
A Deferred proofs429

A.1 Alternate characterizations of GULP, proofs of Proposition 1 and Lemma 1430

We provide proofs of the two alternative characterizations to the GULP distance that were claimed in431

the main text.432

Proof of Lemma 1. Fix a distribution of (X,Y ), and let η(x) = E[Y |X = x] be the regression
function. Since we are using squared error, with φ features the best linear predictor is βλ that solves

βλ = Σ−λφ E[Y φ(X)] = Σ−λφ E[η(X)φ(X)] = Σ−λφ

∫
η(x)φ(x)dPX(x)

where PX is the marginal distribution of X . Similarly

γλ = Σ−λψ

∫
η(x)ψ(x)dPX(x)

In particular, for a given distribution of (X,Y ), the distance between the best linear predictors is

E(β>λ φ(X)− γ>λ ψ(X))2.

We rewrite this in terms of η:433

E(β>λ φ(X)− γ>λ ψ(X))2 = E
(∫

η(x)
[
φ(X)>Σ−λφ φ(x)− ψ(X)>Σ−λψ ψ(x)

]
dPX(x)

)2

= E〈η, φ(X)>Σ−λφ φ(·)− ψ(X)>Σ−λψ ψ(·)〉2L2(PX)

Therefore to sup out the distribution over Y , we take the sup of η such that ‖η‖L2(PX) ≤ 1. It yields434

the claim of Lemma 1.435

d2λ(φ, ψ) := sup
‖η‖L2(PX )≤1

E〈η, · · · 〉2L2(PX)

= E ‖φ(X)>Σ−λφ φ(·)− ψ(X)>Σ−λψ ψ(·)‖2L2(PX)

= E(φ(X)>Σ−λφ φ(X ′)− ψ(X)>Σ−λψ ψ(X ′))2

where X,X ′ ∼ PX are independent.436

Using Lemma 1, we can easily prove Proposition 1.437

Proof of Proposition 1. Start with the characterization in Lemma 1, expand the square and use the438

cylicity and linearity of the trace:439

d2λ(φ, ψ) = E(φ(X)>Σ−λφ φ(X ′)φ(X ′)>Σ−λφ φ(X))

+ E(ψ(X)>Σ−λψ ψ(X ′)ψ(X ′)>Σ−λψ ψ(X))

− 2E(φ(X)>Σ−λφ φ(X ′)ψ(X ′)>Σ−λψ ψ(X))

= trE(Σ−λφ φ(X ′)φ(X ′)>Σ−λφ φ(X)φ(X)>)

+ trE(Σ−λψ ψ(X ′)ψ(X ′)>Σ−λψ ψ(X)ψ(X)>)

− 2 trE(Σ−λφ φ(X ′)ψ(X ′)>Σ−λψ ψ(X)φ(X)>)

= tr(Σ−λφ ΣφΣ−λφ Σφ) + tr(Σ−λψ ΣψΣ−λψ Σψ)− 2 tr(Σ−λφ ΣφψΣ−λψ Σ>φψ).

440
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A.2 GULP is a distance, proof of Theorem 2441

We complete the proof of Theorem 2 by characterizing when the GULP distance is zero in the442

following lemma.443

Lemma 2 (Characterization for when GULP is zero, for λ > 0). For any λ > 0, the two representation444

maps φ : Rd → Rk, ψ : Rd → Rl have zero GULP distance, dλ(φ, ψ) = 0, if and only if k = l445

andthere exists an orthogonal transformation U ∈ R such that φ(X) = Uψ(X) a.s.446

Proof of Lemma 2. In the main text it was shown that if φ and ψ are related by an orthogonal447

transformation, then dλ(φ, ψ) = 0. It remains to prove the converse direction, which is more448

involved. Define φ̃(x) = (Σφ + λI)−1/2φ(x) and ψ̃(x) = (Σψ + λI)−1/2ψ(x). We make the449

following claim, whose proof we defer:450

Claim 1. Let λ > 0 and suppose dλ(φ, ψ) = 0. Then k = l and there is an orthogonal transformation451

U ∈ Rk×k such that φ̃(X) = Uψ̃(X) almost surely.452

Let U ∈ Rk×k be the orthogonal transformation guaranteed by the above claim. We can write453

Σφ = E[φ(X)φ(X)>]

= (Σφ + λI)1/2U(Σψ + λI)−1/2 E[ψ(X)ψ(X)>](Σψ + λI)−1/2UT (Σφ + λI)1/2

= (Σφ + λI)1/2U(Σψ + λI)−1/2Σψ(Σψ + λI)−1/2UT (Σφ + λI)1/2.

Since Σφ and (Σφ + λI)1/2 commute, and similarly for Σψ and (Σψ + λI)1/2, we have454

Σφ(Σφ + λI)−1 = UΣψ(Σψ + λI)−1UT .

Write the SVDs Σφ = VφDφV
>
φ and Σψ = VψDψV

>
ψ . Then455

Dφ(Dφ + λI)−1V >φ UVψ = V >φ UVψDψ(Dψ + λI)−1. (4)

Define the diagonal matrices Λφ = Dφ(Dφ+λI)−1 andDψ(Dψ+λI)−1, and define the orthogonal456

matrix M = V >φ UVψ . Equation (4) is a homogeneous Sylvester equation:457

ΛφM = MΛψ.

Therefore (Λψ)ii = (Λφ)jj if Mij 6= 0. Since f : R+ → [0, 1] defined by f(x) = x
x+λ is invertible,458

this implies that (Dφ)ii = (Dψ)jj if Mij 6= 0. From this it follows that459

(Dφ + λI)−1/2M(Dψ + λI)1/2 = M.

Plugging in M and rearranging, we obtain460

U>V >φ (Dφ + λI)−1/2VφU = Vψ(Dψ + λI)−1/2V >ψ ,

which simplifies to461

U>(Σφ + λI)−1/2U = (Σψ + λI)−1/2.

By combining this with the guarantee from Claim 1 that φ(X) = (Σφ+λI)1/2U(Σψ+λI)−1/2ψ(X)462

almost surely, we obtain463

φ(X) = Uψ(X),

almost surely. This shows the converse direction of the theorem.464

We conclude with a proof of the claim.465

Proof of Claim 1. Let (X1, . . . , Xn, . . .) be an infinite sequence of i.i.d copies of X . For each n, let

An = [φ̃(X1), . . . , φ̃(Xn)] ∈ Rk×n, Bn = [ψ̃(X1), . . . , ψ̃(Xn)] ∈ Rl×n.

Since dλ(φ, ψ) = 0, by the characterization of GULP in Lemma 1 we have φ̃(X)>φ̃(X ′) =

ψ̃>(X)ψ̃(X ′) almost surely, so A>nAn = B>n Bn almost surely. Suppose without loss of generality
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that l ≤ k. Then by Theorem 7.3.11 of [HJ12], we can construct a semi-orthogonal Un ∈ Rl×k such
that An = UnBn almost surely. Define the event

E1 = {An = UnBn for all n ≥ 1}.

Taking a union bound over countably many n, we see that E1 holds almost surely.466

Define W = span{ψ̃(Xi)}∞i=1. We claim that there is a deterministic vector space V ⊆ Rl such

that W = V almost surely. Let W ′ be an independent copy of W . Then W d
= W + W ′. For any

i ∈ {0, . . . , k},

P[rank(W ) ≤ i] = P[rank(W +W ′) ≤ i] ≤ P[rank(W ) ≤ i]− P[rank(W ) ≤ i, and W ′ 6⊆W ].

We conclude that P[rank(W ) ≤ i, and W ′ 6⊆ W ] = 0 for all i, so P[W ′ 6⊆ W ] = 0 for the two467

independent copies. Therefore W is deterministic, and equals V almost surely.468

Let N = sup{n+ 1 : span{ψ̃(X1), . . . , ψ̃(Xn)} = Rl} ∪ {1}. Define the event that N is finite,

E2 = {N <∞}.

