
A Proofs

A.1 Notation

In this appendix, we use the notation dπt (·, ·) to indicate the state-action visitation measure induced by
the policy π at time t. We overload the notation dπt (·) to denote the state-visitation measure induced
by the policy π at time t. Likewise, the notations dDt (·, ·) and dDt (·) indicate the empirical visitation
measures in the dataset D. For a function g : X → R, the norm ‖g‖∞ , supx∈X |g(x)|.
Before discussing the proofs of the results, we also explain the instantiation of the function class in
the tabular setting below.

Remark 3. In the tabular setting, we instantiate the discriminator class as Ft = {ft : ‖ft‖∞ ≤ 1}
for each t, as the set of all 1-bounded functions, and the policy class Π as the set of all policies. eq. (4)
corresponds to finding a policy which best matches the empirical state-action visitation measure
observed in the dataset D in total variation (TV) distance (see Appendix A.2 for a proof).

A.2 Imitation gap upper bound on empirical moment matching (Theorem 3.1)

Below we restate Theorem 3.1 and provide a proof of this result. The key observation is that since
the learner πMM best matches the empirical distribution in the dataset, which is in turn close to the
population visitation measure induced by πE , we can expect the visitation measure induced by πE
and πMM to be close. This in turns implies that both policies will collect a similar value under any
reward function. Precisely characterizing the rates at which these distributions converge to one
another results in the final bound.
Theorem 3.1. Consider the empirical moment matching learner πMM (eq. (4)), instantiated with an ap-
propriate discriminator class F . The imitation gap satisfies E

[
J(πE)− J(πMM)

]
. H

√
|S|/Nexp.

Proof. Recall that the learner πMM is the solution to the following optimization problem,

arg min
π

sup
f∈F

{
Eπ

[∑H
t=1 ft(st, at)

H

]
− ED

[∑H
t=1 ft(st, at)

H

]}
(19)

Exchanging the summation and maximization operators and recalling from Remark 3 that in the
tabular setting, the discriminator classF is instantiated as the set of all 1-bounded functions

⊕H
t=1{ft :

‖ft‖∞ ≤ 1}, πMM is a solution to

arg min
π

1

H

H∑
t=1

(
sup

f :‖f‖∞≤1

Eπ [ft(st, at)]−ED [ft(st, at)]
)

= arg min
π

1

H

H∑
t=1

TV
(
dπt , d

D
t

)
(20)

where the equation follows by the variational definition of the total variation distance, and where dπt
is the state-action visitation measure induced by πE and dDt is the empirical state-action visitation
measure in the dataset D. The imitation gap of this policy can be upper bounded by,

J(πE)− J(πMM) = EπE

[
H∑
t=1

rt(st, at)

]
− EπMM

[
H∑
t=1

rt(st, at)

]
(21)

(i)

≤
H∑
t=1

sup
rt:‖rt‖∞≤1

(
EπE [rt(st, at)]− EπMM [rt(st, at)]

)
(22)

(ii)
=

H∑
t=1

TV
(
dπ

E

t (·, ·), dπMM

t (·, ·)
)

(23)

where (i) maximizes over the reward function which is assumed to lie in the interval [0, 1] pointwise.
(ii) again follows from the variational definition of total variation distance. This goes to show that
in the tabular setting, MM is equivalent to finding the policy which best matches (in TV-distance) the
empirical state-action distribution observed in the dataset.
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By an application of triangle inequality,

J(πE)− J(πMM) ≤
H∑
t=1

TV
(
dπ

E

t (·, ·), dDt (·, ·)
)

+ TV
(
dDt (·, ·), dπMM

t (·, ·)
)

(24)

≤ 2

H∑
t=1

TV
(
dπ

E

t (·, ·), dDt (·, ·)
)

(25)

where (i) follows from eq. (20) which shows that πMM is the policy which best approximates the empiri-
cal state-action visitation measure in total variation distance, and therefore TV

(
dπ

MM

t (·, ·), dDt (·, ·)
)
≤

TV
(
dπ

E

t (·, ·), dDt (·, ·)
)

. The final element is to identify the rate of convergence of the empirical

visitation measure dDt , to the population dπ
E

t in total variation distance. This result is known from

Theorem 1 of Han et al. [2015], which shows that E
[
TV
(
dπ

E

t (·, ·), dDt (·, ·)
)]

.
√
|S|
Nexp

noting that

dπ
E

t is a distribution with support size |S| since πE is deterministic. Putting it together with eq. (25)
after taking expectations on both sides gives,

J(πE)− J(πMM) .
H∑
t=1

√
|S|
Nexp

= H

√
|S|
Nexp

. (26)

This completes the proof of the result.

A.3 Lower bounding the Imitation gap of Behavior Cloning

Since BC is an offline algorithm - namely, the learner does not interact with the MDP, any lower
bound against offline algorithms applies for behavior cloning as well. The lower bound instance in
Rajaraman et al. [2020] is one such example. One state in the MDP is labelled as the “bad” state,
b, which is absorbing and offers no reward. The remaining states each have a single “good” action
which re-initializes the policy in a particular distribution ρ on the set of good states, and offering a
reward of 1. The other actions at these states are “bad” and transition the learner to the bad state b
with probability 1.

The key idea in the lower bound is that any offline algorithm does not know (i) which action the expert
would have chosen at states unvisited in the dataset, and (ii) which action does what at these states.
At best, the learner can correctly guess the good actions at a state with probability 1/|A| ≤ 1/2. So,
at each state unvisited in the dataset, the learner has a constant probability of getting stuck at the bad
state in the MDP and collecting no reward then on. On the other hand, the expert would never choose
bad actions at states and collects the maximum possible reward. By carefully counting the probability
mass on the unvisited states, the expected imitation gap of any offline IL algorithm (such as BC ) can
be lower bounded by Ω(|S|H2/Nexp) on these instances. Thus we have the following theorem,
Theorem 4 (Theorem 6.1 of Rajaraman et al. [2020]). Consider any learner π̂ which carries out an
offline imitation learning algorithm (such as behavior cloning). Then, there exists an MDP instance
such that the expected imitation gap is lower bounded by,

E
[
J(πE)− J(π̂)

]
& min

{
H,
|S|H2

Nexp

}
. (27)

A.4 Lower bounding the imitation gap of Empirical Moment Matching

In this section, we show that in the tabular setting, empirical moment matching is suboptimal
compared for imitation learning in the worst-case. The main result we prove in this section is,
Theorem 3.2. IfH ≥ 4, there is a tabular IL instance with 2 states and actions on which with constant
probability, the empirical moment matching learner (eq. (4)) incurs, J(πE)− J(πMM) & H/

√
Nexp.

Remark 4. It is known from Rajaraman et al. [2020] that the Mimic-MD algorithm achieves an

imitation gap of min
{
H, S|H

3/2

Nexp
, H
√
|S|
Nexp

}
. This is always better than the worst case error bound

incurred by TV distribution matching from Theorem 3.2. In fact when Nexp &
√
H the bound H3/2

Nexp

is significantly better than H√
Nexp

which decays as 1/
√
Nexp. This is illustrated in Figure 4 .
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First note that the learner πMM carries out empirical moment matching (eq. (4)), with the discriminator
class F as initialized in Remark 3. As shown in eq. (20), the empirical moment matching learner can
be redefined as the solution to a distribution matching problem,

arg min
π

1

H

H∑
t=1

TV
(
dπt (·, ·), dDt (·, ·)

)
(28)

Consider an MDP instance with 2 states and 2 actions with a non-stationary transition and reward
structure as described in Figure fig. 7. State 1 effectively has a single action (i.e. two actions, a1

and a2 with both inducing the same next-state distribution and reward). One of the actions at state
2 induces the uniform distribution over next states. The other action deterministically keeps the
learner at state 2. The reward function is 0 at t = 1, and the action a2 at state 2 is the only one which
offers a reward of 1. The initial state distribution is highly skewed toward the state s = 1 and places
approximately 1/

√
Nexp mass on s = 2 and the remaining on s = 1.

s1 Unif(S) s2

Figure 7: MDP instance which shows that L1 distribution matching is suboptimal. Here the transition
structure is illustrated for t = 1. Both states have one action which reinitializes in the uniform
distribution. State 2 has an additional action which keeps the state the same. The reward function is 0
for t = 1. For t ≥ 2 the transition function is absorbing at both states; the reward function equals 1 at
the state s = 1 for any action and is 0 everywhere else.

