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Abstract

Learning in stochastic games is a notoriously difficult problem because, in addition
to each other’s strategic decisions, the players must also contend with the fact
that the game itself evolves over time, possibly in a very complicated manner.
Because of this, the convergence properties of popular learning algorithms – like
policy gradient and its variants – are poorly understood, except in specific classes
of games (such as potential or two-player, zero-sum games). In view of this, we
examine the long-run behavior of policy gradient methods with respect to Nash
equilibrium policies that are second-order stationary (SOS) in a sense similar to
the type of sufficiency conditions used in optimization. Our first result is that
SOS policies are locally attracting with high probability, and we show that policy
gradient trajectories with gradient estimates provided by the Reinforce algorithm
achieve an O(1/

√
n) distance-squared convergence rate if the method’s step-size is

chosen appropriately. Subsequently, specializing to the class of deterministic Nash
policies, we show that this rate can be improved dramatically and, in fact, policy
gradient methods converge within a finite number of iterations in that case.

1 Introduction

Ever since they were introduced by Shapley [50] in the 1950’s, stochastic games have been one
of the staples of non-cooperative game theory, with a range of pioneering applications to multi-
agent reinforcement learning [51], unmanned vehicles [49], general game-playing [37, 52, 57], etc.
Informally, a stochastic game unfolds in discrete time as follows: At each point in time, the players
are at a given state which determines the rules of the game for that stage. The actions of the players in
this state determine not only their instantaneous payoffs (as defined by the stage game), but also the
transition probabilities towards the next state of the process. In this way, each player has to balance
two distinct – and often competing – objectives: optimizing the payoffs of today versus picking a
possibly suboptimal action which could yield significant benefits tomorrow (i.e., by influencing the
transitions of the process towards a more favorable state for the player).
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Since all players in the game are involved in a similar dilemma, the decision-making problem for
each player is a very complicated affair. In particular, in addition to their changing strategic decisions,
the players of the game must also contend with the fact that the stage game itself evolves over time.
Because of this, even the existence of a Nash equilibrium policy – viz. a stationary Markovian
policy that is stable to unilateral deviations [16] – is far more difficult to prove compared to standard,
stateless normal form games; for a comprehensive survey, cf. [41, 53] and references therein.

The question we seek to address in this paper is whether an ensemble of boundedly rational players
can reach an equilibrium policy in a stochastic game. Specifically, if players do not have sufficient
information – or the computational resources required – to solve a high-dimensional Bellman equation
[15, 54], it is not at all clear if they would somehow end up playing a Nash policy in the long run.
After all, the complexity of most games increases exponentially with the number of players, so the
identification of a game’s equilibria quickly becomes prohibitively difficult [27].

Our contributions in the context of related work. This issue has sparked a vigorous literature
with important ramifications for the range of applications mentioned above. Nevertheless, these
efforts must grapple with a series of strong lower bounds for computing even weaker solution concepts
like coarse correlated equilibria in turn-based stochastic games [12, 27]. On that account, a recent
line of work has focused on establishing convergence in specific subclasses of stochastic games,
such as min-max [7, 11, 32, 47, 48, 58] and common interest potential games [13, 31, 61]. However,
despite these encouraging results, the general case remains particularly elusive.

Our paper takes a complementary approach to the above and seeks to study the convergence landscape
of a class of equilibrium policies – not games. For concreteness, we focus on the general class of
policy gradient methods as pioneered by [28, 29, 55, 59], and we examine the methods’ convergence
properties in general random stopping games – as opposed to ergodic stochastic games with an infinite
horizon [32, 42]. Concretely, this means that the sequence of play evolves episode-by-episode: within
each episode, the players commit a policy and play the game, and from one episode to the next, they
use an iterative gradient step to update their policy and continue playing.

Our main contributions in this general context may be summarized as follows:

1. We introduce a flexible algorithmic template for the analysis of policy gradient methods which
accounts for different information and update frameworks – from perfect policy gradients to value-
based estimates obtained on a per-episode basis, e.g., via the Reinforce algorithm [4, 55, 59].

2. Within this framework, we show that Nash policies that satisfy a certain strategic stability
condition are locally attracting with arbitrarily high probability. Moreover, to estimate the
method’s rate of convergence, we focus on Nash policies that satisfy a second-order sufficiency
condition similar to the type of sufficiency conditions used in optimization, and we show that
such policies enjoy an O(1/

√
n) squared distance convergence rate.

3. Finally, we also consider the method’s convergence to deterministic Nash policies – a special case
of SOS policies – and we show that, generically, the above rate can be improved dramatically.
In particular, by a simple tweak to the method’s projection step, the induced sequence of play
converges to equilibrium in a finite number of iterations, despite all the noise and uncertainty.