Since we have shown that span{ψ̃(Xi)}∞i=1 = V almost surely, it follows that E2 holds almost469

surely.470

We now prove that the semi-orthogonal random matrix UN ∈ Rk×l satisfies our conditions. Under471

the almost-sure events E1 and E2, we can write ψ̃(XN+1) =
∑N
i=1 λiψ̃(Xi), and it holds that472

φ̃(XN+1) = UN+1ψ̃(XN+1) =

N∑
i=1

λiUN+1ψ̃(Xi) =

N∑
i=1

λiφ̃(Xi) =

N∑
i=1

λiUN ψ̃(Xi) = UN ψ̃(XN+1).

Since events E1 and E2 hold almost surely, and XN+1 is independent of N and X1, . . . , XN ,473

P[φ̃(X) = UN ψ̃(X)] = P[φ̃(XN+1) = UN ψ̃(XN+1)] = 1.

So we conclude that there is a deterministic semi-orthogonal matrix U ∈ Rk×l such that φ̃(X) =474

Uψ̃(X) almost surely. Finally, recall that we have assumed that Σφ and Σψ are invertible. There-475

fore k = rank(Σφ) = rank(Σφ̃) ≤ min(rank(U), rank(Σψ̃)) = min(rank(U), rank(Σψ)) =476

min(rank(U), l). We conclude that k = l, and U ∈ Rk×k is an orthogonal transformation.477

For λ = 0, we also characterize when the GULP distance is zero. Since GULP corresponds to the478

CCA distance, with slightly different normalization, this is also a characterization of when the CCA479

distance is zero.480

Lemma 3 (Characterization for when GULP is zero, for λ = 0). If λ = 0, the two representation481

maps φ : Rd → Rk and ψ : Rd → Rl have zero GULP distance, d0(φ, ψ) = 0, if and only if k = l482

and there exists an invertible linear transformation M ∈ Rk×k such that φ(X) = Mψ(X) a.s.483

Proof. For the “easy” direction, suppose that k = l and φ = Mψ for an invertible M ∈ Rk×k. Then484

Σφ = MΣψM
> and Σφψ = MΣψ. Using the characterization of GULP from Proposition 1, we485

obtain486

d20(φ, ψ) = tr(Σ−1φ ΣφΣ−1φ Σφ) + tr(Σ−1ψ ΣψΣ−1ψ Σψ)− 2 tr(Σ−1φ ΣφψΣ−1ψ Σ>φψ)

= tr(Ik) + tr(Ik)− 2 tr((M−1)>Σ−1ψ M−1MΣψΣ−1ψ Σψ(M−1)>)

= k + k − 2 tr(Ik)

= 0.

For the converse direction, we construct the representations φ̃ = Σ
−1/2
φ φ and ψ̃ = Σ

−1/2
ψ ψ. By487

the characterization of GULP in Lemma 1, the condition d0(φ, ψ) = 0 implies that φ̃(X)>φ̃(X ′) =488

ψ̃(X)>ψ̃(X ′), almost surely over independent X,X ′ ∼ PX . Therefore, analogous reasoning to489

Claim 1 applies, and implies that k = l and that there is an orthogonal transformation U such that490

φ̃(X) = Uψ̃ almost surely. So φ(X) = Σ
1/2
φ UΣ

−1/2
ψ ψ(X), almost surely.491
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A.3 Convergence of plug-in estimator, proof of Theorem 3492

In order to prove Theorem 3, we first show the following lemma.493

Lemma 4. There is a universal constant C > 0, such that for anyB such that ‖φ(X)‖2, ‖ψ(X)‖2 ≤494

B almost surely, and for any λ > 0, the plug-in estimator d̂2λ,n converges to the population distance495

d2λ, with the following guarantee for any t > 0 and any number of samples n > 0,496

P[|d̂2λ,n(φ, ψ)− d2λ(φ, ψ)| ≥ t+ 4B2/(nλ2)] ≤ exp(−Cnt2λ4/B4) + (k + l) exp(−Cnt2λ6/B6).

Proof. By the expanding the square and using cyclicity and linearity of the trace, similarly to the497

proof of Proposition 1, the plug-in estimator can alternatively be written as:498

d̂2λ,n(φ, ψ) =
1

n2

n∑
i,j=1

(φ(Xi)
>(Σ̂φ + λI)−1φ(Xj)− ψ(Xi)

>(Σ̂ψ + λI)−1)ψ(Xj))
2. (5)

For the analysis, also define the plug-in estimator, but with the true covariance matrices,499

d̃2λ,n(φ, ψ) =
1

n2

n∑
i,j=1

(φ(Xi)
>(Σφ + λI)−1φ(Xj)− ψ(Xi)

>(Σψ + λI)−1)ψ(Xj))
2. (6)

We bound the error between the plug-in estimator and the true distance by the triangle inequality:500

|d̂2λ,n(φ, ψ)− d2λ(φ, ψ)| ≤ |d̂2λ,n(φ, ψ)− d̃2λ,n(φ, ψ)|︸ ︷︷ ︸
Term 1

+ |d̃2λ,n(φ, ψ)− d2λ(φ, ψ)|︸ ︷︷ ︸
Term 2

. (7)

We bound Term 1 and Term 2 separately, stating our bounds in the following claims.501

Claim 2 (Bound on Term 1). Under the conditions of Lemma 4, for any t > 0,502

P[|d̂2λ,n(φ, ψ)− d̃2λ,n(φ, ψ)| ≥ t] ≤ (k + l)e−nt
2λ6/(2048B6)

Proof. For any i, j ∈ [n], define T̂ij,φ = φ(Xi)
>(Σ̂φ + λI)−1φ(Xj) and Tij,φ = φ(Xi)

>Σφ +503

λI)−1φ(Xj). We have504

|T̂ij,φ − Tij,φ| ≤ B‖(Σ̂φ + λI)−1 − (Σφ + λI)−1‖,

and505

|T̂ij,φ|, |Tij,φ| ≤ B‖(Σ̂φ + λI)−1‖ ≤ B/λ.

Analogous definitions and inequalities hold if we replace φ by ψ. Therefore,506

|d̂2λ,n(φ, ψ)−d̃2λ,n(φ, ψ)|

= | 1

n2

n∑
i,j=1

(T̂ij,φ − T̂ij,ψ)2 − (Tij,φ − Tij,ψ)2|

= | 1

n2

n∑
i,j=1

(T̂ij,φ − T̂ij,ψ − Tij,φ + Tij,ψ)(T̂ij,φ − T̂ij,ψ + Tij,φ − Tij,ψ)|

≤ 4B2(‖(Σ̂φ + λI)−1 − (Σφ + λI)−1‖+ ‖(Σ̂ψ + λI)−1 − (Σψ + λI)−1‖)/λ.

So the bound on Term 1 follows from combining with the following technical claim:507

Claim 3. For any t > 0,508

P[‖(Σ̂φ + λI)−1 − (Σφ + λI)−1‖ ≥ t] ≤ ke−nt
2λ4/(32B2). (8)

509

P[‖(Σ̂ψ + λI)−1 − (Σψ + λI)−1‖ ≥ t] ≤ le−nt
2λ4/(32B2). (9)

510
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Proof of Claim 3. We prove the claim for φ, since the reasoning for ψ is analogous. First, let511

us prove that Σ̂φ concentrates around Σφ in operator norm. For each i ∈ [n], let Zi =512
1
n

(
φ(Xi)φ(Xi)

> − Σφ
)
, which is self-adjoint, satisfies E[Zi] = 0 and has operator norm bounded513

by ‖Z2
i ‖ ≤ 1

n2

(
2‖φ(Xi)φ(Xi)

>‖2 + 2‖Σφ‖2
)
≤ 4B2/n2 almost surely. So applying the matrix514

Hoeffding inequality (Theorem 1.3 of [Tro12]) to Σ̂φ =
∑n
i=1 Zi, we have, for any t > 0,515

P[‖Σ̂φ − Σφ‖ ≥ t] ≤ ke−t
2n/(32B2).

Now let us show that (Σ̂φ+λI)−1 concentrates to (Σφ+λI)−1 in operator norm. Since 0 . Σ̂φ,Σφ,516

for any v ∈ Rk, we have517

‖((Σ̂φ + λI)−1 − (Σφ + λI)−1)v‖ ≤ 1

λ
‖(I − (Σ̂φ + λI)(Σφ + λI)−1)v‖

=
1

λ
‖((Σ̂φ − Σφ)(Σφ + λI)−1)v‖

≤ 1

λ2
‖Σ̂φ − Σφ‖‖v‖.