MDP transition: The state 2 is the only one with two actions. Action a1 induces the uniform
distribution over states, while action a2 transitions the learner to state 2 with probability 1. Namely,

P1(·|s = 1, a) = Unif(S) for all a ∈ A (29)
P1(·|s = 2, a1) = Unif(S) (30)
P1(·|s = 2, a2) = δ2 (31)

From time t = 2 onward, the actions are all absorbing. Namely, for all t ≥ 2, s ∈ S and a ∈ A,

Pt(·|s, a) = δs. (32)

Initial state distribution: The initial state distribution ρ =

(
1− 1√

Nexp

, 1√
Nexp

)
.

MDP reward function: The reward function of the MDP encourages the learner to stay at the state
s = 1 from time t = 2 onward. Namely,

rt(s, a) =

{
1, if t ≥ 2 and s = 1

0, otherwise.
(33)

Expert policy: At both states in the MDP, the expert picks the action a1 to play, which induces the
uniform distribution over actions at the next state. Namely, for each t ∈ [H] and s ∈ S,

πEt (·|s) = δa1 (34)

The intuition behind the lower bound is as follows. The only action which affects the value of a
policy is the choice made at s = 2 at time t = 1. At all other states, we may assume that there is
effectively only a single action.

By the absorbing nature of states for t ≥ 2, it turns out that if the observed empirical distribution in
the dataset at time 2 is skewed toward state 2 (which is possible because of the inherent randomness
in the data generation process), the learner’s behavior at time 1 may be to ignore the expert’s action
observed at state s = 2, and instead pick the action a2 which moves the learner to the state s = 2
deterministically. The learner is willing to choose a different action because the loss function eq. (28)
encourages the state-action distribution at time t = 2 also to be well matched with what is observed
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in the dataset. Even if it comes at the cost of picking an action different from what the expert plays.
By exploiting this fact, we are able to show that the error incurred by a learner which solves eq. (28)
in this simple 2 state example must be Ω(H/

√
Nexp).

Formally, we define 3 events,

(i) E1: All states in the MDP are visited in the dataset at each time t = 1, 2, · · · , H .

(ii) E2: State 2 is visited at most
√
Nexp times at time 1 in the dataset D. In other words,

dD1 (s = 2) = δ′ where δ′ ≤ 1√
Nexp

.

(iii) E3: At time 2 in the dataset D, the empirical distribution over states is of the form(
1
2 − δ, 1

2 + δ
)

for some δ ≥ 2√
Nexp

.

Lemma 1. Jointly, the events E1, E2 and E3 occur with at least constant probability.

Pr(E1 ∩ E2 ∩ E3) ≥ C, (35)

for some constant C > 0.

Proof. By the absorbing nature of states for t ≥ 2, it suffices for both states of the MDP to be visited
in the dataset at time t = 1, 2. At time t = 2, the marginal state distribution under πE is the uniform
distribution. By binomial concentration, both states are observed in the dataset at time t = 2 with
probability≥ 1−e−C1Nexp for some constant C1 > 0. On the other hand, at time t = 1, the marginal

state distribution is ρ =

(
1− 1√

Nexp

, 1√
Nexp

)
. Yet again, by binomial concentration, both states

are observed with probability ≥ 1− e−C2

√
Nexp for some constant C2 > 0. By union bounding,

Pr(E1) ≥ 1− e−C1Nexp − e−C2

√
Nexp . (36)

Next we study E2 and E3 together. First of all, note that the state observed at t = 1 and t = 2
in a rollout of the expert policy are independent. This is because at both states at t = 1, the next
state distribution under πE is uniform. Because of this fact, E2 and E3 are independent. Next we
individually bound the probability of the two events.

E2: The number of times s = 2 is the initial state in trajectories the dataset D is distributed as
a binomial random variable with distribution Bin(Nexp, q) with q = ρ(s = 2) = 1√

Nexp

. A

median of a binomial random variable is Nexpq =
√
Nexp (in fact any number in the interval

[bNexpqc, dNexpqe] is a median). Therefore, the probability that s = 2 is visited ≤
√
Nexp times in

the dataset at time 1 is at least 1/2. In summary,

Pr(E2) ≥ 1

2
(37)

E3: The marginal distribution over states at time 2 in the dataset is uniform. Therefore, we expect the
states 1 and 2 to be visited roughly Nexp/2 times each in the dataset, but with a random variation of
≈
√
Nexp around this average. In other words, the empirical distribution fluctuates as

(
1
2 − δ, 1

2 + δ
)

with δ ≥ 2√
Nexp

with constant probability.

By the independence of E2 and E3 and union bounding to account for E1, the statement of the lemma
follows.

Lemma 2. For each t ≥ 2,

TV(dπt (·, ·), dDt (·, ·)) ≥ TV(dπ2 (·), dD2 (·)). (38)

The RHS is the TV distance between the state-visitation measure at time t = 2 under π and that
empirically observed in the dataset D. Conditioned on the events E1, E2 and E3 occuring, equality is
met in eq. (38) if any only if πt(·|s) = πEt (·|s) for all states s ∈ S.
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Proof. For any state s ∈ S and t ≥ 2, observe that,∑
a∈A

∣∣dπt (s, a)− dDt (s, a)
∣∣ (39)

= dπt (s)(1− πt(a∗|s)) +
∣∣dπt (s)πt(a

∗|s)− dDt (s, a∗)
∣∣ , where a∗ = πEt (s), (40)

(i)
= dπ2 (s)(1− πt(a∗|s)) +

∣∣dπ2 (s)πt(a
∗|s)− dD2 (s, a∗)

∣∣ (41)
(ii)

≥
∣∣dπ2 (s)− dD2 (s)

∣∣ , (42)

where (i) follows by the fact that the states of the MDP are absorbing under π for t ≥ 2. (ii) follows
by triangle inequality and using the fact that πE is deterministic, so dDt (s, a∗) = dDt (s). Equality is
met only if πt(a∗|s) = 1 (since dDt (s, a∗) > 0 conditioned on E1).

The above lemma asserts the behavior of πMM in eq. (28) for t ≥ 2. Namely, conditioned on the
event E1 which happens with very high probability, all states are visited in the MDP and therefore,
πMMt (·|s) = πEt (·|s) for each state s ∈ S and time t ≥ 2.

The only thing left to study is the MM learner’s behavior at t = 1. We wish to show that with
constant probability, the learner may choose to deviate from the expert policy in order to better match
empirical state-action visitation measures. Conditioned on E1, the learner’s policy at time t = 1 can
be computed by solving the following optimization problem,

TV(dπ1 (·, ·), dD1 (·, ·)) + (H − 1)TV(dπ2 (·), dD2 (·)). (43)
This follows directly by simplifying the learner’s objective using Lemma 2.

Now, conditioned on the event E1, at time t = 1, the learner policy only needs to be optimized
at the state s = 2. At the state s = 1, we may assume that the learner picks the expert’s action
πE1 (s = 1). To this end, suppose the learner picks the action a1 with probability p and the action a2

with probability 1− p.

TV(dπ1 (·, ·), dD1 (·, ·)) =
∑
a∈A

∣∣∣dπE1 (s = 2, a)− dD1 (s = 2, a)
∣∣∣ (44)

= |ρ(2)p− δ′|+ |ρ(2)(1− p)− 0| (45)

=

∣∣∣∣∣ p√
Nexp

− δ′
∣∣∣∣∣+

1− p√
Nexp

. (46)

which follows by plugging in ρ(2) = 1√
Nexp

. And,

TV(dπ2 (·), dD2 (·)) =

∣∣∣∣(1

2
− δ
)
− ρ(1)

2
− ρ(2)

p

2

∣∣∣∣+

∣∣∣∣(1

2
+ δ

)
− ρ(1)

2
− ρ(2)

(
(1− p) +

p

2

)∣∣∣∣ .
(47)

Plugging in ρ(2) = 1√
Nexp

and ρ(1) = 1− 1√
Nexp

, we get,

TV(dπ2 (·), dD2 (·)) =

∣∣∣∣∣ 1

2
√
Nexp

− δ − p

2
√
Nexp

∣∣∣∣∣+

∣∣∣∣∣ p

2
√
Nexp

− 1

2
√
Nexp

+ δ

∣∣∣∣∣ . (48)

Summing up eqs. (46) and (48), p minimizes,∣∣∣∣∣ p√
Nexp

− δ′
∣∣∣∣∣+

1− p√
Nexp︸ ︷︷ ︸

(i)

+ (H − 1)

(∣∣∣∣∣ p

2
√
Nexp

+ δ − 1

2
√
Nexp

∣∣∣∣∣+

∣∣∣∣∣ 1

2
√
Nexp

− δ − p

2
√
Nexp

∣∣∣∣∣
)

︸ ︷︷ ︸
(ii)

.