It is also worth noting that our analysis focuses squarely on the actual, episode-by-episode trajectory
of play, not any “best-iterate” or time-averaged variant thereof. In regards to the latter class of
guarantees, the recent work of Jin et al. [26] proposed an algorithm (called V-learning) which
updates the policy πn of the n-th episode based on the observed rewards so far. Thanks to the
algorithm’s regret guarantees, Jin et al. [26] showed that (a) in min-max games, the time-averaged
policy π̄n = (1/n)

∑n
k=1 πk converges to equilibrium at a rate of O(1/

√
n); whereas (b) in general

stochastic games, the empirical frequency of play converges to the game’s set of coarse correlated
equilibria (a substantial relaxation of the notion of Nash equilibrium) at a rate of O(1/

√
n).

By contrast, as we mentioned above, our paper focuses on the actual sequence of play, i.e., the
policy πn employed at each episode of the game. Moreover, the rates that we obtain all concern the
convergence of the players’ policies to a Nash equilibrium – not a correlated equilibrium or other
relaxation thereof. In this regard, the best-iterate / ergodic convergence rates are incomparable to our
own as they concern a weaker type of convergence (time-averaged instead of the actual sequence),
and to a weaker solution concept (correlated equilibria instead of Nash equilibria). This aspect of our
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results is especially relevant for multi-agent reinforcement learning scenarios where agents learn “on
the fly”, and it has important ramifications for many of the practical applications of stochastic games.

From a technical standpoint, our analysis is based on mapping the problem of multi-agent policy
learning to the problem of equilibrium learning in a class of continuous games characterized by
the fact that first-order stationary points are necessarily Nash (itself a consequence of the so-called
“gradient dominance” property of stochastic games). By means of this reframing, we are able to
leverage a series of recent techniques for establishing local convergence in (non-monotone) continuous
games and variational inequalities [3, 8, 24, 25, 33, 45], which ultimately also yield convergence in
our setting. As a result, even though the unbounded variance of the Reinforce estimator is a source
of considerable complications, the resulting link between stochastic and continuous games is of
particular technical interest because it opens up a wide array of stochastic approximation tools and
techniques that can be used for the analysis of multi-agent learning in stochastic games.

2 Preliminaries

2.1. Setup of the game. Throughout this work we consider N-player generic stochastic games
where players repeatedly select actions in a shared Markov decision process (MDP) with the goal of
maximizing their individual value functions. Formally, we study the tabular version with random
stopping of general stochastic games, which is specified by a tuple G = (S,N , {Ai,Ri}i∈N , P, ζ, ρ)
with the following primitives:

• A finite set of agents i ∈ N = {1, 2, . . . ,N} and a finite set of states S = {1, . . . , S }.
• For each i ∈ N , a finite space of actions (or pure strategies) Ai indexed by αi = 1, . . . , Ai = |Ai|.

We will write A =
∏

i∈N Ai and A−i =
∏

j,i A j for the action space of all agents and that of all
agents other than i respectively. In a similar vein, we will also write α = (αi, α−i) when we want
to highlight the action αi of player i against the action profile α−i of i’s opponents.
• For each i ∈ N , we will write Ri : S ×A→ [−1, 1] for the reward function of agent i ∈ N , i.e.,

Ri(s, αi, α−i) will denote the value of the reward of agent i when the game is at state s ∈ S, the
focal agent i ∈ N plays αi ∈ Ai, and all other agents take actions α−i ∈ A−i.
• The game transits from one state to another according to a Markov transition process, so that

P(s′ | s, α) denotes the probability of transitioning from s to s′ when α ∈ A is the action profile
chosen by the agents.
• Given an action profile α at state s, the process terminates with probability ζs,α > 0, i.e., ζs,α =

1 −
∑

s′∈S P(s′ | s, α); for convenience, we will write ζ B mins,α{ζs,α}.
• ρ ∈ ∆(S) is the distribution for the initial state of the game.

Episodic Setting. We consider an episodic setting, where in each episode a realization of the game
is completed. At every time step t ≥ 0 of each episode, all agents observe the common state st ∈ S,
select actions αt and receive rewards {Ri(st, αt)}i∈N . Then, with probability ζst ,αt the game terminates,
and with probability 1 − ζst ,αt , it moves to the state st+1, which is drawn according to P(·|st, αt).
Denoting the realized reward of player i at time t as ri,t B Ri(st, αt), we will write τ = (st, αt, rt)t≤T (τ)
to denote the trajectory of the episode, where rt B (ri,t)i∈N , and T (τ) the time the episode terminates.

Policies and value functions. We consider stationary Markovian policies, i.e., policies that do
not depend on the time-step and the history, given the current state of the game. More specifically,
for each agent i ∈ N , a policy πi : S → ∆(Ai) specifies a probability distribution over the actions
of agent i in state s ∈ S, i.e., αi ∼ πi(·|s) denotes the (random) action drawn by agent i at state
s ∈ S according to πi, viewed here as an element of Πi B ∆(Ai)S . In addition, we will also write
π = (πi)i∈N ∈ Π B

∏
iΠi and π−i = (π j) j,i ∈ Π−i B

∏
j,iΠ j for the policy profile of all agents and

all agents other than i, respectively.