518

We now bound the second term in (7).519

Claim 4 (Bound on Term 2). Under the conditions of Lemma 4, for any t > 0,520

P[|d̃2λ,n(φ, ψ)− d2λ(φ, ψ)| ≥ 4B2/(nλ2) + t] ≤ exp(−t2λ4n/(8B4)).

Proof. Write d̃2λ,n(φ, ψ) =
∑n
i,j=1 sij , where

sij =
1

n2
(φ(Xi)

>(Σφ + λI)−1φ(Xj)− ψ(Xi)
>(Σψ + λI)−1)ψ(Xj))

2

is the i, j term in the sum. Since ‖(Σ̂φ+λI)−1‖, ‖(Σ̂ψ+λI)−1‖ ≤ 1/λ, and ‖φ(Xi)‖2, ‖ψ(Xi)‖2 ≤
B, we have almost surely

|sij | ≤
4B2

n2λ2
.

Furthermore, term sij only depends on Xi and Xj . Therefore, by McDiarmid’s inequality,521

P[|d̃2λ,n(φ, ψ)− E[d̃2λ,n(φ, ψ)]| ≥ t] ≤ exp(−t2λ4n/(8B4)), (10)

where we have used that |
∑n
j=1 sij | ≤ 4B2/(nλ2) for each i. Finally, we bound the difference522

between d̃2λ,n and d2λ in expectation over the samples. Notice that if i 6= j we have E[sij ] =523

d2λ(φ, ψ)/n2. So the only terms that can add bias are the diagonal terms sii, so524

|d2λ(φ, ψ)− E[d̃2λ,n(φ, ψ)]| ≤
n∑
i=1

|sii| ≤ 4B2/(nλ2) (11)

Combining (10) and (11) proves the claim.525

Combining Claims 2 and 4 with the triangle inequality (7) proves Lemma 4.526

527

Theorem 3 is now a simple consequence of Lemma 4.528

Proof of Theorem 3. Under the conditions of Theorem 3, we have ‖φ(X)‖2, ‖ψ(X)‖2 ≤ 1 almost529

surely and λ ∈ (0, 1). For any t > 0, Lemma 4 implies530

P[|d̂2λ,n(φ, ψ)− d2λ(φ, ψ)| ≥ t+ 4/(nλ2)] ≤ exp(−Cnt2λ4) + (k + l) exp(−Cnt2λ6).
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Let 0 < δ ≤ 1 and let t = 2
Cλ3

√
log((k+l)/δ)

n . Then

P[|d̂2λ,n(φ, ψ)− d2λ(φ, ψ)| ≥ t+ 4/(nλ2)] < δ/2 + δ/2 = δ .

Finally, since λ ∈ (0, 1) we have

1

λ3

√
log((k + l)/δ)

n
& t+ 4/(nλ2),

which proves the theorem.531

A.4 Transfer learning distance under kernel ridge regression532

Consider comparing the predictors output by kernel ridge regression with some kernel K(x, y) =533

〈τ(x), τ(y)〉, applied to different representations. This corresponds to the caseF = {fβ(·) : fβ(x) =534

βT τ(x)} and r(fβ) = ||β||22. Although τ may be high or even infinite dimensional, we now show535

that computing GULP under this F requires only access to K(·, ·), and not τ directly.536

This is equivalent to defining new representations φ′ = τ ◦φ and ψ′ = τ ◦φ, and computing dφ(φ′, ψ′).537

However, τ may be high or even infinite-dimensional; traditionally in kernel ridge regression, one538

only wishes to compute K(·, ·) but never τ explicitly. Here, we show that dλ(φ, ψ) is computable in539

terms of only inner products 〈φ(x), φ(y)〉 and 〈ψ(x), ψ(y)〉, or put differently, that dλ(φ, ψ) can be540

written in terms of only the kernel functions associated with φ and ψ. By applying this result to φ′541

and ψ′, this implies we only need to access 〈φ′(x), φ′(y)〉 = 〈τ(φ(x)), τ(φ(y))〉 = K(φ(x), φ(y)).542

Recall that dλ(φ, ψ)2 = tr((Σφ+λI)−1Σφ(Σφ+λI)−1Σφ)+tr((Σψ+λI)−1Σψ(Σψ+λI)−1Σψ)−543

2 tr((Σφ + λI)−1Σφψ(Σψ + λI)−1Σ>φψ). We prove the result for the finite sample case discussed544

in 3, where we approximate Σφ = V V T , Σψ = WWT . Here, V consists of all the samples φ(x),545

with number of columns equal to the number of samples. By the kernel trick, (Σφ + λI)−1Σφ =546

(V V T + λI)−1V V T = V (V TV + λI)−1V T . Thus:547

tr((Σφ + λI)−1Σφ(Σφ + λI)−1Σφ) = tr(V (V TV + λI)−1V TV (V TV + λI)−1V T )

= tr((V TV + λI)−1V TV (V TV + λI)−1V TV )

This term is expressible in terms of only (V TV )ij , which only depends on 〈φ(xi), φ(xj)〉 for548

samples xi and xj . Similar reasoning holds for the term tr((Σψ + λI)−1Σψ(Σψ + λI)−1Σψ).549

Finally, consider the cross-term:550

tr((Σφ + λI)−1Σφψ(Σψ + λI)−1Σ>φψ) = tr((V V T + λI)−1VWT (WWT + λI)−1WV T )

= tr(V (V TV + λI)−1WTW (WTW + λI)−1)

= tr((V TV + λI)−1V TV (WTW + λI)−1WTW )

Again, this term is expressible only in terms of V TV and WTW .551

B Supplementary experiments552

B.1 Experimental Setup553

Here we briefly describe all of the network architectures used in this paper as well as the procedure554

for training them. All experiments were run on Nvidia Volta V100 GPUs.555

Networks on MNIST For the MNIST handwritten digit database [Den12], we initialize 400 fully-556

connected networks with ReLU activations. Each networks accepts a flattened 28× 28 image (784557

grayscale pixels) as input and outputs at its last layer a vector of 10 probabilities for a given digit 1-10.558

The number of hidden layers in the networks range from 1 to 10 and the widths of all hidden layers are559

constant and range from 100 to 1000 in multiples of 100. Each model architecture with a fixed width560

and depth is randomly initialized 4 separate times with uniform Kaiming initialization [HZRS15]561

and zero bias. Every network is trained for 50 epochs and a batch size of 100 on all 60,000 images of562

the MNIST train set using the Adam optimizer [KB14] with a learning rate of 10−4.563

19



Networks on ImageNet For the ImageNet Object Localization Challenge [KSH12], we use 37564

state-of-the-art models downloaded both in untrained and pretrained form from the PyTorch database565

of models4. All models can be separated into the following classes566

• ResNets: regnet_x_16gf, regnet_x_1_6gf, regnet_x_32gf, regnetx_3_2_gf, regnet_x_400mf,567

regnet_x_800mf, regnet_x_8gf, regnet_y_16gf, regnet_y_1_6gf, regnet_y_32gf, reg-568

net_y_3_2gf, regnet_y_400mf, regnet_y_800mf, regnet_y_8gf, resnet18, resnext50_32x4d,569

wide_resnet50_2570

• EfficientNets: efficientnet_b0, efficientnet_b1, efficientnet_b2, efficientnet_b3, efficient-571

net_b4, efficientnet_b5, efficientnet_b6, efficientnet_b7572

• MobileNets: mobilenet_v2, mobilenet_v3_small, mobilenet_v3_large573

• ConvNeXts: convnext_base, convnext_tiny, convnext_small, convnext_large574

• Miscellaneous: alexnet, googlenet, inception, mnasnet, vgg16575

All models accept 3-channel RGB images of size 224× 224 (i.e. total dimension 3× 224× 224).576

We normalize the 1,281,119 images in the train set of ImageNet to have mean (0.485, 0.456, 0.406)577

and standard deviation (0.229, 0.224, 0.225) in each RGB channel. Every models embeds the images578

into a latent space with dimension ranging from 400 to 4096 depending on the architecture.579