(49)
Intuitively, term (i) captures the error incurred by the learner in the loss eq. (28) by deviating from
πE at the first time step. Term (ii) captures the decrease in the error at every subsequent time step
because of the same deviation, since the learner is able to better match the state distribution at future
time steps. In the next lemma we show that under events that hold with at least constant probability,
the empirical moment matching learner chooses to play the wrong action at time t = 1 at the state
s = 2.
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Lemma 3. Conditioned on the events E2 and E3, for H ≥ 4, the unique minimizer of eq. (49) for
p ∈ [0, 1] is p = 0.

Proof. The first term of eq. (49) is
∣∣∣∣ p√

Nexp

− δ′
∣∣∣∣+ 1−p√

Nexp

, the error from not picking the expert’s

action at state 1 at time 1 decreases at most linearly with a slope of 2√
Nexp

.

Conditioned on the event E3, δ ≥ 2√
Nexp

. Therefore,
∣∣∣∣ p

2
√
Nexp

+ δ − 1

2
√
Nexp

∣∣∣∣ = p

2
√
Nexp

+ δ −
1

2
√
Nexp

. Therefore, the decrease in error at future steps by deviating from πE at the time t = 1, term

(ii) in eq. (49) is,

2(H − 1)

(
p

2
√
Nexp

+ δ − 1

2
√
Nexp

)
(50)

which is an increasing function of p with slope H−1√
Nexp

. For H ≥ 4 and the argument from the

previous paragraph, this implies that term (ii) increases more rapidly in p than the rate at which term
(i) decreases. Therefore, the minimizer must be p = 0.

Thus, we conclude from Lemmas 2 and 3 that conditioned on the events E1, E2 and E3, the learner
πMM perfectly mimics πE at each time t ≥ 2, but deviates from the action played by πE at the state
s = 1 at time t = 1.

Finally, we bound the difference in value between πE and πMM induced because of this deviation
under the reward eq. (33).
Lemma 4. Under the events E1, E2 and E3, under the reward eq. (33), the empirical moment matching
learner πMM incurs imitation gap,

J(πE)− J(πMM) =
H

2
√
Nexp

. (51)

Proof. Recall that under the events E1, E2 and E3, the learner πMM is identical to πE except at the state
s = 2 where they perfectly deviate from each other. The state distribution induced by πE at each time
t ≥ 2 is the uniform distribution over states

(
1
2 ,

1
2

)
. On the other hand, for t ≥ 2, the state distribution

induced by πMM at each time t ≥ 2 is
(
ρ(1) 1

2 , ρ(1) 1
2 + ρ(2)

)
=

(
1−1/
√
Nexp

2 ,
1+1/
√
Nexp

2

)
. Since

the reward function is 1 on state 1, the difference in value between the expert and learner policy is,

J(πE)− J(πMM) =
H

2
−H

(
1− 1/

√
Nexp

2

)
=

H

2
√
Nexp

. (52)

This completes the proof.

Since E1, E2 and E3 jointly occur with constant probability by Lemma 1, this completes the proof of
Theorem 3.2.

B Imitation gap of RE : Proof of Theorem 2

In this section, we discuss a proof of a more general version of Theorem 2, where Nreplay can be
finite. We prove the following result,
Theorem 5. Consider the policy πRE returned by Algorithm 1. Assume that πE ∈ Π and the ground
truth reward function rt ∈ Ft, which is assumed to be symmetric (ft ∈ Ft ⇐⇒ −ft ∈ Ft) and
bounded (For all ft ∈ Ft, ‖ft‖∞ ≤ 1). Choose |D1|, |D2| = Θ(Nexp) and suppose Nreplay →∞.
With probability ≥ 1− 3δ,

J(πE)− J(πRE) . L1 + L2 + L3 +
log (FmaxH/δ)

Nexp
(53)
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where Fmax , maxt∈[H] |Ft|, and,

L1 , H2 EπE

[∑H
t=1M(st, t)TV

(
πEt (·|st), πBCt (·|st)

)
H

]
, (54)

L2 , H3/2

√
log (FmaxH/δ)

Nexp

∑H
t=1 EπE [1−M(st, t)]

H
, (55)

And,

L3 , H

√
log(FmaxH/δ)

Nreplay
+
H log(FmaxH/δ)

Nreplay
. (56)

Recall that the learner carrying out replay estimation returns the policy which minimizes the loss
supf∈F Jf (π) − Ê(f) over policies π, where Jf (π) , Eπ

[
1
H

∑H
t=1 ft(st, at)

]
and abbreviating

the notation f = (f1, · · · , fH). Note that,

J(πE)− J(πRE)
(i)

≤ sup
f∈F

Jf (πE)− Jf (πRE) (57)

≤ sup
f∈F

∣∣∣Jf (πE)− Ê(f)
∣∣∣+ sup

f∈F

∣∣∣Ê(f)− Jf (πRE)
∣∣∣ (58)

(ii)

≤ 2 sup
f∈F

∣∣∣Jf (πE)− Ê(f)
∣∣∣ . (59)

where (i) uses the realizability assumption that the ground truth reward lies in F , and (ii) uses
the fact that πRE is a minimizer of eq. (5) and the fact that F is symmetric (this implies that
supf∈F Jf (πE)− Ê(f) = supf∈F −Jf (πE) + Ê(f) = supf∈F

∣∣∣Jf (πE)− Ê(f)
∣∣∣).

Note that Ê(f) can be decomposed into a sum of two parts,

Ê(1)(f) = EDreplay

[
1

H

H∑
t=1

ft(st, at) (1− P(s1...t−1))

]
, and, (60)

Ê(2)(f) = ED2

[
1

H

H∑
t=1

ft(st, at) (1− P(s1...t−1))

]
(61)

Likewise, we can decompose Jf (πE) into two terms,

J
(1)
f (πE) , EπE

[
H∑
t=1

ft(st, at)P(s1...t−1)

]
, and (62)

J
(2)
f (πE) , EπE

[
H∑
t=1

ft(st, at) (1− P(s1...t−1))

]
(63)

Then, from eq. (59),

J(πE)− J(πRE) ≤ 2 sup
f∈F

∣∣∣Jf (πE)− Ê(f)
∣∣∣ (64)

≤ 2 sup
f∈F

∣∣∣J (1)
f (πE)− E

[
Ê(1)(f)

∣∣∣D1

]∣∣∣︸ ︷︷ ︸
(I)

+2 sup
f∈F

∣∣∣E [Ê(1)(f)
∣∣∣D1

]
− Ê(1)(f)

∣∣∣︸ ︷︷ ︸
(II)

+ 2 sup
f∈F

∣∣∣J (2)
f (πE)− Ê(2)(f)

∣∣∣︸ ︷︷ ︸
(III)

. (65)

where the last line follows by triangle inequality. We bound each of these terms in the next 3 lemmas,
starting with (I).
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Lemma 5.

sup
f∈F

∣∣∣J (1)
f (πE)− E

[
Ê(1)(f)

∣∣∣D1

]∣∣∣ ≤ H H∑
h=1

EπE
[
M(sh, h)TV

(
πEh (·|sh), πBCh (·|sh)

)]
(66)

Proof. The proof of this result closely follows the supervised learning reduction of BC (cf. Ross and
Bagnell [2010]). Note that,

E
[
Ê(1)(f)

∣∣∣D1

]
− V (1)

f (πE) =

H∑
t=1

EπBC [ft(st, at)P(s1···t−1)]− EπE [ft(st, at)P(s1···t−1)] .

(67)

Define π(h) as the policy which plays πE until (and including) time h and πBC after time h. Then, by
cascading,

EπBC [ft(st, at)P(s1···t−1)]− EπE [ft(st, at)P(s1···t−1)]

=

t−1∑
h=0

Eπ(h) [ft(st, at)P(s1···t−1)]− Eπ(h+1) [ft(st, at)P(s1···t−1)] (68)

Define, the uncertainty weighted state visitation measure dM and the uncertainty weighted look-
forward reward ρM as follows,

dMh+1(s′) , EπE

[
1(sh+1 = s′)

h∏
t′=1

M(st′ , t
′)

]
(69)

ρMh+1(s′, a′) , EπBC

[
ft(st, at)

t∏
t′=h+2

M(st′ , t
′)

∣∣∣∣∣sh+1 = s′, ah+1 = a′

]
(70)

By decomposing expectations along trajectories, using the fact that P(s1···t−1) =
∏H
t′=1M(st′ , t

′)
some simplification results in the following equation,

|Eπ(h) [ft(st, at)P(s1···t−1)]− Eπ(h+1) [ft(st, at)P(s1···t−1)]| (71)

=

∣∣∣∣∣∑
s′∈S

∑
a′∈A

dMh+1(s′)M(s′, h+ 1)
(
πEh+1(a′|s′)− πBCh+1(a′|s′)

)
ρMh+1(s′, a′)

∣∣∣∣∣ (72)

(i)

≤
∑
s′∈S

dMh+1(s′)M(s′, h+ 1)TV
(
πEh+1(·|s′), πBCh+1(·|s′)

)
(73)

= EπE
[
M(sh+1, h+ 1)TV

(
πEh+1(·|sh+1), πBCh+1(·|sh+1)

)]
. (74)

where (i) uses the fact that the membership oracle is a function ∈ [0, 1] and f is bounded and lies in
the interval [0, 1] (which implies that ρM also lies in [0, 1] pointwise). Plugging into eq. (68) and
subsequently into eq. (67) completes the proof.