The expected reward of agent i ∈ N if agents follow policy π, starting from initial state s ∈ S , defines
the value function of agent i, denoted as Vi,s(π), and is equal to

Vi,s(π) B �τ∼MDP

[∑T (τ)

t=0
Ri(st, αt)

∣∣∣∣s0 = s
]

(1)

where τ ∼ MDP denotes the randomness induced by the policy profile π, and the state-transition
probabilities of the MDP. Overloading the notation, we set Vi,ρ(π) B �s∼ρ

[
Vi,s(π)

]
. Although value
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functions are, in general, non-convex, they share similar smoothness properties with the payoff
functions of normal form games, namely bounded and Lipschitz gradients. For precise statements,
we defer to the paper’s supplement.

Visitation distribution and the mismatch coefficient. For a policy profile π ∈ Π and an arbitrary
initial state distribution s0 ∼ ρ, we define the discounted state visitation measure/distribution as

d̃πρ(s) = �τ∼MDP

[∑T (τ)

t=0
1{st = s}

∣∣∣∣s0 ∼ ρ
]
, dπρ(s) B d̃πρ(s)/Zπρ

In the appendix, we prove formally that the above definition is well-posed for the random stopping
episodic framework described above, i.e., d̃πρ(s) < ∞, so Zπρ B

∑
s∈S d̃πρ(s) is well-defined. In our

proofs, we will leverage a standard property of visitation distributions, namely the equivalence of the
expected value of state-action function and the expected cumulative value over a random trajectory.
More precisely, we have:
Lemma 1. [Conversion Lemma] For an arbitrary state-action function f : S ×A → �, a policy
profile π and an initial state distribution s0 ∼ ρ, we have

�τ∼MDP

[∑T (τ)

t=0
f (st, αt)

]
= Zπρ �s∼dπρ �α∼π(·|s)

[
f (s, α)

]
(2)

Finally, to quantify the difficulty of hard-to-reach states via a policy gradient method, we will follow
the standard approach of [9, 14, 38, 39, 61] and use an appropriately-defined distribution “mismatch
coefficient”, generalizing the single-agent counterpart of Agarwal et al. [1]. More precisely, for a
stochastic game G, we define the mismatch coefficient as CG B maxπ,π′∈Π

{
∥d̃πρ/d̃

π′

ρ ∥∞
}

or, more simply,
as CG B maxπ,∈Π

{ 1
ζ
∥dπρ/ρ∥∞

}
. Similar to prior work in this direction [1, 5, 11], we will assume CG is

finite, which, equivalently, means that dπρ(s) > 0 for any policy π and state s.

2.2. Solution concepts. The most widely used solution concept in game theory is that of a Nash
equilibrium i.e., a strategy profile π∗ ∈ Π that discourages unilateral deviations. However, in stochastic
games, the definition of a Nash policy is much more involved because of the existence of multiple
states and steps, cf. [16, 50, 53, 56] and references therein. Formally, we have:
Definition 1 (Nash policies). A policy π∗ = (π∗i )i∈N ∈ Π is said to be a Nash policy for a given
distribution of initial states ρ ∈ ∆(S) if, for every player i ∈ N , we have

Vi,ρ(π∗i ; π∗−i) ≥ Vi,ρ(πi; π∗−i) for all i ∈ N and all πi ∈ ∆(Ai)S . (NE)

In contrast to general non-convex continuous games, stochastic games satsify a version of the well-
known Polyak-Łojasiewicz condition [44] but with linear gradient growth, also known as a gradient
dominance property (GDP) [1, 5]. For the multi-agent case, Zhang et al. [61] and Daskalakis et al.
[11] showed that a similar property holds even in the episodic setting:
Lemma 2 (Gradient dominance property). For any policy profile π = (πi)i∈N ∈ Π, we have that

Vi,ρ(π′i ; π−i) − Vi,ρ(πi; π−i) ≤ CG max
π̄i∈Πi

⟨∇iVi,ρ(π), π̄i − πi⟩ (GDP)

for any unilateral deviation π′i ∈ Πi of player i ∈ N .
Remark. In the above and throughout our paper, we will write ∇i to denote the gradient of the quantity
in question with respect to πi, i.e., when π−i is kept fixed and only πi is varied. For concision, we will
write vi(π) = ∇iVi,ρ(π) for the individual gradient of player i’s value function, and v(π) = (vi(π))i∈N
for the ensemble thereof. ♦

