
Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Throughout the text, but particu-
larly in Section 5 in the paragraph entitled “Decomposition Validity”

(c) Did you discuss any potential negative societal impacts of your work? [N/A] This work
is focused on fundamental MARL algorithms and tests on simulated environments.
While MARL algorithms may be implemented for potentially harmful applications, we
do not believe this work uniquely enables such applications.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] In the
supplemental material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In the appendix

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All plots include shaded region over a standard deviation
w/ several seeds (the number is specified in the captions)

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In the Appendix

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Our code builds on

the public code of REFIL [10]
(b) Did you mention the license of the assets? [Yes] The license is included in the public

code release
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

Appendix
A Network Architectures

Our allocation proposal network and Q network are illustrated in Figures 7 and 8. Low-level action
utility functions and mixing networks are similar to those described in Iqbal et al. [10] with the only

13

difference being a replacement of the RNN layers with standard fully connected layers. We omit
RNNs, as we do not consider settings with significant partial observability. Furthermore, the run time
is significantly faster since all time steps can be batched during training. We find the omission of
RNNs does not affect performance in the domains initially used by Iqbal et al. [10].

Agents

Non-Agent Entities
(bg. colors indicate

corresponding subtask)

FC

FC+
MHA

Attention is masked
such that entities
can only attend

w/in their subtask

Sum by
subtask

Subtask embeddings

Agent embeddings

Allocate one agent
at a time

Softmax

Sample

Update corresponding task
embedding

Figure 7: Allocation proposal network structure as described in §4.1

FC

All Entity States (s)

Corresponding subtask
embeddings (allocations

for agents, given for
non-agent entities)

MHA +
Mean-Pool +

FC
Add

Figure 8: Allocation Q-function network structure.

B Environment details

SAVETHECITY This environment is inspired by the classical Dec-POMDP task “Factored Fire-
fighting” [18] where several firefighters must cooperate to put out independent fires; however, we
introduce several additional degrees of complexity. First, agents are capable of contributing to any
subtask, such that the task is amenable to subtask allocation, and we can not use a fixed value function
factorization. Second, agents are embodied and must physically move themselves to buildings
through low-level actions, rather than being fixed and only having a high-level action space selecting
buildings to fight fires at. Finally, we introduce several types of agents with differing capabilities
(all of which are crucial for success), such that the subtask allocation function must learn which
subtasks require which capabilities and how to balance these. The task also shares similarities with
the Search-and-Rescue task from [15]; however, we do not consider partial observability and we
introduce agents with diverse capabilities.

In each episode, there are N = [2, 5] agents (circles) and N + 1 buildings (squares) (see 3). Each
building regularly catches fire (red bar) which reduces the building’s “health” (black bar). The agents
must learn to put out the fires and then fully repair the damage, at which point the building will no
longer burn. The episode ends when all buildings are fully repaired or burned down, and an episode
is considered successful if no buildings burn down. The firefighter (red) and builder (blue) agents
are most effective at extinguishing fires (a) and repairing damaged buildings (b), respectively, while
generalist (green) agents—though unable to make progress on their own—can move twice as fast,
prevent further damage to a blazing building (c), and increase the effectiveness of other agents at their
weak ability if at the same building.

14

The full map is a 16x16 grid and buildings are randomly spawned across the map. Agents always
start episodes in a cluster in the center. Buildings begin episodes on fire at a 40% rate. Agents are
rewarded for increasing a building’s health, completing a building, putting out a fire, and completing
all buildings (global reward only). Agents are penalized for a building burning down or its health
decreasing due to fire.

STARCRAFT The StarCraft multi-agent challenge (SMAC) [22] involves a set of agents engaging in
a battle with enemy units in the StarCraft II video game. We consider the multi-task setting presented
by Iqbal et al. [10] where each task presents a unique combination and quantity of agent and enemy
types. We increase the complexity by introducing multiple enemy armies and the additional objective
of defending a centralized base. These enemy armies attack the base from multiple angles, and the
agents must defeat all enemy units while preventing any single enemy unit from entering their base
in order to succeed. As we do for SAVETHECITY, we train simultaneously on tasks with variable
types and quantities of agents.