Next we bound the 3rd term, (III). This follows by an application of Bernstein’s inequality.
Lemma 6. With probability ≥ 1− δ,

sup
f∈F

∣∣∣J (2)
f (πE)− Ê(2)(f)

∣∣∣ ≤ H
√

log(FmaxH/δ)
∑H−1
t=1 EπE [1−M(st, t)]

Nexp
+
H log(FmaxH/δ)

Nexp

(75)

Proof. First observe that,

J
(2)
f (πE)− V̂ (2)

f =

H∑
t=1

Etr∼Unif(D2) [ft(st, at) (1− P(s1···t−1))]− EπE [ft(st, at) (1− P(s1···t−1))]

(76)
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For each t, note that ft(st, at) (1− P(s1···t−1)) is bounded in the range [0, 1]. Therefore, invoking
Bernstein’s inequality, with probability ≥ 1− δ,∣∣EUnif(D2) [ft(st, at) (1− P(s1···t−1))]− EπE [ft(st, at) (1− P(s1···t−1))]

∣∣ (77)

.

√
VarπE (ft(st, at) (1− P(s1···t−1))) log(1/δ)

Nexp
+

log(1/δ)

Nexp
(78)

≤
√

EπE [(ft(st, at) (1− P(s1···t−1)))2] log(1/δ)

Nexp
+

log(1/δ)

Nexp
(79)

(i)

≤
√

EπE [ft(st, at) (1− P(s1···t−1))] log(1/δ)

Nexp
+

log(1/δ)

Nexp
(80)

(ii)

≤
√

EπE [1− P(s1···t−1)] log(1/δ)

Nexp
+

log(1/δ)

Nexp
(81)

where (i) uses the fact that ft(st, at) (1− P(s1···t−1)) is bounded in the range [0, 1], and (ii) uses
the fact that 0 ≤ ft(st, at) ≤ 1. Assuming 0 ≤ xi ≤ 1 for all i ∈ [n], we have the inequality,

1−
n∏
i=1

xi ≤
n∑
i=1

1− xi (82)

Applying this to eq. (81) for 1− P(s1···t−1) = 1−∏t−1
t′=1M(st′ , t

′), we have,∣∣EUnif(D2) [ft(st, at) (1− P(s1···t−1))]− EπE [ft(st, at) (1− P(s1···t−1))]
∣∣ (83)

≤
√∑t−1

t′=1 EπE [1−M(st′ , t′)] log(1/δ)

Nexp
+

log(1/δ)

Nexp
(84)

Therefore, by union bounding, with probability ≥ 1− δ/H , simultaneously for every ft ∈ Ft,∣∣EUnif(D2) [ft(st, at) (1− P(s1···t−1))]− EπE [ft(st, at) (1− P(s1···t−1))]
∣∣ (85)

.

√
log(|Ft|H/δ)

∑t−1
t′=1 EπE [1−M(st′ , t′)]

Nexp
+

log(|Ft|H/δ)
Nexp

. (86)

This implies that the maximum over ft of the LHS is upper bounded by the RHS. Union bounding
over t = 1, · · · , H and plugging into eq. (76), we have that with probability ≥ 1− δ,

sup
f∈F

∣∣∣J (2)
f (πE)− V̂ (2)

f

∣∣∣ (87)

≤
H∑
t=1

∣∣EUnif(D2) [ft(st, at) (1− P(s1···t−1))]− EπE [ft(st, at) (1− P(s1···t−1))]
∣∣ (88)

. H

√
log(FmaxH/δ)

∑H−1
t=1 EπE [1−M(st, t)]

Nexp
+
H log(FmaxH/δ)

Nexp
. (89)

Lemma 7. With probability ≥ 1− δ,

sup
f∈F

∣∣∣E [V̂ (1)
f

∣∣∣D1

]
− V̂ (1)

f

∣∣∣ . H

√
log(FmaxH/δ)

Nreplay
+
H log(FmaxH/δ)

Nreplay
. (90)

Proof. The proof follows essentially the same structure as Lemma 6 by decomposing V̂ (1)
f into a sum

of H terms of the form ft(st, at)P(s1···t−1), applying Bernstein’s inequality to bound the deviation
of each term from its mean and finally union bounding over the rewards ft ∈ Ft to get the uniform
bound over all discriminators f ∈ F .

Putting together Lemmas 5 to 7 with eq. (65) completes the proof of Theorem 2.
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B.1 Bound in the tabular setting (Theorem 6)

In this section, we provide an upper bound on the imitation gap of RE in the tabular setting when
the expert is a deterministic policy. This recovers the bound on the imitation gap for RE proved in
Rajaraman et al. [2020].

Theorem 6. Consider an appropriately initialized version of RE , and let the size of the replay dataset
Nreplay →∞. For any tabular IL instance with H ≥ 10, with probability ≥ 1− 3δ,

J(πE)− J(πRE) . min

{
|S|H3/2

Nexp
, H

√
|S|
Nexp

}
log

( |S|H
δ

)
. (91)

Below we describe the implementation of RE corresponding to Theorem 6 in more detail.

The membership oracle we use in this setting for RE is defined below,

M(s, t) =

{
1 if s is visited in D1 at time t

0 otherwise.
(92)

The function class F which we use is identical to that for empirical moment matching, which is
described in Remark 3.

Note that in the tabular setting, BC simply mimics the deterministic expert’s actions at states visited in
the datasetD1 and plays an arbitrary deterministic action on the remaining states. As a consequence of
this definition, ifM(s, t) = 1 ⇐⇒ πBCt (·|s) = πEt (·|s) andM(s, t) = 0 otherwise. We instantiate
the family of discriminators as in Remark 3, as F =

⊕H
t=1{ft : ‖ft‖∞ ≤ 1} and the set of policies

Π optimized over is chosen as the set of all deterministic policies. While the guarantee of Theorem 2
depends on Fmax = maxt∈[H] |Ft| which is unbounded (or exp(|S||A|) by using a discretization
of the reward space), note that we can improve the guarantee to effectively have Fmax ≈ exp(|S|)
noting the structure of the set of discriminators. Looking into the proof of Theorem 2 we bring out
this dependence below. We note that there are many ways of bringing out this dependence, including
a careful net argument directly on top of the guarantee of Theorem 2. We simply present one such
argument below.

The critical step where the finiteness of the set of discriminators F is used, is in union bounding the
gap between the population and the empirical estimate of ft(st, at) (1− P(s1···t−1)) in eq. (84).∣∣EUnif(D2) [ft(st, at) (1− P(s1···t−1))]− EπE [ft(st, at) (1− P(s1···t−1))]

∣∣ (93)

In the next step of the proof of Theorem 2, we union bound over all ft ∈ Ft. However, note that for
Ft = {ft : ‖ft‖∞ ≤ 1}, we have that,

sup
ft:‖ft‖∞≤1

∣∣EUnif(D2) [ft(st, at) (1− P(s1···t−1))]− EπE [ft(st, at) (1− P(s1···t−1))]
∣∣ (94)

(i)
=
∑
s∈S

∑
a∈A

∣∣EUnif(D2) [I(st = s, at = a) (1− P(s1···t−1))]− EπE [I(st = s, at = a) (1− P(s1···t−1))]
∣∣

(95)
(ii)
=
∑
s∈S

∣∣EUnif(D2) [I(st = s) (1− P(s1···t−1))]− EπE [I(st = s) (1− P(s1···t−1))]
∣∣ (96)

(iii)

≤
∑
s∈S

∣∣EUnif(D2) [I(st = s) (1− P(s1···t−1))]− EπE [I(st = s) (1− P(s1···t−1))]
∣∣ (97)

where (i) follows similar to the equivalence between the variational representation of TV distance
(TV(P,Q) = 1

2 supf :‖f‖∞≤1 EP [f ]− EQ[f ]) and the relationship to the L1 distance, TV(P,Q) =
1
2L1(P,Q). On the other hand, (ii) follows by noting that the expert is a deterministic policy (andD2

is generated by rolling out πE). (iii) follows by an application of Holder’s inequality. By subgaussian
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concentration, for each s ∈ S, with probability ≥ 1− δ
|S|H ,∣∣EUnif(D2) [I(st = s) (1− P(s1···t−1))]− EπE [I(st = s) (1− P(s1···t−1))]

∣∣ (98)

.