Thanks to (GDP), it is straightforward to check that first-order stationary (FOS) points of V are Nash.
Formally, as in [11, 31, 61], we have the following characterization:
Lemma 3 (First-order stationary policies are Nash). A policy π∗ = (π∗i )i∈N ∈ Π is Nash if and only if
it satisfies the first-order stationary condition

⟨v(π∗), π − π∗⟩ ≤ 0 for all π ∈ Π. (FOS)

Leonardos et al. [31] and Zhang et al. [61] proved a relaxation of the above lemma to the effect that
policies that satisfy (FOS) up to ε (i.e., in lieu of 0 in the RHS) are O(ε)-Nash. Going in the other
direction, we will consider the following series of refinements of Nash policies which are particularly
important from a learning standpoint [30, 53]:
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Definition 2. Let π∗ = (π∗i )i∈N ∈ Π be a Nash policy. We then say that:

• π∗ is stable if ⟨v(π), π − π∗⟩ < 0 for all π , π∗ sufficiently close to π∗.

• π∗ is second-order stationary if it satisfies the sufficiency condition
(π − π∗)⊤ Jacv(π∗)(π − π∗) < 0 for al π ∈ Π\{π∗}, (SOS)

where Jacv(π∗) = (∇ jvi(π∗))i, j∈N = (∇ j∇iVi(π∗))i, j∈N denotes the Jacobian of v at π∗.

• π∗ is deterministic if it induces a deterministic selection rule π∗i : S → Ai for all i ∈ N .

• π∗ is strict if it is deterministic and (FOS) holds as a strict inequality whenever π , π∗.
Remark 1. In the above and what follows, “sufficiently close” means that there exists a neighborhood
U of π∗ in Π such that the stated inequality holds for all π ∈ U . Unless mentioned otherwise, we will
measure distances on Π relative to the Euclidean norm, but this choice does not impact our results.

Intuitively, the condition for equilibrium stability is a game-theoretic analogue of first-order KKT
sufficiency condition, while the condition for second-order stationarity is the second-order version
thereof. In this regard, the distinction between first-order stationary, stable and second-order stationary
points is formally analogous to the distinction between critical points, minimizers, and second-order
minimum points in optimization. As for deterministic policies, we should mention that, generically,
deterministic policies are also strict, so we will use the two terms interchangeably.1

Importantly, as we show in ??, these refinements admit the following characterizations:
Proposition 1. Let π∗ = (π∗i )i∈N ∈ Π be a Nash policy. Then:

a) If π∗ is second-order stationary, there exists some µ > 0 such that
⟨v(π), π − π∗⟩ ≤ −µ ∥π − π∗∥2 for all π sufficiently close to π∗. (3a)

b) If π∗ is strict, there exists some µ > 0 such that
⟨v(π), π − π∗⟩ ≤ −µ ∥π − π∗∥ for all π sufficiently close to π∗. (3b)

In view of all the above, we get the following string of implications for equilibria in generic games:
strict/deterministic =⇒ SOS =⇒ stable =⇒ FOS = Nash (4)

For posterity, we should clarify here that, due to the highly complicated structure of the game’s
value functions, it is not trivial to construct a concrete example where (3a) holds but (3b) does not.
Examples of strict Nash policies abound in the literature [30, 53], but we are not otherwise aware of
an argument that could be used to close the gap between (3a) and (3b). In view of this, our analysis
will treat both cases concurrently (with the obvious anticipation that more refined solution concepts
should enjoy stronger convergence guarantees).

3 Policy gradient methods

We now proceed to describe our general model for episodic learning in stochastic games. To that
end, we will consider a framework where agents follow a specific policy πn within each episode,
and update it from one episode to the next with the objective of increasing their individual rewards.
Formally, our approach will adhere to the following inter-episode sequence of events:

1. At the beginning of each episode n = 1, 2, . . . , every agent i ∈ N chooses a policy πi,n ∈ Πi.
2. Within the n-th episode, each player executes their chosen policy πi,n, inducing in this way an

intra-episode trajectory of play τn = (s(n)
t , α

(n)
t , r

(n)
t )t≤T (τn).

3. Once the episode terminates, agents update their policies and the process repeats.

In terms of feedback, we will treat several models, depending on what type of information is available
to the agents during play. More precisely, we will focus on the generic policy gradient (PG) template

πn+1 = projΠ(πn + γnv̂n) (PG)
where:

1The notion of genericity is stated here in the sense of Baire, i.e., the stated property holds for all but a
“meager” set of games (i.e., a countable union of nowhere dense sets in the space of all games).
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Algorithm 1: Reinforce

1: Input: π̂ ∈ Π, τ = (st, αt, rt)t≤T (τ) ∈ T
2: for i = 1, . . . ,N do
3: Ri(τ)←

∑T (τ)
t=0 ri,t

4: Λi(τ)←
∑T (τ)

t=0 ∇i
(
log π̂i(αi,t |st)