Networks on CIFAR For CIFAR [KH+09], we train 16 ResNet18 architectures from independent,580

random initializations for 50 epochs each using the FFCV library [LIE+22]. They were trained with581

batch size 512, learning rate 0.5 on a cyclic schedule, momentum parameter 0.9, and with weight582

decay parameter 5e− 4.583

B.2 Relationship of GULP to other distances584

Embeddings of ImageNet Figure 2 of the main text compares the CKA, CCA, and GULP distances585

between pairs of representations of 37 ImageNet representations, estimated from 10,000 samples.586

In Figure 8, we extend the comparison to PWCCA and PROCRUSTES. We note that at certain λ, our587

distance has near-linear relationships with PROCRUSTES and CKA.588

Embeddings of MNIST In Figure 9, we repeat the same experiment for MNIST embeddings589

with trained fully-connected networks of depths in the range from 1 to 10, and widths in590

{200, 400, 600, 800, 1000}.591

B.3 Convergence of the plug-in estimator592

In Figure 3, we estimated the distances between
(
15
2

)
= 105 pairs of ImageNet networks with the593

plug-in estimator as we increased the number of samples n. We plotted the average relative error to594

the 10000-sample estimate. We supplement this result with Figure 10, which shows that for n ≥ 2000,595

two independent estimates of GULP have average relative error smaller than 2%. Therefore, if there is596

error in the plug-in estimator it is mainly due to bias, apart from roughly 2% relative error. Since the597

convergence in 3 indicates that the plug-in estimator is unbiased, this reinforces our claim that the598

plug-in estimator concentrates quickly around the true distance.599

Runtime The 12 ImageNet networks for these plots were alexnet_pretrained_rep, con-600

vnext_small_pretrained_rep, efficientnet_b0_pretrained_rep, efficientnet_b3_pretrained_rep, effi-601

cientnet_b6_pretrained_rep, inception_pretrained_rep, mobilenet_v3_large_pretrained_rep, reg-602

net_x_1_6gf_pretrained_rep, regnet_x_400mf_pretrained_rep, regnet_y_16gf_pretrained_rep, reg-603

net_y_3_2gf_pretrained_rep, regnet_y_8gf_pretrained_rep, subsampled from the 37 models at our604

disposal so as to reduce the computational burden. Generating these plots took 11 minutes with an605

Nvidia Volta V100 GPU. The computational cost is due to the fact that distances are computed for a606

range of increasing number of samples n, on 66 pairs of networks and two independent trials.607

B.4 GULP captures generalization performance by linear predictors608

Here we supplement the experiments of Section 4.1, which show how the GULP distance captures609

generalization performance by linear predictors. We provide an experiment on the UTKFace dataset610

4https://pytorch.org/vision/stable/models.html#classification
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Figure 8: Scatter plots showing relationships between network distances on ImageNet. Each point is
a pair of ImageNet representations, and the x and y coordinates correspond to two distances that are
being compared. There is a surprising near-linear relationship between PROCRUSTES and GULP for
intermediate λ. The title of each plot shows the Pearson correlation coefficient.

[ZSQ17] using the age of a face as the regression label, instead of using a random label. We consider611

the representation maps φ1, . . . , φm given by m = 37 pretrained Imagenet image classification612

architectures, applied to the UTKFace dataset PX . For each pair of representations, we compute the613

CKA, CCA, PWCCA, and GULP distances with the plug-in estimator on 10,000 images. We then draw614

n = 5000 data points (Xi, Yi) ∼ PX , where Xi is the face image and Yi is the corresponding age.615

The remaining experiment details are the same as in Section 4.1. For each representation i ∈ [m]616

we fit a λ-regularized least-squares linear regression to the training data {(Xk, Yk)}k∈[n], yielding617

a coefficient vector βλ,i. Finally, for each 1 ≤ i ≤ j ≤ m, we compute the distance τij between618

predictions as an empirical average over 3000 samples in a testset. In Figure 11, we plot the Spearman619

ρ correlations between the prediction distances τij and the different distances between representations620

(similarly to Figure 4). We run one trial, since the labels are no longer random. The GULP distance621

again performs favorably compared to other methods. For linear regression with λ = 1 and λ = 10−6,622

the GULP distance with λ = 1 and λ = 10−6, respectively vastly outperform previously-proposed623

distances in terms of predicting generalization. For linear regression with λ = 10−4 and λ = 10−2,624

GULP with λ = 10−2 predicts the generalization performance on par with the CKA and PROCRUSTES625

distances. Notice that unlike the experiment with random labels, the best λ for GULP does not exactly626

match the λ used in the linear regression task, but instead is close to it.627

B.5 GULP distances cluster together networks with similar architectures628

Here we elaborate further on the experiments described in Section 4.2 on embeddings of MNIST629

networks. As described previously, we generate four independent copies of fully-connected ReLU630

networks with depths ranging from 1-10 and widths ranging from 100-1000. Network depth refers to631
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Figure 9: Scatter plots showing relationships between network distances of fully-connected network
representations on MNIST. For λ = 0, there is no straight-line relationship with CCA, since the
dimensions of the representations differ, and the normalization of CCA is different from that of GULP
because it depends the representation dimension. Each point is a pair of MNIST representations,
and the x and y coordinates correspond to two distances that are being compared. The near-linear
relationship between CKA and GULP is quite evident for large λ, as it turns out that all of the kernels
are closer to having the same normalization than in the case of the ImageNet dataset. Furthermore,
there is a surprising near-linear relationship between CKA and PROCRUSTES for intermediate λ. The
title of each plot shows the Pearson correlation coefficient.
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Figure 11: GULP captures generalization of linear predictors. We plot Spearman’s ρ between the
differences in predictions by λ-regularized linear regression, and the different distances.

the number of hidden layers in a model and network width refers to the width of each hidden layer.632

All networks are fully-trained on MNIST, and their last hidden layer representations are computed on633

60,000 input images from the train set. For every pair of widths and depths (w1, d1) and (w2, d2),634

there are four trained networks with dimensions (w1, d1) and four trained networks with dimensions635

(w2, d2). For a given metric, we compute 4 · (3− 1) = 12 distances between the penultimate layer636

representations of these networks and average them. This gives us the average distance between637

the penultimate layer representations of a network with dimensions (w1, d1) and a network with638

dimensions (w2, d2). In Figure 12 (left) we show the average PWCCA, CKA, PROCRUSTES, and GULP639

distances between each pair of width-depth architectures for varying λ. We also display the MDS640

embeddings of all 4× 10× 10 networks colored by width and depth (center and right).641

In Figure 13 we perform a very similar experiment to the one above with networks trained on642

CIFAR10 instead of MNIST. We generate five independent copies of fully-connected ReLU networks643

with depths ranging from 1-5 and widths ranging from 200-1,000. All networks are fully-trained on644

10,000 images of the CIFAR10 train set and their penultimate layer representations are constructed645

from this set of images. Figure 13 shows the average PWCCA, CKA, PROCRUSTES, and GULP646

distances between each pair of width-depth architectures and show the MDS embeddings of all647

5× 5× 5 networks colored by width and depth (center and right).648

Now we describe in more detail how various distance metrics cluster state-of-the-art network ar-649

chitectures on the ImageNet Object Localization Challenge. In Figure 15 (left) we compute the650

CCA, PWCCA, CKA, PROCRUSTES, and GULP distances for five groups of networks: 17 ResNets, 8651

EfficientNets, 4 ConvNeXts, and 3 MobileNets. These 32 networks are fully-trained on ImageNet652
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and are given the same 10,000 input training images to form their last hidden layer representations.653

As discussed in Section 4.2, all distance metrics separate ResNet architectures (blue) from the Effi-654

cientNet and ConvNeXt convolutional networks (orange and red) with GULP at λ = 1 achieving the655

best separation between these two clusters. For convenience, in Figure 14 we reproduce the tSNE656

visualizations and hierarchical clusterings of distances between pretrained ImageNet networks shown657

originally in 6. To further quantify the compactness of the clusterings given by these distance metrics,658

we compute a standard deviation ratio for each of the five network classes. Given a distance metric,659

this ratio is computed as the sum of squared distances between all 36 networks divided by the sum of660

squared distances between networks in each class:661

standard deviation ratio for class k =
( 1

n(n− 1)