√√√√VarπE (I(st = s) (1− P(s1···t−1))) log
(
|S|H
δ

)
|D2|

+
log
(
|S|H
δ

)
|D2|

(99)

(i)

≤

√√√√EπE [I(st = s) (1− P(s1···t−1))] log
(
|S|H
δ

)
|D2|

+
log
(
|S|H
δ

)
|D2|

(100)

where (i) uses the fact that 0 ≤ I(st = s) (1− P(s1···t−1)) ≤ 1. Combining with eq. (97), union
bounding and applying Cauchy Schwarz inequality, with probability ≥ 1− δ

H ,

sup
ft:‖ft‖∞≤1

∣∣EUnif(D2) [ft(st, at) (1− P(s1···t−1))]− EπE [ft(st, at) (1− P(s1···t−1))]
∣∣ (101)

.
√
|S|

√√√√√∑
s∈S

EπE [I(st = s) (1− P(s1···t−1))] log
(
|S|H
δ

)
|D2|

+
|S| log

(
|S|H
δ

)
|D2|

(102)

=
√
|S|

√√√√EπE [1− P(s1···t−1)] log
(
|S|H
δ

)
|D2|

+
|S| log

(
|S|H
δ

)
|D2|

(103)

(i)

≤ min


√√√√ |S| log

(
|S|H
δ

)
|D2|

,

√√√√|S|∑H−1
t=1 EπE [1−M(st, t)] log

(
|S|H
δ

)
|D2|

+
|S| log

(
|S|H
δ

)
|D2|

(104)

where (i) follows by the same simplification as in eq. (82). Comparing with eq. (86), this roughly
corresponds to setting Fmax ≈ exp(|S|). All in all, summing eq. (104) over t ∈ [H] and plugging
into eq. (88), with probability ≥ 1− δ,

sup
f∈F

∣∣∣J (2)
f (πE)− V̂ (2)

f

∣∣∣ (105)

. H


√√√√ |S| log

(
|S|H
δ

)
|D2|

,

√√√√|S|∑H−1
t=1 EπE [1−M(st, t)] log

(
|S|H
δ

)
|D2|

+
|S| log

(
|S|H
δ

)
|D2|

(106)

Finally, we plug this into eq. (65), which is restated below,

J(πE)− J(πRE) ≤ 2 sup
f∈F

∣∣∣Jf (πE)− Ê(f)
∣∣∣ (107)

≤ 2 sup
f∈F

∣∣∣J (1)
f (πE)− E

[
Ê(1)(f)

∣∣∣D1

]∣∣∣︸ ︷︷ ︸
(I)

+2 sup
f∈F

∣∣∣E [Ê(1)(f)
∣∣∣D1

]
− Ê(1)(f)

∣∣∣︸ ︷︷ ︸
(II)

(108)

+ 2 sup
f∈F

∣∣∣J (2)
f (πE)− Ê(2)(f)

∣∣∣︸ ︷︷ ︸
(III)

. (109)

For the chosen membership oracle in eq. (92), the term (I) is 0, since by Lemma 5 it is upper
bounded by H

∑H
h=1 EπE

[
M(sh, h)TV

(
πEh (·|sh), πBCh (·|sh)

)]
. This is equal to 0 sinceM(s, t) =

0 wherever πEt (·|s) 6= πBCt (·|s). On the other hand, Nreplay →∞ ensures that the term (III) goes to
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0 by the strong law of large numbers. Therefore, with probability ≥ 1− 2δ,

J(πE)− J(πRE) (110)

≤ 2 sup
f∈F

∣∣∣E [Ê(1)(f)
∣∣∣D1

]
− Ê(1)(f)

∣∣∣ (111)

. H


√√√√ |S| log

(
|S|H
δ

)
|D2|

,

√√√√|S|∑H−1
t=1 EπE [1−M(st, t)] log

(
|S|H
δ

)
|D2|

+
|S|H log

(
|S|H
δ

)
|D2|

(112)

Finally, we bound EπE [1−M(st, t)] for the membership oracle defined in eq. (92). By definition,
this quantity is the same as PrπE (st not visited in D1 at time t ). This is the probability that given
Nexp samples from a distribution (the state visited at time t in an expert rollout), the probability that
a new sample from the same distribution is not in the support of the observed samples. This is known
as the missing mass McAllester and Schapire [2000]. In Lemma A.3 Rajaraman et al. [2020] it is
shown that with probability ≥ 1− δ,

H−1∑
t=1

PrπE (st not visited in D1 at time t ) .
|S|H
|D1|

+

√
|S|H log

(
|S|H
δ

)
|D1|

(113)

Finally, combining with eq. (112) and using the fact that that |D1|, |D2| = Θ(Nexp), with probability
≥ 1− 3δ,

J(πE)− J(πRE) . min

H
√√√√ |S| log

(
|S|H
δ

)
Nexp

,
|S|H3/2

Nexp
log

( |S|H
δ

) . (114)

This completes the proof of Theorem 6.

B.2 Bound with parametric function approximation under Lipschitzness

In this section, we provide an upper bound on the imitation gap of RE in the presence of parametric
function approximation under a Lipschitzness assumption on the function classes, and assuming
access to a parameter estimation oracle for offline classification.
Definition (IL with function-approximation). In this setting, for each t ∈ [H], there is a parameter
class Θt ⊆ Bd2, the unit L2 ball in d dimensions, and an associated function class {fθt : θt ∈ Θt}.
For each t ∈ [H] there exists an unknown θEt ∈ Θt such that ∀s ∈ S,

πEt (s) = arg max
a∈A

fθEt (s, a). (115)

Definition 3 (Policy induced by a classifier). Consider a set of parameters θ = {θ1, · · · , θH} where
θt ∈ Θt for each t. A policy πθ is said to be induced by the set of classifiers defined by θ if for all
s ∈ S and t ∈ [H],

πθt (s) = arg max
a∈A

fθt(s, a). (116)

By this definition, πE = πθ
E

where θE = {θE1 , · · · , θEH}.
Definition 4 (Lipschitz parameterization). A function class G = {gθ : θ ∈ Θ} where gθ(·) : X → R
is said to satisfy L-Lipschitz parameterization if, ‖gθ(·)− gθ′(·)‖∞ ≤ L‖θ − θ′‖2 for all θ, θ′ ∈ Θ.
In other words, for each x ∈ X , gθ(x) is an L-Lipschitz function in θ, in the L2 norm.

Assumption 4 (Assumption 1 restated). For each t, the class {fθt : θt ∈ Θt} is L-Lipschitz in its
parameterization, θt ∈ Θt.

To deal with parametric function approximation, we assume that the learner has access to a proper
offline classification oracle, which given a dataset of classification examples, guarantees to approxi-
mately return the underlying ground truth parameter. Namely,
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Assumption 5 (Assumption 2 restated). We assume that the learner has access to a multi-class
classification oracle, which given n examples of the form, (si, ai) where si i.i.d.∼ D and ai =

arg maxa∈A fθ∗(s
i, a), returns a θ̂ ∈ Θ such that, with probability ≥ 1− δ, ‖θ̂ − θ∗‖2 ≤ EΘ,n,δ .

This assumption implies that the parameter class Θt (and the associated function class {fθt : θt ∈
Θt}) admits finite sample complexity guarantees for learning the parameter θ∗t given classification
examples from the underlying ground truth function fθ∗t . As we discuss in more detail later, we will
assume that this classification oracle is used by RE to train the BC policy in Line 3 of Algorithm 1.

Finally, we introduce the main assumption on the IL instances we study. We assume that the
classification problems solved by BC at each t ∈ [H] satisfy a margin condition.