)
5: v̂i ← Ri(τ) · Λi(τ)
6: end for
7: return {v̂i}i∈N

Algorithm 2: ε-Greedy Policy Gradient

1: Input: π1, {γn}n∈�, {εn}n∈�

2: for n = 1, 2, . . . do
3: π̂n ← (1 − εn)πn +

εn
|A|

4: Sample τn ∼ MDP(π̂n|s0)
5: v̂n ← Reinforce(π̂n, τn)
6: πn+1 ← projΠ(πn + γnv̂n)
7: end for

1. πn = (πi,n)i∈N ∈ Π denotes the player’s policy profile at each episode n = 1, 2, . . .
2. v̂n = (v̂i,n)i∈N ∈

∏
i�

Ai×S is an estimate for the agents’ inidividual policy gradients.
3. projΠ :

∏
i�

Ai×S → Π denotes the Euclidean projection to the agents’ policy space Π.
4. γn > 0 is the method’s step-size, for which we will assume throughout that

∑
n γn = ∞; typically,

(PG) is run with a step-size of the form γn = γ/(n + m)p for some γ > 0, m ≥ 0 and p ≥ 0.

Regarding the gradient signal v̂n, we will decompose it as

v̂n = v(πn) + Un + bn (5)

where
Un = v̂n − �[v̂n |Fn] and bn = �[v̂n |Fn] − v(πn). (6)

In the above, we treat πn, n = 1, 2, . . . , as a stochastic process on some complete probability space
(Ω,F ,�), and we write Fn B F (π1, . . . , πn) ⊆ F for the history (adapted filtration) of πn up to – and
including – stage n. By definition, �[Un |Fn] = 0 and bn is Fn-measurable, so Un can be intepreted
as a random, zero-mean error relative to v(πn), whereas bn captures all systematic (non-zero-mean)
errors. To make this precise, we will further assume that bn and Un are bounded as

�[∥bn∥ |Fn] ≤ Bn and �[∥Un∥
2 |Fn] ≤ σ2

n (7)

where the sequences Bn and σn , n = 1, 2, . . . , are to be construed as deterministic upper bounds on
the bias, fluctuations, and magnitude of the gradient signal v̂n.

Depending on these bounds, a gradient signal with Bn = 0 will be called unbiased, and an unbiased
signal with σn = 0 will be called perfect. More generally, we will assume that the above statistics are
bounded as

Bn = O(1/nℓb ) and σn = O(nℓσ ) (8)

for some ℓb, ℓσ > 0 which depend on the specific model under consideration. For concreteness, we
describe below three basic models that adhere to the above template for v̂n in order of decreasing
information requirements:

Model 1 (Full gradient information). The first model we will consider assumes that agents observe
their full policy gradients, i.e.,

v̂n = v(πn) (9)

implying in particular that Un = bn = 0. This model is fully deterministic across episodes (though
intra-episode play remains stochastic). In particular, it tacitly assumes that agents know the game
(and can observe their opponents’ policies) sufficiently well so as to calculate the full gradients of
their individual value functions Vi,ρ, cf. [2, 31, 61] and references therein. ♦

Model 2 (Learning with stochastic gradients). A relaxation of the above model which is particularly
relevant for applications to deep reinforcement learning concerns the case where the player have
access to stochastic policy gradients [60], i.e., unbiased gradient estimates of the form

v̂n = v(πn) + Un (10)

with �[Un |Fn] = 0 (so we can formally take ℓb = ∞ and ℓσ = 0 in Eq. (8) above). ♦
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Model 3 (Value-based learning). The last model we will consider concerns the case where agents
only have access to their instantaneous rewards and need to reconstruct their individual gradients
based on this information. A widely used method to achieve this is via the Reinforce subroutine,
which we describe in pseudocode form in Algorithm 1. In words, when employing Reinforce, each
agent i ∈ i commits to a sampling policy π̂i ∈ Πi and executes it in an episode of the stochastic game
in play. Then, at the end of the episode, players gather the total reward Ri(τ)←

∑T (τ)
t=0 ri,t associated

to the intra-episode trajectory of play τ, and they estimate their policy gradients via the so-called
“log-trick” [59] as

v̂i = Ri(τ) ·
∑T (τ)

t=0
∇i
(
log π̂i(αi,t |st)

)
. (11)

Lemma 4 below provides the vital statistics of the Reinforce estimator:
Lemma 4. Suppose that each agent i ∈ N follows a stationary policy πi ∈ Πi. Then:

a) �τ∼MDP[Reinforce(π)] = v(π) (12a)

b) �τ∼MDP

[
∥Reinforcei(π) − vi(π)∥2

]
≤

24Ai

κiζ4 (12b)

where κi = mins∈S,αi∈Ai πi(αi|s).