∑
1≤i6=j≤n

d2ij

/ 1

|Ck|(|Ck| − 1)

∑
i 6=j∈Ck

d2ij

) 1
2

(12)

where n = 36 and Ck ⊂ {1, . . . , n} is the subset of networks in class k = 1, . . . , 5. Note that662

a ratio of 1 implies that the size of the cluster is equal to the average distance between any two663

ImageNet networks. In Figure 15 (right) we plot the standard deviation ratio for each of the five664

network classes. As expected, the ratios under the GULP distance increase for large λ and the residual665

and convolutional network architectures become well separated at λ = 1. The CCA, PWCCA, CKA,666

and PROCRUSTES distances do not achieve the same level of separation between different network667

architectures but are similar to the GULP distance at λ = 10−2.668

Now we study distances between the same ImageNet models when they are untrained and are at669

random initialization. Again there are 32 untrained networks consisting of 17 ResNets, 8 EfficientNets,670

4 ConvNeXts, and 3 MobileNets. Each of the untrained networks is randomly initialized ten separate671

times and is given the same 10,000 input training images from ImageNet. We compute the CCA,672

PWCCA, CKA, PROCRUSTES, and GULP distances between their penultimate layer representations673

which are displayed in Figure 16 (left). The distances between these networks are visualized using a674

two-dimensional t-SNE embedding and the standard deviation ratio (12) of each of the four groups675

is calculated [Figure 16 (center and right)]. Under all distance metrics we see that the ResNets676

(blue), EfficientNets (orange), and ConvNeXts (red) all form their own clusters. As evidenced by677

the standard deviation ratios, the ConvNeXt networks under the GULP distance form a tighter cluster678

as λ increases. Both CKA and GULP with λ = 1 achieve the most compact clusterings of ResNets,679

EfficientNets, and ConvNeXts.680

In Figure 17 for several distance metrics we display the standard deviation ratios for the five network681

groups before and after training. On untrained and pretrained networks, CKA and PROCRUSTES are682

competitive with GULP at clustering ResNet, EfficientNet, and ConvNeXt architectures. However on683

ConvNeXt models, for untrained networks GULP achieves the highest standard deviation ratio with684

large λ and for pretrained networks it achieves the highest standard deviation ratio at intermediate685

values of λ.686

B.6 GULP does not strongly depend on input data distribution687

Here we test how the GULP distance between network architectures depends on the distribution of the688

input data X from which the last hidden layer representations are computed. In Figure 1 we showed689

a t-SNE embedding of the GULP distance (λ = 10−2) between the last hidden layer representations690

of 37 networks pretrained on ImageNet. These penultimate layer representations were computed by691

passing 10,000 images from the ImageNet train set into each network. In Figure 18 we repeat this692

experiment and generate a t-SNE embedding of the GULP distance (λ = 10−2) between ImageNet693

networks where each network is passed in 10,000 images from the MNIST train set. In order to694

input MNIST grayscale images into these networks, we convert them to RGB images where each695

channel has a copy of the same image and is centered and normalized as described in Section B.1.696

Even though all 37 networks were trained on the ImageNet train set, GULP is able to separately697

cluster EfficientNet, ResNet, and ConvNeXt architectures from their last hidden layer representations698

of MNIST images. In Figure 19 we show yet another example of this phenomenon, where GULP699

properly clusters ImageNet architectures when their last hidden layer representations are constructed700

from 10,000 face input images taken from the UTKFace train dataset [ZSQ17]. This shows that in701

practice the GULP distance consistently captures the same relationships between network architectures702

and does not strongly depend on the input data distribution used to build the network representations.703
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Figure 12: Average CKA, PROCRUSTES, and GULP distance between last hidden layer representations
of two fully-connected ReLU networks with a given width and depth (left). Networks are fully-trained
on MNIST and penultimate layer representations are constructed from 60,000 input train images.
Ordering of networks along rows and columns of distance matrices has outer indices as network
depths 1-10 and inner indices as network widths 100-1000. Two dimensional MDS embedding plots
(center and right) of all networks colored by architecture width and depth.
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Figure 13: Average CKA, PROCRUSTES, and GULP distance between last hidden layer representations
of two fully-connected ReLU networks with a given width and depth (left). Networks are fully-trained
on CIFAR and penultimate layer representations are constructed from 10,000 input train images.
Ordering of networks along rows and columns of distance matrices has outer indices as network
depths 1-5 and inner indices as network widths 200-1000. Two dimensional MDS embedding plots
(center and right) of all networks colored by architecture width and depth.