Assumption 6 (Assumption 3 restated). For θ ∈ Θt, define aθs = arg maxa∈A fθ(s, a) as the
classifier output on the state s. The weak margin condition assumes that for each t, there is no
classifier θ ∈ Θt such that for a large mass of states, fθ(st, aθst) − maxa6=aθst

fθ(st, a), i.e. the
“margin” from the nearest classification boundary, is small. Formally, the weak-margin condition with
parameter µ states that, for any θ ∈ Θt and η ≤ 1/µ,

PrπE

(
fθ(st, a

θ
st)− max

a6=aθst
fθ(st, a) ≥ η

)
≥ e−µη. (117)

The weak margin condition only assumes that there is at least an exponentially small (in η) mass of
states with margin at least η. Smaller µ indicates a larger mass away from any decision boundary. It
suffices to assume that eq. (117) is only true for θ as the classifier in Assumption 5 for our guarantees
(Theorem 7) to hold.
Remark 5. Note that the weak margin condition is the multi-class extension of the Tsybakov margin
condition of Mammen and Tsybakov [1999], Audibert and Tsybakov [2007] defined for the binary
case. In particular, in eq. (117), we may replace the RHS by 1 − µη, or 1 − (µη)α for α > 0 to
get different analogs of the margin condition and the main guarantee, Theorem 3, as we discuss in
Appendix B.2.
Theorem 7. For IL with parametric function approximation, under Assumptions 4 to 6, appropriately
instantiating RE ensures that with probability ≥ 1− 4δ,

J(πE)− J(πRE) . H3/2

√
µL log (FmaxH/δ)

Nexp

∑H
t=1 EΘt,Nexp,δ/H

H
+

log (FmaxH/δ)

Nexp
. (118)

Note that we assume the same conditions on F as required in Theorem 2.
Remark 6. The classification oracle in Assumption 5 asks for a stronger condition than just finding
a classifier with small generalization error, which need not be close to the ground truth θ∗ in the
parameter space. Learning classifiers with small generalization error is studied in Daniely et al.
[2013] who show that the Natarajan dimension, up to log-factors in the number of classes (i.e.
number of actions) is the right statistical complexity measure which characterizes the generalization
error of the best learner. In the realizable case, the optimal generalization error guarantee scales as
Õ(1/n) where n is the number of classification examples. Under certain assumptions on the input
distribution D and the function family (e.g. for linear families), we later show that the generalization
error guarantee can be extended to approximately learning the parameter as well (up to problem
dependent constants). Generally, under two conditions,

1. Generalization error guarantees which scale as Õ(1/Nexp) can be extended to parameter
learning,

2. The dependence of the generalization error on the failure probability δ scales as
polylog(1/δ),

the optimality gap for RE which we prove in Theorem 7 scales as Õ
(
H3/2/Nexp

)
. The constants in

Õ(·) here depend on the Natarajan dimension and the covering number of the function classes Ft
among problem dependent constants.

In proving this result, we first discuss the implementation of RE .
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Implementation of RE (Algorithm 1) We discuss the instantiation of RE in the Lipschitz setting
below. The underlying function classF is chosen arbitrarily (note that the guarantee we prove depends
on this function class, and the only constraints on F are those in Theorem 2 - the ground truth reward
must belong in F = ⊗Ht=1Ft, the function class is symmetric, i.e., ft ∈ Ft ⇐⇒ −ft ∈ Ft for each
t and for all ft ∈ Ft, ‖ft‖∞ ≤ 1) This requires specifying the choice of the membership oracleM
and describing the instantiation of BC .

Implementation of BC : Recall that in Algorithm 1, the learner trains BC on the dataset D1. In
particular, under the offline classification oracle condition, Assumption 5, the learner trains H
classifiers, one for each t, trained on the state-action pairs (i.e. state is the input, and the action at this
state is the corresponding class) observed in the expert dataset at time t using the offline classifier in
Assumption 5. We assume that each classifier is trained with the failure probability chosen as δ/H .
Denoting this set of H classifiers as θ̂BC =

{
θ̂BC

1 , · · · , θ̂BC
H

}
, this corresponds to the to the policy

πBC = πθ̂
BC

induced by the classifier θ̂BC (Definition 3).

In particular, by union bounding, the classifiers θ̂BC satisfy with probability ≥ 1− δ simultaneously
for each time t ∈ [H],

‖θEt − θ̂t‖2 ≤ EΘt,Nexp,δ/H . (119)

Membership oracle: Fix a time-step t ∈ [H]. The membership oracleM is defined in eq. (10) as,

M(s, t) =

{
+1 if ∃a ∈ A such that, ∀a′ ∈ A, fθ̂BC

t
(s, a)− fθ̂BC

t
(s, a′) ≥ 2LEΘt,Nexp,δ/H

0 otherwise.
(120)

We first show that on the states such that the membership oracle is 1, the expert policy perfectly
matches the learner’s policy.
Lemma 8. At every state s such thatM(s, t) = +1, πEt (s) = πBCt (s).

Proof. Note that θEt satisfies ‖θEt − θ̂BC
t ‖2 ≤ EΘt,Nexp,δ/H with probability 1 − δ. Consider the

action a played by the learner, for any a′ ∈ A,
fθEt (s, a)− fθEt (s, a′) ≥ fθ̂BC

t
(s, a)− EΘt,Nexp,δ/HL− fθ̂BC

t
(s, a′)− EΘt,Nexp,δ/HL (121)

≥ 0 (122)
where the first inequality follows by Lipschitzness of f·(s, a) and the last inequality follows by defini-
tion of the set of states whereM(s, t) = +1: ∀a′ ∈ A, fθ̂BC

t
(s, a)− fθ̂BC

t
(s, a′) ≥ 2EΘt,Nexp,δ/HL.

Since for this action a, fθEt (s, a)− fθEt (s, a′) ≥ 0 for all other actions a′ ∈ A, a must be the action
played by the expert policy. This completes the proof.

Note that πBC always matches πE wherever the membership oracleM is non-zero. We run Algo-
rithm 1. Therefore, from Theorem 2, with probability ≥ 1− 4δ, the imitation gap of the learner is
bounded by,

Jr(π
E)− Jr(πRE) . H3/2

√
log (FmaxH/δ)

Nexp

∑H
t=1 EπE [1−M(st, t)]

H
+

log (FmaxH/δ)

Nexp
.

(123)

To complete the proof, we must bound EπE [1−M(st, t)], which is the measure of states s such
that ∀a ∈ A,∃a′ ∈ A : fθ̂t(s, a) − fθ̂t(s, a

′) ≤ 2LEΘt,Nexp,δ/H , i.e. the mass of states which are
very close to a decision boundary. The probability of this set of states is upper bounded by the weak
margin condition. Indeed, for each t ∈ [H], defining a∗s = arg maxa∈A fθ̂BC

t
(s, a),

PrπE

(
fθ̂BC
t

(st, a
∗
st)− max

a 6=a∗st
fθ̂BC
t

(st, a) ≥ 2LEΘt,Nexp,δ/H

)
≥ e−µLEΘt,Nexp,δ/H (124)

≥ 1− µLEΘt,Nexp,δ/H . (125)
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Therefore,

EπE [1−M(st, t)] . µLEΘt,Nexp,δ/H . (126)

Putting it together with eq. (123), and simplifying, with probability ≥ 1− 4δ,

J(πE)− J(πRE) . H3/2

√
µL log (FmaxH/δ)

Nexp

∑H
t=1 EΘt,Nexp,δ/H

H
+

log (FmaxH/δ)

Nexp
. (127)

Note that in Equation (125), we only use the fact that the probability mass of states which are η-close
to any decision boundary is not too high. Similar to Audibert and Tsybakov [2007], we may consider
relaxations of the weak margin condition, as below.
Assumption 7 (α-weak margin condition). Consider any t ∈ [H] and θ ∈ Θt. For each s ∈ S,
define a∗s = arg maxa∈A fθ(s, a) as the classifier output under fθ. The α weak margin condition
with parameter µ assumes that, for any η ≤ 1/µ,

∀θ ∈ Θt, PrπE

(
fθ(st, a

∗
st)− max

a6=a∗st
fθ(st, a) ≥ η

)
≥ 1− (µη)α. (128)

When α = 1, this condition is effectively equivalent to the weak margin condition in Assumption 6.

Following the proof of Theorem 7, we may obtain the following result under the α weak margin
condition for α 6= 1.
Theorem 8. For IL with parametric function approximation, under Assumptions 4, 5 and 7, appro-
priately instatiating RE ensures that with probability ≥ 1− 4δ,

J(πE)− J(πRE) . H3/2

√
(µL)α log (FmaxH/δ)

Nexp

∑H
t=1(EΘt,Nexp,δ/H)α

H
+

log (FmaxH/δ)

Nexp
.

(129)

Once again, we assume the same conditions on F as required in Theorem 2.

B.3 Extension to unbounded discriminator families

Note that when the family of discriminators F does not have finite cardinality, it in fact suffices to
just bound the imitation gap against a finite covering of F . We spell out the details explicitly below.

