)
where d is the maximum

dimension of all the weight matrices in g1, g2, · · · , gk and l = maxj∈[k] lj .
Line Operation count Explanation

1 O(k) Find the maximum among k numbers.
2 O(d2k) Matrix concatenation and assignment.
3 O(k) Repeat Line 4 to Line 9 k times.
4 O(1) Check a scalar inequality.
5 O(1) A scalar assignment.
6 O(d2l) Algorithm 5 (see Table 5).
7 O(d3l) Algorithm 4 (see Table 4).
8 O(d2l) Assign weights of the network.
9 - -

10 - -
11 O(l) Repeat Line 12 l − 1 times.
12 O(d2k2) Assign a matrix and a vector.
13 - -

Table 4: The time complexity of Algorithm 4 is O
(
d3 max(l1, l2)

)
where d is the maximum

dimension of all the weight matrices in g1 and g2.
Line Operation count Explanation

1 O(1) Assign a constant.
2 O(l) Repeat Line 3 to Line 9 l times.
3 O(1) Check a scalar inequality.
4 O(d2) Assign a matrix and a vector (at most d2 + d elements).
5 O(1) Check a scalar equality.
6 O(d3) Matrix multiplication and assignment.
7 - -
8 O(d2) Assign a matrix and a vector (at most d2 + d elements).
9 - -

10 - -

Table 5: The time complexity of Algorithm 5 is O(n2l).
Line Operation count Explanation

1 O(1) Initialize constant matrices.
2 O(s2d1d2) Create a block diagonal matrix from Y ∈ Rd1×d2 and s ∈ N.
3 O(n) Assign two constant scalars and one constant vector of length n.
4 O(l) Repeat Line 5 to line 6 l times.
5 O(1) Assign a scalar.
6 O(n) Assign a vector whose length ki is equal to 2n.
7 - -
8 O(1) Check a scalar equality.
9 O(n2) Assign an n-by-n matrix.
10 - -
11 O(n2) Assign a 2n-by-n block diagonal matrix.
12 O(n2) Assign an n-by-2n block diagonal matrix.
13 - -
14 O(1) Check a scalar inequality.
15 O(l) Repeat Line 16 l − 2 times.
16 O(n2) Assign a 2n-by-2n block diagonal matrix.
17 - -
18 - -

30

Table 6: The time complexity of Algorithm 6 is O
(
nqmax(n2, q)

)
.

Line Operation count Explanation

1 O(1) Initialize an empty placeholder F .
2 O(q) Repeat Line 3 to line 13 q times.
3 O(1) Select an interior point. Use the center of the ball.
4 O(1) Evaluate the function on the point.
5 O(n2) Scale and assign an n-by-n matrix.
6 - -
7 O(n) Translate, evaluate, and subtract n points.
8 O(n3) Solve a system of n linear equations with n variables.
9 O(n) Solve the translation term in the affine map
10 - -
11 O(nq) Each affine map has n+ 1 parameters and F has at most q elements.
12 O(1) Add a distinct affine map to F .
13 - -
14 - -

D Open source implementation and run time of Algorithm 1

We implement Algorithm 1 in Python. Figure 3 shows that the run time of the algorithm is greatly
affected by the number of pieces q.

Code is available at https://github.com/kjason/CPWL2ReLUNetwork.

20 21 22 23 24 25
10−4

10−3

10−2

10−1

100

101

Number of pieces q

R
un

tim
e

(s
ec

on
ds

)

n = 1
n = 10
n = 100

Figure 3: The run time of Algorithm 1 is an average of 50 trials. Every trial runs Algorithm 1 with a
random CPWL function whose input dimension is n and number of pieces is q. The code provided in
the above link is run on a computer (Microsoft Surface Laptop Studio) with the Intel Core i7-11370H.

31

https://github.com/kjason/CPWL2ReLUNetwork