26



PWCCA CKA Procrustes

150 100 50 0 50 100 150

200

100

0

100

200

TSNE embedding
resnet
efficientnet
mobilenet
convnext

100 50 0 50 100 150

100

75

50

25

0

25

50

75

TSNE embedding

resnet
efficientnet
mobilenet
convnext

200 100 0 100 200

150

100

50

0

50

100

150

TSNE embedding
resnet
efficientnet
mobilenet
convnext

re
sn

et
18

re
gn

et
_y

_4
00

m
f

re
gn

et
_y

_8
00

m
f

m
ob

ile
ne

t_
v3

_s
m

al
l

m
ob

ile
ne

t_
v2

m
ob

ile
ne

t_
v3

_la
rg

e
re

gn
et

_x
_4

00
m

f
re

gn
et

_x
_8

00
m

f
re

gn
et

_y
_1

_6
gf

re
gn

et
_x

_1
_6

gf
re

gn
et

_x
_3

_2
gf

re
gn

et
_y

_1
6g

f
re

gn
et

_y
_3

2g
f

re
sn

ex
t5

0_
32

x4
d

wi
de

_r
es

ne
t5

0_
2

re
gn

et
_x

_8
gf

re
gn

et
_y

_3
_2

gf
re

gn
et

_y
_8

gf
co

nv
ne

xt
_b

as
e

co
nv

ne
xt

_la
rg

e
co

nv
ne

xt
_s

m
al

l
co

nv
ne

xt
_t

in
y

re
gn

et
_x

_1
6g

f
re

gn
et

_x
_3

2g
f

ef
fic

ie
nt

ne
t_

b0
ef

fic
ie

nt
ne

t_
b1

ef
fic

ie
nt

ne
t_

b2
ef

fic
ie

nt
ne

t_
b3

ef
fic

ie
nt

ne
t_

b4
ef

fic
ie

nt
ne

t_
b5

ef
fic

ie
nt

ne
t_

b6
ef

fic
ie

nt
ne

t_
b7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Dendogram

co
nv

ne
xt

_t
in

y
co

nv
ne

xt
_s

m
al

l
co

nv
ne

xt
_b

as
e

co
nv

ne
xt

_la
rg

e
ef

fic
ie

nt
ne

t_
b0

ef
fic

ie
nt

ne
t_

b1
ef

fic
ie

nt
ne

t_
b2

ef
fic

ie
nt

ne
t_

b3
ef

fic
ie

nt
ne

t_
b4

ef
fic

ie
nt

ne
t_

b7
ef

fic
ie

nt
ne

t_
b5

ef
fic

ie
nt

ne
t_

b6
re

gn
et

_x
_3

2g
f

re
gn

et
_y

_1
6g

f
re

gn
et

_y
_3

2g
f

re
sn

ex
t5

0_
32

x4
d

wi
de

_r
es

ne
t5

0_
2

re
gn

et
_y

_8
gf

re
gn

et
_x

_1
6g

f
re

gn
et

_x
_8

gf
m

ob
ile

ne
t_

v2
re

sn
et

18
m

ob
ile

ne
t_

v3
_la

rg
e

m
ob

ile
ne

t_
v3

_s
m

al
l

re
gn

et
_y

_3
_2

gf
re

gn
et

_y
_1

_6
gf

re
gn

et
_y

_8
00

m
f

re
gn

et
_x

_1
_6

gf
re

gn
et

_x
_3

_2
gf

re
gn

et
_y

_4
00

m
f

re
gn

et
_x

_4
00

m
f

re
gn

et
_x

_8
00

m
f0

1

2

3

4

5

6

Dendogram

co
nv

ne
xt

_t
in

y
co

nv
ne

xt
_s

m
al

l
co

nv
ne

xt
_b

as
e

co
nv

ne
xt

_la
rg

e
ef

fic
ie

nt
ne

t_
b0

ef
fic

ie
nt

ne
t_

b1
ef

fic
ie

nt
ne

t_
b5

ef
fic

ie
nt

ne
t_

b6
ef

fic
ie

nt
ne

t_
b7

ef
fic

ie
nt

ne
t_

b2
ef

fic
ie

nt
ne

t_
b3

ef
fic

ie
nt

ne
t_

b4
re

sn
ex

t5
0_

32
x4

d
wi

de
_r

es
ne

t5
0_

2
re

gn
et

_y
_1

6g
f

re
gn

et
_y

_3
2g

f
re

gn
et

_y
_3

_2
gf

re
gn

et
_y

_8
gf

re
gn

et
_x

_3
2g

f
re

gn
et

_x
_1

6g
f

re
gn

et
_x

_8
gf

m
ob

ile
ne

t_
v3

_la
rg

e
m

ob
ile

ne
t_

v3
_s

m
al

l
re

gn
et

_x
_4

00
m

f
re

gn
et

_y
_4

00
m

f
m

ob
ile

ne
t_

v2
re

sn
et

18
re

gn
et

_y
_1

_6
gf

re
gn

et
_y

_8
00

m
f

re
gn

et
_x

_8
00

m
f

re
gn

et
_x

_1
_6

gf
re

gn
et

_x
_3

_2
gf

0

1

2

3

4

5

6

Dendogram

GULP  = 1e-5 GULP  = 1e-2 GULP  = 1

100 50 0 50 100

100

50

0

50

100

TSNE embedding
resnet
efficientnet
mobilenet
convnext

200 150 100 50 0 50 100

150

100

50

0

50

100

150

TSNE embedding
resnet
efficientnet
mobilenet
convnext

200 100 0 100 200 300

200

100

0

100

200

TSNE embedding

resnet
efficientnet
mobilenet
convnext

re
sn

ex
t5

0_
32

x4
d

re
gn

et
_y

_3
_2

gf
re

gn
et

_y
_8

gf
re

gn
et

_x
_8

gf
re

gn
et

_x
_1

6g
f

re
gn

et
_x

_3
2g

f
re

gn
et

_y
_3

2g
f

re
gn

et
_y

_1
6g

f
ef

fic
ie

nt
ne

t_
b1

ef
fic

ie
nt

ne
t_

b0
ef

fic
ie

nt
ne

t_
b2

ef
fic

ie
nt

ne
t_

b3
m

ob
ile

ne
t_

v3
_s

m
al

l
m

ob
ile

ne
t_

v2
m

ob
ile

ne
t_

v3
_la

rg
e

ef
fic

ie
nt

ne
t_

b7
ef

fic
ie

nt
ne

t_
b6

ef
fic

ie
nt

ne
t_

b5
ef

fic
ie

nt
ne

t_
b4

re
gn

et
_y

_8
00

m
f

re
gn

et
_y

_1
_6

gf
re

gn
et

_x
_1

_6
gf

re
gn

et
_x

_3
_2

gf
wi

de
_r

es
ne

t5
0_

2
re

gn
et

_y
_4

00
m

f
re

gn
et

_x
_4

00
m

f
re

sn
et

18
re

gn
et

_x
_8

00
m

f
co

nv
ne

xt
_la

rg
e

co
nv

ne
xt

_b
as

e
co

nv
ne

xt
_s

m
al

l
co

nv
ne

xt
_t

in
y0

2000

4000

6000

8000

10000

Dendogram

co
nv

ne
xt

_t
in

y
co

nv
ne

xt
_s

m
al

l
co

nv
ne

xt
_b

as
e

co
nv

ne
xt

_la
rg

e
ef

fic
ie

nt
ne

t_
b2

ef
fic

ie
nt

ne
t_

b3
ef

fic
ie

nt
ne

t_
b0

ef
fic

ie
nt

ne
t_

b1
ef

fic
ie

nt
ne

t_
b4

ef
fic

ie
nt

ne
t_

b7
ef

fic
ie

nt
ne

t_
b5

ef
fic

ie
nt

ne
t_

b6
m

ob
ile

ne
t_

v3
_la

rg
e

m
ob

ile
ne

t_
v3

_s
m

al
l

re
gn

et
_x

_4
00

m
f

re
gn

et
_y

_4
00

m
f

m
ob

ile
ne

t_
v2

re
sn

et
18

re
gn

et
_y

_1
_6

gf
re

gn
et

_y
_8

00
m

f
re

gn
et

_x
_8

00
m

f
re

gn
et

_x
_1

_6
gf

re
gn

et
_x

_3
_2

gf
re

sn
ex

t5
0_

32
x4

d
wi

de
_r

es
ne

t5
0_

2
re

gn
et

_x
_3

2g
f

re
gn

et
_y

_1
6g

f
re

gn
et

_y
_3

2g
f

re
gn

et
_x

_1
6g

f
re

gn
et

_x
_8

gf
re

gn
et

_y
_3

_2
gf

re
gn

et
_y

_8
gf

0

20

40

60

80

100

120

Dendogram

ef
fic

ie
nt

ne
t_

b4
ef

fic
ie

nt
ne

t_
b7

co
nv

ne
xt

_t
in

y
co

nv
ne

xt
_s

m
al

l
co

nv
ne

xt
_b

as
e

co
nv

ne
xt

_la
rg

e
ef

fic
ie

nt
ne

t_
b0

ef
fic

ie
nt

ne
t_

b5
ef

fic
ie

nt
ne

t_
b6

ef
fic

ie
nt

ne
t_

b1
ef

fic
ie

nt
ne

t_
b2

ef
fic

ie
nt

ne
t_

b3
re

gn
et

_x
_3

2g
f

re
gn

et
_y

_1
6g

f
re

gn
et

_y
_3

2g
f

re
gn

et
_y

_3
_2

gf
re

gn
et

_y
_8

gf
re

gn
et

_x
_1

6g
f

re
gn

et
_x

_8
gf

m
ob

ile
ne

t_
v2

re
sn

et
18

re
gn

et
_x

_4
00

m
f

re
gn

et
_y

_4
00

m
f

m
ob

ile
ne

t_
v3

_la
rg

e
m

ob
ile

ne
t_

v3
_s

m
al

l
re

sn
ex

t5
0_

32
x4

d
wi

de
_r

es
ne

t5
0_

2
re

gn
et

_y
_1

_6
gf

re
gn

et
_y

_8
00

m
f

re
gn

et
_x

_8
00

m
f

re
gn

et
_x

_1
_6

gf
re

gn
et

_x
_3

_2
gf

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Dendogram

Figure 14: Reproduction of Figure 6. Embeddings of PWCCA, CKA, PROCRUSTES, and GULP
distances between the penultimate layer representations of 36 pretrained ImageNet models along
with their hierarchical clusterings.