In particular, we can replace Fmax by maxt∈[H]N (Ft, 1/Nexp, ‖ · ‖∞), whereN (G, ξ, ‖ · ‖) denotes
the covering number of G in the norm ‖ · ‖ as defined below.
Definition 5 (Covering number). For a function class G, tolerance ξ and norm ‖ · ‖, the covering
number N (G, ξ, ‖ · ‖) is defined as the cardinality of the smallest set of functions Gξ such that for
each g ∈ G, there exists a g′ ∈ Gξ,

‖g − g′‖ ≤ ξ. (130)

Corollary 1. When G is chosen as the set of 1-bounded linear functions, G = {{〈x, θ〉 : x ∈ Bd2} :

θ ∈ Bd2}, where Bd2 denotes the L2 unit ball in Rd, N (G, ξ, ‖ · ‖∞) ≤
(

2
√
d
ξ + 1

)d
.

Proof. For any g, g′ ∈ G, where g and g′ correspond to parameters θ, θ′ ∈ Bd2,

‖g − g‖∞ ≤ max
x∈X
〈x, θ − θ′} (131)

≤ ‖x‖2‖θ − θ′‖2 (132)

≤ ‖θ − θ′‖2. (133)

Since the L2 covering number of Bd2 is bounded by
(

2
√
d
ξ + 1

)d
, the result immediately follows by

defining the covering of G as {〈θ, ·〉 : θ ∈ K} where K is the optimal covering of Bd2 in L2 norm.
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Definition 6 (Discretization of discriminator space). Define Fξt as the optimal covering of Ft under
the L∞ norm in the sense of Definition 5. The discretized family of discriminators we consider is,
Fξ = ⊗Ht=1Fξt .

Lemma 9. Suppose for all functions f ′ ∈ Fξ1/Ht , simultaneously Jf ′(πE)− Jf ′(πRE) ≤ ξ2. Then,
for all discriminators f ∈ F , Jf (πE)− Jf (πRE) ≤ 2ξ1 + ξ2.

Proof. Consider any discriminator f ∈ F . By construction, there exists an f ′ ∈ Fξ1/H such that,

‖f − f ′‖∞ ≤ ξ1/H. (134)

Since for any policy π, the value Jf (π) under a discriminator f ∈ F is an H-Lipschitz function of f ,
we can make a statement about how well Jf ′(π) approximates Jf (π) for an appropriately chosen
f ′ ∈ Fξ1/H . In particular, the nearest (in L∞ norm) f ′ ∈ Fξ1/H to f ∈ F satisfies that for any
policy π,

|Jf (π)− Jf ′(π)| ≤ H × ξ1
H
. (135)

As a consequence, for any discriminator f ∈ F ,

Jf (πE)− Jf (πRE) ≤ |Jf (πE)− Jf ′(πE)|+ Jf ′(π
E)− Jf ′(πRE) + |Jf ′(πRE)− Jf (πRE)| (136)

≤ ξ1 + ξ2 + ξ1 = 2ξ1 + ξ2. (137)

In particular, this means that if we minimize Jf ′(πE)− Jf ′(πRE) ≤ ξ2 for all f ′ ∈ F1/NexpH , then
we can ensure that for all f ∈ F ,

Jf (πE)− Jf (πRE) ≤ 2

Nexp
+ ξ2. (138)

This implies the following theorem,

Theorem 9. Consider the policy πRE returned by Algorithm 1 where F is instead chosen as F
1

HNexp

(as defined in Definition 6). Assume that πE ∈ Π, the ground truth reward function rt ∈ Ft which is
assumed to be bounded (For all ft ∈ Ft, ‖ft‖∞ ≤ 1). Choose |D1|, |D2| = Θ(Nexp) and suppose
Nreplay →∞. With probability ≥ 1− 3δ,

J(πE)− J(πRE) . L1 + L2 +
log (NmaxH/δ) + 1

Nexp
(139)

where Nmax , maxt∈[H]N (Ft, 1/HNexp, ‖ · ‖∞) corresponds to the maximal covering number of
the function classes Ft, and,

L1 , H2 EπE

[∑H
t=1M(st, t)TV

(
πEt (·|st), πBCt (·|st)

)
H

]
, (140)

L2 , H3/2

√
log (NmaxH/δ)

Nexp

∑H
t=1 EπE [1−M(st, t)]

H
.

Remark 7. Note that this line of reasoning can be extended to Theorem 3 and Theorem 8 to show
that the same guarantees as eq. (12) and eq. (129) respectively hold, but with Fmax replaced by
Nmax.

B.4 Bounds on RE in the linear expert setting

In this section, we provide an upper bound on the imitation gap of RE in the presence of linear
function approximation, which is studied in Rajaraman et al. [2021]. This is a special case of the
case of IL under parametric function approximation with Lipschitzness. To avoid any ambiguity, we
formally define IL with linear function approximation, which is the case when (i) the expert follows
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an unknown linear classifier in a known set of features, and (ii) the reward function admits a linear
parameterization.

The goal is to show that there exists a simple choice of the membership oracle such that the imitation
gap of the resulting algorithm grows as H3/2 and decay in the size of the expert dataset as 1/Nexp up
to logarithmic factors, breaking the error compounding barrier and achieving the optimal dependency
on these parameters. We first introduce the linear setting below.

Assumption 8 (Linear-expert setting). For each (s, a, t) tuple, the learner is assumed to have a
feature representation φt(s, a) ∈ Rd. For each time t, there exists an unknown vector θEt ∈ Rd such
that ∀s ∈ S,

πEt (s) = arg max
a∈A

〈θEt , φt(s, a)〉. (141)

i.e., the expert policy is deterministic and realized by a linear classifier. We assume that θEt ∈ Sd−1

without loss of generality.

Definition 7 (Policy induced by a linear classifier). Consider a set of vectors θ = {θ1, · · · , θH}
where each θt ∈ Rd. A policy πθ is said to be induced by the set of linear classifiers defined by θ if
for all s ∈ S and t ∈ [H],

πθt (s) = arg max
a∈A

〈θt, φt(s, a)〉. (142)

By this definition, πE = πθ
E

.

Definition 8 (Linear reward setting). DefineRlin,t as the family of linear reward functions (defined
at the single time-step t) which takes the form of an unknown linear function of a set of the features,

Rlin,t =
{
{rt(s, a) = 〈ω, φt(s, a)〉 : s ∈ S, a ∈ A} : ω ∈ Rd, ‖ω‖2 ≤ 1

}
. (143)

For the rewards to be 1-bounded, we assume the features satisfy ‖φt(s, a)‖2 ≤ 1. Define Rlin =
⊗Ht=1Rlin,t. The linear reward setting assumes the true reward function of the MDP, r ∈ Rlin.

Remark 8. Note that our guarantees in Theorem 10 hold even if the set of features in the definition
ofRlin,t in Definition 8 differ from those used to define the expert classifier Assumption 8. Regardless,
we assume that both sets of features are known to the learner.

In the case of parametric function approximation with Lipschitzness, note that we assume both
the weak margin condition (Assumption 6), as well as the existence of a linear classification oracle
(Assumption 5). Below, in the linear expert case, we show a sufficient condition which implies both of
these conditions. In particular, define the positive hemisphere with pole at θ, i.e. {x : Bd2 : 〈θ, x〉 ≥ 0}
as Hdθ . We abbreviate Hd

θEt
as Hdt .

Assumption 9 (Bounded density assumption). For each time t ∈ [H], state s ∈ S , action a ∈ A and
θ ∈ Θt, define φt(s, a) = φt(s, a

θ
s)− φt(s, a) where aθs = arg maxa′∈A〈θ, φt(s, a′)〉. Consider the

measure PrπE
(
∃a 6= aθst : φt(st, a) ∈ ·

)
. Let d

E

t represent the Radon-Nikodym derivative of this
measure against the uniform measure on Hd−1

t . The bounded density assumption states that for each
t ∈ [H] there are constants cmin > 0 and cmax <∞ such that for all x ∈ Hdt ,

cmin ≤ d
E

t (x) ≤ cmax. (144)

We now state the main result we prove for IL in the linear setting.

Theorem 10. Under Assumptions 8 and 9, appropriately instantiating RE ensures that with probabil-
ity ≥ 1− δ,

J(πE)− J(πRE) .

√
cmax

cmin

H3/2d5/4 log
3
2 (NexpdH/δ)

Nexp
.

The proof of this result follows by showing that under Assumption 9, both the weak margin condition
(Assumption 6) is satisfied, and the classification oracle (Assumption 5) can be constructed. We
begin by showing the former.
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Figure 8: If at any time t ∈ [H] and state s, φt(s, πEt (s))− φt(s, a) lies in the red shaded region for
some action a, then, the action played by πBC and πE at this state are different.