Therefore, if Reinforce is executed at π̂← πn at each episode n = 1, 2, . . . , we will have

�[v̂i,n] = vi(πn) and �[∥Ui,n∥
2 |Fn] ≤

24Ai

ζ4 mins∈S,αi∈Ai πi,n(αi|s)
. (13)

In particular, this means that we will always have Bn = 0 for the bias of the estimator, but its variance
could be unbounded if πn gets close to the boundary of Π. To avoid this, Reinforce can be paired
with an explicit exploration step that modifies the sampling policy of the n-th episode to

π̂i,n = (1 − εn)πi,n + εn UnifAi for all s ∈ S (14)

i.e., π̂i,n is the mixture between πi,n and the uniform distribution UnifAi over Ai. The resulting
algorithm is known as ε-Greedy Policy Gradient; for a pseudocode representation, see Algorithm 2.

Importantly, by calling Reinforce at π̂n instead of πn, v̂n becomes biased (because of the difference
between π̂n and πn), but its variance is bounded; in particular, by invoking Lemma 4, we have

�[∥bi,n∥ |Fn] ≤ Gεn and �[∥Ui,n∥
2 |Fn] ≤

24A2
i

εnζ4 (15)

where G is a constant that depends on the smoothness of V and the cardinalities of A and S .2 In this
way, Algorithm 2 can be seen as a special case of (PG) with Bn = O(εn) and σ2

n = O(1/εn). ♦

4 Convergence analysis and results

We are now in a position to state and discuss our main results. For convenience, we will present
our results in order of increasing structure, starting with stable policies, and then moving on to
second-order stationary and deterministic Nash policies. All proofs are deferred to the appendix.

4.1. Asymptotic convergence to stable Nash policies. Our first convergence result concerns Nash
policies that satisfy the stability requirement ⟨v(π), π − π∗⟩ < 0 of Definition 2. In this case, we have
the following guarantee:
Theorem 1. Let π∗ be a stable Nash policy, and let πn be the sequence of play generated by (PG)
with step-size γn = γ/(n + m)p, p ∈ (1/2, 1], and policy gradient estimates such that p + ℓb > 1 and
p− ℓσ > 1/2 as per (8). Then there exists a neighborhood U of π∗ in Π such that, for any given δ > 0,
we have

�(πn converges to π∗ | π1 ∈ U) ≥ 1 − δ (16)
provided that γ is small enough (or m large enough) relative to δ.

2Specifically, from ?? we know that ∥vi(π̂n) − vi(πn)∥ ≤ 3
√

A/ζ3 ·
∑

j
√

A j · ∥π̂ j,n − π j,n∥. Moreover, |πi,n(α |
s) − π̂i,n(α | s)| ≤ εn for all s ∈ S, α ∈ Ai, so ∥πi,n − π̂i,n∥ ≤

√
S Aiεn. Combining the above, it follows that we

can take G = 3NA3/2
√

S
/
ζ3.
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Corollary 1. Suppose that Models 1–3 are run with a step-size of the form γn = γ/(n +m)p, p > 1/2,
and if applicable, an exploration parameter εn = ε/(n + m)ℓε such that 1 − p < ℓε < 2p − 1. Then:

• For Models 1 and 2: the conclusions of Theorem 1 hold as stated.

• For Model 3: the conclusions of Theorem 1 hold as long as p > 2/3.

We note here that Theorem 1 provides a trajectory convergence guarantee which is otherwise quite
difficult to obtain even in structured stochastic games. For example, if we zoom in on the class of
stochastic potential (or min-max) games, the existing guarantees in the literature concern the “best
iterate” of the algorithm, cf. [31, 61] and references therein. Because of this, said guarantees do not
apply to the actual trajectory of play generated by (PG); this makes them less suitable for agent-based
learning where the players involved are learning “as they go”, as opposed to simulating the game in
order to approximately compute an equilibrium policy offline.

We should also note that the convergence guarantees of Theorem 1 hold locally with arbitrarily high
probability. Without further assumptions, it is not possible to obtain global trajectory convergence
guarantees that hold with probability 1, even in single-state games – that is, the case of learning in
finite normal form games. The reason for this locality is twofold: First, equilibrium policies are not
unique in general, and gradient-based dynamics may also admit non-equilibrium attractors, such as
limit cycles and the like [23, 34–36]. As a result, in the presence of multiple equilibria/attractors, the
best one can hope for is a local equilibrium convergence result, conditioned on the basin of attraction
of said equilibrium (as per Theorem 1).

The second obstruction to a global, unconditional convergence result is probabilistic in nature, and has
to do with the randomness that enters the learning process (e.g., in the estimation of policy gradients
via the Reinforce). In this case, no matter how close one starts to an equilibrium policy, there is
always a finite, non-zero probability that an unlucky realization of the noise can drive the process
away from its basin, possibly never to return. This issue can only be overcome in games where Π is
partitioned (up to a set of measure zero) into basins of attraction of equilibrium policies. However,
this can only occur in games with a sufficiently strong global structure, like potential stochastic games,
two-player zero-sum games and the like; in complete generality, locality cannot be lifted, even in
single-state problems [17, 19].