B.7 Network representations converge in GULP distance during training704

Here, we repeat Figure 7, but plot each distance separately and with a greater variety of regularization705

values λ (see Figure 20).706

B.8 GULP distance at intermediate network layers707

Throughout this paper, we have primarily used GULP to compare neural networks using their last708

hidden layer representations. Here we study how the GULP distance compares intermediate hidden709

layers of neural networks. Namely, we take 10 NLP BERT base models from Zhong et al. [ZGKS21]710

which are pretrained with different random initializations on sentences from the Multigenre Natural711

Language Inference (MNLI) dataset [WNB17]. Each model has 12 hidden layers and we save the712

representations at every hidden layer on 3,857 MNLI input train samples. In Figure 21 we plot the713

distance matrices for GULP at varying values of λ between every pair of hidden layers across 10 BERT714

networks. We also plot the tSNE, MDS, and UMAP embeddings with each colored line representing715

one of the 10 BERT models. In each embedding plot, earlier layers are drawn as points with a dark716

hue while layers closer to the end of the network are represented by points with a faded color. As717

expected, for each of the BERT model the GULP distances arrange their hidden layers linearly in718

order from their input layer to their output layer. When λ is small, the earlier layers of all 10 networks719

are grouped together while the later layers have large GULP distances between all 10 models. As720

λ increases, the later layers of all 10 models also become grouped together and GULP arranges all721

BERT models linearly in the order of their hidden layers. Therefore, tuning the λ parameter in GULP722

allows us to make distinctions between earlier and later layers of a network architecture.723

B.9 Specificity versus sensitivity of GULP724

Here we run three benchmark experiments of [DDS21] to compare the sensitivity and specificity of725

our GULP distance to CCA, PWCCA, CKA, and PROCRUSTES.726
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Figure 15: CCA, CKA, PROCRUSTES, and GULP distances between last hidden layer representations
of 36 pretrained ImageNet networks. Representations are formed by passing 10,000 train images
from ImageNet into each network. For five groups of pretrained networks (ResNet, EfficientNet,
MobileNet and ConvNeXt), we compute their distance matrices (left) and two-dimensional t-SNE
embeddings (center). Separation of the five network groups is quantified by their standard deviation
ratios which measure the the standard deviation of the distance across all networks divided by the
standard deviation of the distance in a given group. GULP, CKA, and PROCRUSTES successfully
separate all four network types from each other.
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Figure 16: CKA, PROCRUSTES, and GULP distances between penultimate layer representations
of 32 untrained ImageNet networks where each network model is randomly intialized 10 times.
Representations are formed by passing 10,000 train images from ImageNet into each network. For
four groups of pretrained networks (ResNet, EfficientNet, MobileNet, ConvNeXt), we compute
their distance matrices (left) and two-dimensional t-SNE embeddings (center). Separation of the
four network groups is similarly quantified by their standard deviation ratios which measure the
the standard deviation of the distance across all networks divided by the standard deviation of the
distance in a given group. Under all distance metrics ResNets, EfficientNets, and ConvNeXts are
clustered separately with CKA and GULP at λ = 1 forming the most compact clusters.

In the first experiment, we take 10 BERT base models from Zhong et al. [ZGKS21] which are727

pretrained with different random initializations on sentences from the Multigenre Natural Language728

Inference (MNLI) dataset [WNB17]. All BERT base models have 12 hidden layers of transformer729

blocks with dimension 768 [DCLT18]. For each of the 10 networks, at each of the 12 layers we save730

the representations on 3,857 MNLI input train samples. We compute the probing accuracies of all 120731

representations on the Question-answering Natural Language Inference dataset (QNLI) [WSM+18]732

and the Stanford Sentiment Tree Bank Task (SST-2) [SPW+13]. For a given dataset (QNLI and733

SST-2), we find the representation X∗ ∈ R768×3857 which has the best probing accuracy and we734

compare the accuracies of all 120 representations to it. For every representation X ∈ R768×3857, the735

difference in probing accuracy from the best representationX∗ is correlated with the distance between736

between the two representions d(X,X∗) under a given distance metric (CCA, CKA, PROCRUSTES,737

etc.). In Figure 22 we display Spearman’s ρ and Kendall’s τ rank correlations of the CCA, PWCCA,738

PROCRUSTES, CKA, and GULP distances against the probing accuracy differences between two739

representations. On the QNLI dataset we see in Figure 22 (left) that GULP with large λ outperforms740

all other metrics including CKA and achieves the largest rank correlations with statistically significant741

p-values that are below 0.05. Similar results are obtained on the SST-2 dataset as seen in Figure 22742
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Figure 17: Standard deviation ratio of distances for five groups of architectures (ResNet, EfficientNet,
MobileNet, and ConvNeXt) both for untrained and pretrained networks.
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Figure 18: t-SNE embedding of penultimate layer representations of pretrained ImageNet networks
with GULP distance (λ = 10−2), colored by architecture type (gray denotes architectures that do
not belong to a family). For each network pretrained on ImageNet we input MNIST images and
compute their last hidden layer representations. Even though these ImageNet networks were not
trained on MNIST data, the GULP distance is able to cluster their penultimate layer representations
and consistently forms groups of MobileNet, EfficientNet, ResNet, and ConvNeXt architectures. This
indicates that the GULP metric does not depend strongly on the data distribution which networks are
trained on.
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Figure 19: t-SNE embedding of penultimate layer representations of pretrained ImageNet networks
with GULP distance (λ = 10−2), colored by architecture type (gray denotes architectures that do
not belong to a family). Contrary to Figure 1, here for each network pretrained on ImageNet we
input 10,000 face images from the UTKFace train dataset and compute their last hidden layer
representations. Even though these ImageNet networks were not trained on UTKFace data, the GULP
distance is able to cluster their last hidden layer representations and consistently forms groups of
MobileNet, EfficientNet, ResNet, and ConvNeXt architectures. This in conjunction with Figure 18
shows that the GULP metric is not overly sensitive to the input data distribution from which network
representations are constructed.

(right). This shows that the GULP distance with large λ has better specificity (is less sensitive) to743

random initializations of a network as this has less of an effect on its correlation with probing accuracy744

compared to the other metrics.745

In the second experiment, we study 50 BERT base models from McCoy et al. [MML19] which are746

trained on MNLI and finetuned for classification with different finetuning seeds at initialization.747

Similar to the experiment above, we compute 600 representations of the 50 BERT models at each of748

the 12 layers using 3,857 MNLI input train samples. We are interested in studying how distances749

between these representations correlate with their out-of-distribution (OOD) performance on a750

different task. Namely, as our measure of OOD performance we compute each representation’s751

accuracy on the “Lexical Heuristic (Non-entailment)” subset of the HANS dataset [MPL19]. As752

before, we choose the best representation X∗ with the lowest OOD accuracy. Then for every753

representation X the difference in OOD accuracy from the best representation X∗ is correlated754

with the distance between between the two representions d(X,X∗) under a given distance metric.755

Spearman’s ρ and Kendall’s τ rank correlations of the CCA, PWCCA, PROCRUSTES, CKA, and GULP756

distances are shown in Figure 23. Note that CCA, PWCCA, PROCRUSTES, and GULP with small λ have757

the largest correlation with OOD accuracy. Since the BERT model representations were constructed758

on in-distribution MNLI data, this implies that these distance metrics can detect differences between759

OOD accuracy of different models without access to OOD data.760

Lastly, for the third experiment we study 100 BERT medium models taken from Zhong et761

al. [ZGKS21] which are fully-trained on the MNLI dataset with 10 pretraining seeds and further762

finetuned on MNLI with 10 different finetuning seeds by Ding et al. [DDS21]. Each BERT medium763

model has 8 hidden layers of width 512 [DCLT18]. We study the OOD accuracy of these models764

on the antonymy stress test and the numerical stress test defined in Naik et al. [NRS+18]. As with765

the previous experiments, we compute 800 representations of the 100 BERT models at each of766

the 8 layers using 3,857 MNLI input train samples. For every representation X the difference in767

OOD accuracy from the best representation X∗ is correlated with the distance between between768

the two representions d(X,X∗) under a given distance metric. Spearman’s ρ and Kendall’s τ rank769

correlations of the CCA, PWCCA, PROCRUSTES, CKA, and GULP distances are shown in Figure 24.770

As shown in the original experiments by Ding et al. [DDS21], none of the distance metrics show a771

large rank correlation with the OOD accuracy for either of the stress tests and the associated p-values772

are not significant at the 0.05 level except for GULP with λ > 10−2.773

In summary, these benchmark experiments show that the GULP distance exhibits specificity (is not774

sensitive) to random initializations of a network as shown in Figure 22 and this become particularly775
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Figure 20: The empirical distances between penultimate layer representations of 16 independently
trained ResNet18 architectures during training, computed using 3, 000 samples and averaged over all
pairs. Distances are scaled by their average value at iteration 0 for the sake of comparison between
metrics.
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Figure 21: Top row shows GULP distance matrices between 12 hidden layers of 10 fully-trained
NLP BERT base models with different random initializations. Representations at every hidden layer
are constructed from 3,857 MNLI input train samples which are then used to compute the GULP
distance between every pair of layers across the 10 models. Distance matrices are embedded using
tSNE, MDS, and UMAP where each colored line represents one of the 10 BERT models. Earlier
layers are drawn as dark saturated points while layers close to the output of the network are drawn as
faded points. For each of the 10 BERT networks, GULP finds a one-dimensional embedding of its
layers which respects their ordering. Across all BERT models, GULP with small λ groups together
the earlier layers of the 10 network architectures but assigns large distances between the later layers.
This is particularly emphasized in the top left tSNE embedding. As λ increases, the later layers of all
10 models also become grouped together until all BERT networks are linearly aligned in the order of
their hidden layers.