We consider four settings based on those presented in [10] consisting of unique combinations of unit
types which require varying strategies in order to succeed. In one set of settings we give agents and
enemies a symmetric (i.e. matching types) set of units, while in the other agents have one fewer
unit than the enemies. Within each set we consider two different pools of unit types: “Stalkers and
Zealots” (S&Z) and “Marines, Marauders, and Medivacs” (MMM). The former includes a mixture of
melee and ranged units, while the latter includes units that are capable of healing. In each setting,
there can be between 3 and 8 agents and 2 or 3 enemy armies. Each enemy army consists of up to 4
units. Stalkers are units that are capable of shooting enemies from afar and are useful for causing
damage without taking as much damage, as they can run immediately after shooting. Zealots are
melee units (i.e. they must walk up to their enemies to damage them), and they are especially strong
against Stalkers. Marines are ranged units that are relatively weak with respect to damage output and
health. Marauders are also ranged units and have more health and damage output. Medivacs are ships
that float above the battlefield and are able to heal their friendly units. Notably, multiple Medivacs
cannot heal the same unit simultaneously, so agents can overpower a Medivac’s healing by targeting
the same unit.

Agents are rewarded for damaging enemy agents’ health, defeating enemy agents, and defeating
enemy armies. The global reward also includes an additional reward for defeating all armies.

C Experimental Details

Our experiments were performed on a desktop machine with a 6-core Intel Core i7-6800K CPU and
3 NVIDIA Titan Xp GPUs, and a server with 2 16-core Intel Xeon Gold 6154 CPUs and 10 NVIDIA
Titan Xp GPUs. Each experiment is run with 8 parallel environments for data collection and a single
GPU.

D Hyperparameters and Implementation Details

See Table 1 for an overview of implementation details. We use Pop-Art [32] to normalize returns
across varying scales such that we can use similar hyperparameters across environments. Hyperpa-
rameters for REFIL [10] and COPA [15] are taken directly from those works. New hyperparameters
(e.g. allocation length, epsilon schedules, etc.) were chosen by separately tuning each one. In Figure
9 we see that ALMA is robust to different settings of two allocator-related hyperparamters—even the
extreme settings produce results significantly better than the best-performing baseline.

15

Table 1: Hyperparameter settings across all runs and algorithms/baselines.

Name Description Value

lr learning rate across all modules 0.0005
optimizer type of optimizer RMSProp1
optim α RMSProp param 0.99
optim ϵ RMSProp param 1e− 5
target update interval copy live params to target params every _ episodes 200
bs batch size (# of episodes per batch) 32
grad clip reduce global norm of gradients beyond this value 10

|D| maximum size of replay buffer (in episodes) 5000
γ discount factor 0.99
starting ϵ starting value for exploration rate annealing 1.0
ending ϵ ending value for exploration rate annealing 0.05
ϵ anneal time number of steps to anneal exploration rate over 2e6†/5e5⋆

ha hidden dimensions for attention layers 128
hm hidden dimensions for mixing network 32
attention heads Number of attention heads 4
nonlinearity type of nonlinearity (outside of mixing net) ReLU

λ Weighting between standard QMIX loss and REFIL loss 0.5

λAQL Entropy loss weight for Amortized Q-Learning (AQL) 0.01
Np Number of action proposals for AQL 32
Nt Number of timesteps before computing new allocations 5†/3⋆

starting ϵp starting value for proposal net sampling exploration annealing 1.0
ending ϵp ending value for proposal net sampling exploration annealing 0.05
ϵp anneal time number of steps to anneal proposal net sampling exploration over 3e6†/2e6⋆

starting ϵr starting value for random allocation exploration rate annealing 1.0
ending ϵr ending value for random allocation exploration rate annealing 0.0
ϵr anneal time number of steps to anneal random allocation exploration rate over 7.5e5†/5e5⋆

1: Tieleman and Hinton [30]
†: SAVETHECITY, ⋆: STARCRAFT

1 3 5 10
Allocator action length

0.15

0.20

0.25

0.30

0.35

0.40

0.45

S
uc

ce
ss

R
at

e

0.001 0.01 0.1 1.0
Entropy coefficient

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Figure 9: STARCRAFT II (S&Z disadvantage) performance with varying hyperparameter values. Left:
varying allocation action lengths. Right: entropy coefficient used in AQL [31]. Red dashed line is
performance of best-performing baseline.

16