4.2. Convergence to second-order stationary policies. Albeit valuable as an asymptotic conver-
gence guarantee, Theorem 1 does not provide an indication of how long it will take players to actually
converge to a Nash policy. Of course, in full generality, it is not plausible to expect to be able to
derive such a convergence rate because the stability requirement provides no indication on how
fast the players’ policy gradients stabilize near a solution. This kind of estimate is provided by
the second-order sufficient condition (SOS), which allows us to establish sufficient control over the
sequence of play as indicated by the following theorem.

Theorem 2. Let π∗ be a second-order stationary policy, let B be a neighborhood of π∗ such that (3a)
holds on B, and let πn be the sequence of play generated by (PG) with step-size γn = γ/(n + m)p,
p ∈ (1/2, 1], and policy gradient estimates such that p + ℓb > 1 and p − ℓσ > 1/2 as per (8). Then:

1. There exists a neighborhood U of π∗ in Π such that, for any confidence level δ > 0, the event

E = {πn ∈ B for all n = 1, 2, . . . } (17)

occurs with probability �(E | π1 ∈ U) ≥ 1 − δ if m is large enough relative to δ.

2. The sequence πn converges to π∗ with probability 1 on E; in particular, we have

�(πn converges to π∗ | π1 ∈ U) ≥ 1 − δ (18)

if m is large relative to δ. Moreover, conditioned on E and taking q = min{ℓb, p − 2ℓσ}, we have

�[∥πn − π
∗∥2 | E] =

{
O(1/n2µγ) if p = 1 and 2µγ < q,
O(1/nq) otherwise.

(19)

Corollary 2. Suppose that Models 1–3 are run with a step-size of the form γn = γ/(n +m)p, p > 1/2,
and if applicable, an exploration parameter εn = ε/(n + m)p/2. Then:
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• For Models 1 and 2: the conclusions of Theorem 2 hold with q = p; in particular, (19) gives an
O(1/n) rate of convergence if p = 1 and 2µγ > q.

• For Model 3: the conclusions of Theorem 2 hold for p > 2/3 with q = p/2; in particular, (19)
gives an O(1/

√
n) rate of convergence if p = 1 and 2µγ > q.

Remark 2. Getting an explicit estimate for the constant in the O(·) guarantee of Theorem 2 is
quite involved but, up to logarithmic and subleading factors, Chung’s lemma [10, 43] can be used
to show that a) if 2µγ > q, it scales as (Cb + Cσ)/[(2µγ − q)(1 − δ)] where Cb = supn γnBn and
Cσ = supn γ

2
nσ

2
n; b) if 2µγ = q, it scales as (Cb+Cσ)(1+max{(2µγ)2, 4µγ})/(1−δ); and c) if 2µγ < q

as (Cb +Cσ)(1 +max{(2µγ)2, 4µγ})/[(q − 2µγ)(1 − δ)].

Besides providing a general framework for achieving trajectory convergence, Theorem 2 gives the
rates of convergence of the sequence of play to the Nash policy in question. In particular, with this
result in hand, one can confidently argue about the distance of the iterates of (PG) from equilibrium in
a series of different environments. More to the point, this convergence guarantee allows the algorithm
designer to adapt the parameters of the learning process according to the complexity and limitations
of the environment, a feature which further highlights the significance of this result.

We should also note the delicate interplay between the method’s step-size and the achieved con-
vergence rate. In the case of Model 1, Corollary 2 suggests a step-size of the form γn = Θ(1/n),
leading to a O(1/n) convergence rate. As we show in the appendix, this rate can be improved: in the
deterministic case with perfect gradient information, (PG) with a suitably chosen constant step-size
achieves a geometric convergence rate, i.e., ∥πn − π

∗∥ = O(exp(−ρn)) for some ρ > 0 (cf. ?? in ??).
By contrast, in the case of Model 2, the O(1/n) rate we provide cannot be improved, even if the
quadratic minorant (3a) that characterizes SOS policies holds globally – and this because the learning
process is running against standard lower bounds from convex optimization [6, 40].

Perhaps the most significant guarantee from a practical point of view is the O(1/
√

n) convergence rate
attained in Model 3 (cf. Algorithms 1 and 2). This guarantee amounts to a O(1/n1/4) convergence rate
in terms of the (non-squared) distance to equilibrium which, mutatis mutandis, represents a notable
improvement over the O(1/n1/6) guarantee of Leonardos et al. [31] (expressed in norm values). Of
course, the latter guarantee is global – because the focus of [31] is stochastic potential games – but
it also concerns the “best iterate” of the process (not its “last iterate”), so the two results are not
immediately comparable. However, a useful “best-of-both-worlds” heuristic that can be inferred by
the combination of these works is that, given a budget of training episodes, Algorithm 2 can be run
with a constant step-size as per [31] for a sufficient fraction of this budget, and then with a O(1/n)
“cooldown” schedule for the rest. In this way, after an aggressive “exploration” phase, the algorithm’s
O(1/n1/4) rate would kick in and supply faster stabilization to an SOS policy.