apparent at large λ. Additionally, it is sensitive to the out-of-distribution accuracy of a model as776

supported by Figure 23 where it improves upon the performance of CCA, PWCCA, and PROCRUSTES.777

B.10 GULP distances do not especially capture generalization on logistic regression778

In this section, we provide Figure 25, which replicates the experiment of Figure 4, but where the779

downstream transfer learning task is binary logistic regression instead of ridge regression. We assign780

labels of 0 and 1 with equal probability, and compute the resultant test prediction accuracy averaged781

over 3000 samples. We find (perhaps unsurprisingly) that GULP, as defined for ridge regression,782

does not capture downstream generalization better than baselines on logistic regression tasks. This783

motivates the extension of GULP to logistic regression in future work.784
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Figure 22: Spearman’s ρ and Kendall’s τ rank correlations and associated p-values for difference of
probing accuracy between two representations vs. distance between two representations. Representa-
tions are constructed from 12 layers of 10 BERT base models using 3,857 MNLI input train samples.
Rank correlations are computed with probing accuracy on the QNLI and SST-2 datasets (left and
right).
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Figure 23: Spearman’s ρ and Kendall’s τ rank correlations and associated p-values for difference of
OOD accuracy between two representations vs. distance between two representations. Representa-
tions are constructed from 12 layers of 50 BERT base models using 3,857 MNLI input train samples.
The BERT base models are finetuned for classification and the OOD accuracy is computed on the
“Lexical Heuristic (Non-entailment)” subset of the HANS dataset.

35



CC
A

PW
CC

A
Pr

oc
ru

st
es

CK
A

GU
LP

 
 =

 0
GU

LP
 

 =
 1

e-
7

GU
LP

 
 =

 1
e-

6
GU

LP
 

 =
 1

e-
5

GU
LP

 
 =

 1
e-

4
GU

LP
 

 =
 1

e-
3

GU
LP

 
 =

 1
e-

2
GU

LP
 

 =
 1

e-
1

GU
LP

 
 =

 1
GU

LP
 

 =
 1

e1
GU

LP
 

 =
 1

e2
GU

LP
 

 =
 1

e3

0.00

0.05

0.10

0.15

0.20

0.25
Spearman's rho

CC
A

PW
CC

A
Pr

oc
ru

st
es

CK
A

GU
LP

 
 =

 0
GU

LP
 

 =
 1

e-
7

GU
LP

 
 =

 1
e-

6
GU

LP
 

 =
 1

e-
5

GU
LP

 
 =

 1
e-

4
GU

LP
 

 =
 1

e-
3

GU
LP

 
 =

 1
e-

2
GU

LP
 

 =
 1

e-
1

GU
LP

 
 =

 1
GU

LP
 

 =
 1

e1
GU

LP
 

 =
 1

e2
GU

LP
 

 =
 1

e3

10 1

Spearman's rho: p-values

CC
A

PW
CC

A
Pr

oc
ru

st
es

CK
A

GU
LP

 
 =

 0
GU

LP
 

 =
 1

e-
7

GU
LP

 
 =

 1
e-

6
GU

LP
 

 =
 1

e-
5

GU
LP

 
 =

 1
e-

4
GU

LP
 

 =
 1

e-
3

GU
LP

 
 =

 1
e-

2
GU

LP
 

 =
 1

e-
1

GU
LP

 
 =

 1
GU

LP
 

 =
 1

e1
GU

LP
 

 =
 1

e2
GU

LP
 

 =
 1

e3

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Kendall's tau

CC
A

PW
CC

A
Pr

oc
ru

st
es

CK
A

GU
LP

 
 =

 0
GU

LP
 

 =
 1

e-
7

GU
LP

 
 =

 1
e-

6
GU

LP
 

 =
 1

e-
5

GU
LP

 
 =

 1
e-

4
GU

LP
 

 =
 1

e-
3

GU
LP

 
 =

 1
e-

2
GU

LP
 

 =
 1

e-
1

GU
LP

 
 =

 1
GU

LP
 

 =
 1

e1
GU

LP
 

 =
 1

e2
GU

LP
 

 =
 1

e3

10 2

10 1

Kendall's tau: p-values

STRESS_ANTONYMY

CC
A

PW
CC

A
Pr

oc
ru

st
es

CK
A

GU
LP

 
 =

 0
GU

LP
 

 =
 1

e-
7

GU
LP

 
 =

 1
e-

6
GU

LP
 

 =
 1

e-
5

GU
LP

 
 =

 1
e-

4
GU

LP
 

 =
 1

e-
3

GU
LP

 
 =

 1
e-

2
GU

LP
 

 =
 1

e-
1

GU
LP

 
 =

 1
GU

LP
 

 =
 1

e1
GU

LP
 

 =
 1

e2
GU

LP
 

 =
 1

e3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Spearman's rho

CC
A

PW
CC

A
Pr

oc
ru

st
es

CK
A

GU
LP

 
 =

 0
GU

LP
 

 =
 1

e-
7

GU
LP

 
 =

 1
e-

6
GU

LP
 

 =
 1

e-
5

GU
LP

 
 =

 1
e-

4
GU

LP
 

 =
 1

e-
3

GU
LP

 
 =

 1
e-

2
GU

LP
 

 =
 1

e-
1

GU
LP

 
 =

 1
GU

LP
 

 =
 1

e1
GU

LP
 

 =
 1

e2
GU

LP
 

 =
 1

e3

2 × 10 1

3 × 10 1

4 × 10 1

Spearman's rho: p-values

CC
A

PW
CC

A
Pr

oc
ru

st
es

CK
A

GU
LP

 
 =

 0
GU

LP
 

 =
 1

e-
7

GU
LP

 
 =

 1
e-

6
GU

LP
 

 =
 1

e-
5

GU
LP

 
 =

 1
e-

4
GU

LP
 

 =
 1

e-
3

GU
LP

 
 =

 1
e-

2
GU

LP
 

 =
 1

e-
1

GU
LP

 
 =

 1
GU

LP
 

 =
 1

e1
GU

LP
 

 =
 1

e2
GU

LP
 

 =
 1

e3

0.00

0.02

0.04

0.06

0.08

Kendall's tau

CC
A

PW
CC

A
Pr

oc
ru

st
es

CK
A

GU
LP

 
 =

 0
GU

LP
 

 =
 1

e-
7

GU
LP

 
 =

 1
e-

6
GU

LP
 

 =
 1

e-
5

GU
LP

 
 =

 1
e-

4
GU

LP
 

 =
 1

e-
3

GU
LP

 
 =

 1
e-

2
GU

LP
 

 =
 1

e-
1

GU
LP

 
 =

 1
GU

LP
 

 =
 1

e1
GU

LP
 

 =
 1

e2
GU

LP
 

 =
 1

e3

2 × 10 1

3 × 10 1

4 × 10 1

Kendall's tau: p-values

STRESS_NUMERICAL

Figure 24: Spearman’s ρ and Kendall’s τ rank correlations and associated p-values for difference
of OOD accuracy between two representations vs. distance between two representations. Represen-
tations are constructed from 8 layers of 100 BERT medium models using 3,857 MNLI input train
samples. The BERT base models are trained from a combination of 10 pretraining and 10 finetuning
seeds and the OOD accuracy of each model is measured on the antonymy stress and the numerical
stress tests.
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Figure 25: GULP does not capture generalization of the predictors output by logistic regression. We
plot Spearman’s ρ between the differences in predictions by λ-regularized linear regression, and the
different distances. Results are averaged over 10 trials.
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