4.3. Convergence to deterministic Nash policies. Our last series of results concerns the rate of
convergence to deterministic Nash policies in generic stochastic games. As we discussed in Section 2,
deterministic Nash policies also satisfy (SOS), so the rate of convergence of (PG) to such policies
can be harvested directly from Theorem 2. However, as we show below, a simple projection tweak in
(SOS) can improve this rate dramatically.

The tweak in question is inspired by the geometry of Π around a deterministic policy: by definition,
such policies are corner points of Π, so any consistent drift towards them will cause πn to hit the
boundary of Π in finite time. Of course, under (PG), the process may rebound from the boundary and
return to the interior of Π if the policy gradient estimate is not particularly good at a given iteration
of the algorithm. However, if we replace the projection step of (PG) with a “lazy projection” in the
spirit of Zinkevich [62], the aggregation of gradient steps will eventually push the process far inside
the normal cone of Π at π∗, so rebounds of this type can no longer occur.

Formally, we will consider the following lazy policy gradient (LPG) scheme:
yn+1 = yn + γnv̂n πn+1 = projΠ(yn+1) (LPG)

where yn = (yi,n)i∈N ∈
∏

i�
Ai×S is an auxiliary variable that maintains an aggregate of gradient steps

before projecting them back to Π. We then have the following convergence result:
Theorem 3. Let πn be the sequence of play under (LPG) with step-size and policy gradient estimates
such that p + ℓb > 1 and p − ℓσ > 1/2 as per (8). If π∗ is a deterministic Nash policy, there exists an
unbounded open set W ⊆

∏
i�

Ai×S of initializations such that, for any δ > 0, we have
�(πn converges to π∗ | y1 ∈W) ≥ 1 − δ, (20)
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provided that γ > 0 is small enough. Moreover, conditioned on this event, πn converges to π∗ at a
finite number of iterations, i.e., there exists some n0 such that πn = π

∗ for all n ≥ n0.
Corollary 3. Suppose that Models 1–3 are run with parameters γn = γ/np, p ∈ (1/2, 1], and if
applicable, εn = ε/nℓε with 1 − p < ℓε < 2p − 1. Then the conclusions of Theorem 3 hold.

Remark 3. Getting an explicit bound for n0 is quite complicated, but the last part of the proof
of Theorem 3 shows that n0 scales in terms of the parameters of the game and the algorithm as
n0 = O

((MS A
cγ
)1/(1−p)

)
where c > 0 measures the minimum payoff difference between equilibrium and

non-equilibrium strategies at π∗, M is a measure of the initial distance from π∗, and S and A is the
number of states and pure strategies respectively.

Theorem 3 – and, by extension, Corollary 3 – are fairly unique because they provide a guarantee for
convergence to an exact Nash equilibrium in a finite number of iterations. To the best of our knowledge,
the only comparable result in the literature is that of [61], where the authors provide a finite-time
convergence guarantee to strict equilibria with perfect policy gradients (as per Model 1). The result
of Zhang et al. [61] echoes the convergence properties of deterministic first-order algorithms around
sharp minima of convex functions [43], but the fact that Theorem 3 applies to models with stochastic
gradient feedback of unbounded variance (Models 2 and 3 respectively) is a major difference. As far
as we are aware, this is the first guarantee of its kind in the literature on learning in stochastic games.

5 Concluding remarks

A key roadblock encountered by practical applications of multi-agent reinforcement learning is the
lack of universal equilibrium convergence guarantees. While the impossibility results of [21, 22]
imply that unconditional convergence is not a reasonable aspiration without further assumptions on
the game, the existence of local convergence results mitigates this deficiency as it provides a range of
theoretically grounded stability and runtime guarantees. In this regard, deterministic policies acquire
particular importance, as the convergence of policy gradient methods is especially rapid and robust
and this case. Of course, this leaves open the question of non-tabular settings and parametrically
encoded policies, e.g., as in the case of deep reinforcement learning; we defer these investigations to
future work.

Another open issue of high practical relevance concerns policy gradient methods that do not rely
on Euclidean projections to Π. In the single-state case (i.e., learning in finite normal form games),
the use of methods relying on softmax choice / exponential weights is very widely used because of
its regret guarantees. Whether the use of similar softmax techniques can lead to finer convergence
guarantees in the context of general stochastic games is an important and intriguing question for
future research.
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5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A]
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