Lemma 10. Under Assumption 9, the α-weak margin condition is satisfied with α = 1 and µ =
2cmax

√
d. In particular, for all θ ∈ Sd−1,

PrπE

(
〈θ, φt(s, aθst)〉 − max

a 6=aθst
〈θ, φt(s, a)〉 ≥ η

)
≥ 1−

(
2cmax

√
d
)
η. (145)

where aθst , arg maxa∈A〈θ, φt(s, a)〉.

Proof. Observe that,

PrπE
(
∃a 6= aθst : 〈θ, φt(st, aθst)〉 − 〈θ, φt(st, a)〉 ≤ η

)
(146)

= PrπE
(
∃a 6= aθst : φt(st, a

θ
st)− φt(st, a) ∈ {x ∈ Hdθ : 〈x, θ〉 ≤ η}

)
(147)

(i)
= PrπE

(
∃a 6= aθst : φt(st, a) ∈ {x ∈ Hdθ : 〈x, θ〉 ≤ η}

)
(148)

(ii)

≤ cmaxPr(〈U, θ〉 ≤ η) (149)

where in (i), φt is as defined in Assumption 9 and in (ii), U is uniformly distributed on the unit
hemisphere, Hdθ . Note that (ii) follows from the bounded density condition, Assumption 9. Note that
the RHS essentially corresponds to the volume (probability measure) of a disc of height η cut out of a
sphere from the center. Up to normalization factors, this can be upper bounded by the surface area of
the base of the disc, multiplied by the height of the disc. Namely,

η × π
d−1

2

Γ( d−1
2 +1)

1
2

π
d
2

Γ( d2 +1)

(150)

Using Gautschi’s inequality, for any x ≥ 0 and ` ∈ (0, 1) x1−` ≤ Γ(x+1)
Γ(x+`) ≤ (1 +x)1−`. With ` = 1

2 ,
Γ( d2 +1)

Γ( d+1
2 )
≤
√
d. Combining with eq. (149) results in,

PrπE
(
∃a 6= aθst : 〈θ, φt(st, aθst)〉 − 〈θ, φt(st, a)〉 ≤ η

)
≤ 2cmax

√
dη (151)

Therefore the probability of the complement event is lower bounded by 1− 2cmax

√
dη, completing

the proof.

The final thing to show is that the bounded density assumption can also be used to construct a
classification oracle in the sense of Assumption 5.

In particular, as discussed in the main paper, we show that algorithms for minimizing the general-
ization error, can be used to construct a classification oracle. The compression based algorithm of
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Daniely and Shalev-Shwartz [2014] provides a guarantee on the generalization error. From Theorem 5
of Daniely and Shalev-Shwartz [2014], in the realizable setting, for linear classification, the resulting
classifier θ̂ has expected 0-1 loss upper bounded by (d+ log(1/δ)) log(n)/n, given n classification
examples. Namely, in the notation of Assumption 5, the resulting classifier θ̂ satisfies with probability
≥ 1− δ,

Prs∼D

(
arg max
a∈A

fθ∗(s
i, a) 6= arg max

a∈A
fθ̂(s

i, a)

)
≤ (d+ log(1/δ) log(n)

n
. (152)

Next we show that under Assumption 9, this equation can be used to bound the error in the parameter
space, ‖θ∗ − θ̂‖2. Namely, in Assumption 5, we may choose EBd2 ,n,δ

as � (d+log(1/δ) log(n)
n , up to

constants depending on cmin.

Lemma 11. Consider the compression based learner θ̂BC
t = θ̂t of Daniely and Shalev-Shwartz

[2014] for multi-class linear classification. Then, under Assumption 9, with probability ≥ 1− δ,

‖θ̂BC
t − θ∗t ‖2 ≤

2π

cmin

(d+ log(1/δ) log(Nexp)

Nexp
(153)

Proof. Fix t ∈ [H]. The generalization error of θ̂BC
t = θ̂t can be written as,

PrπE

(
arg max
a∈A

〈θ∗t , φt(st, a)〉 6= arg max
a∈A

〈θ̂BC
t , φt(st, a)〉

)
= PrπE

(
∃a 6= πEt (st) : φt(st, π

E
t (st))− φt(st, a) ∈ C

)
, (154)

where C is illustrated in fig. 8 and is formally defined as,

C , {x ∈ Hdt : 〈x, θ̂BC
t 〉 ≤ 0}. (155)

On the states which “belong” to C (i.e. at those states s where ∃a 6= πEt (st) : φt(s, π
E
t (st)) −

φt(s, a) ∈ C), there exists an action a such that θ̂BC
t is better correlated with this action than a∗s . In

other words, θ̂BC
t and θ∗ play different actions at this state. Note that C is essentially the set difference

of two hemispheres with different poles. By the bounded density condition, Assumption 9, and
eq. (154),

PrπE

(
πEt (st) 6= arg max

a∈A
〈θ̂BC
t , φ(s, a)〉

)
≥ cminPr (U ∈ C) , (156)

where U is uniformly distributed over Hdθ . Referring to fig. 8, we have that,

Pr (U ∈ C) =
α

π
(157)

where α is the angle between θ̂BC
t and θEt . In particular, from eq. (156),

PrπE

(
a∗s 6= arg max

a∈A
〈θ̂BC
t , φ(s, a)〉

)
≥ cmin

α

π
≥ cmin

‖θ∗ − θ̂BC
t ‖2

π
, (158)

where in the last inequality, we use the fact that ‖θ∗‖2 = ‖θ̂BC
t ‖2 = 1 without loss of generality. By

the generalization error bound on θ̂BC
t = θ̂t in eq. (152), with probability ≥ 1− δ,

‖θ∗ − θ̂BC
t ‖2 ≤

π

cmin

(d+ log(1/δ) log(Nexp)

Nexp
(159)

Lemma 11 shows that under the bounded density condition Assumption 9, the compression based
learner θ̂ of Daniely and Shalev-Shwartz [2014] essentially induces a classification oracle for linear
classification with EBd2 ,n,δ

= π
cmin

(d+log(1/δ) log(n)
n . Finally, from Corollary 1, we have a bound on

the covering number of linear families. Putting together all of these results with Theorem 3 (noting
that we can replace Fmax by Nmax from Remark 7) results in Theorem 10.
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C Additional experimental results

We include some additional experimental results in this section of the paper.

In fig. 9, we plot the distributions of the prefix weights generated by each membership oracle on
simulated BC rollouts on WalkerBulletEnv. Note thatMVAR is significantly overconfident in prefix
weights compared toMEXP, as indicated by the heavier right-tail. On the other hand, MRND and
MMAX are less overconfident and better overlap with the idealized prefix weights induced byMEXP.
This aligns with the correlation plot between the various membership oracles in Fig. 5. Moreover, in
terms of policy performance, this further justifies the superior behavior ofMMAX compared toMVAR.

WalkerBulletEnv-v0

PMAX

PVAR

0.0 0.2 0.4 0.6 0.8 1.0
BC Dataset Prefix Weight

PRND

Figure 9: Histogram of prefix weights generated by rolling out trajectories from BC . The green
superimposed histogram represents prefix weights generated byMEXP

In Fig. 10, we consider how each of the changes we described in the main section of the paper lead
to improved performance of our RE baseline. The first, using a Wasserstein distance, leads to lower
expected return but is required for solving the full moment-matching problem – see Swamy et al.
[2021] for more details. Switching from PPO to the more sample-efficient SAC [Haarnoja et al.,
2018] leads to fast learning. Adding in gradient penalties for discriminator stability [Swamy et al.,
2021, Gulrajani et al., 2017] also improves final performance and learning speed. The last change
we employ, using Optimistic Mirror Descent [Daskalakis et al., 2017] in both the discriminator
and RL algorithm also (slightly) improves performance. To our knowledge, we are the first to
utilize this technique in the imitation learning literature and reccomend it as best practice for future
moment-matching algorithms. We refer interested readers to the work of Syrgkanis et al. [2015] for
theoretical details of why OMD enables superior performance.

0.0 0.2 0.4 0.6 0.8 1.0
Num. Env. Steps ×106
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HalfCheetahBulletEnv Ablation
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+W+SAC+GP
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Figure 10: We ablate the four key changes we made to off-the-shelf GAIL to improve performance /
theoretical guarantees. We see that each improved performance, with MM significantly out-performing
options with fewer changes. Our improvements upon MM with the Replay Estimation technique are
therefore improving upon an already strong baseline.
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D Experimental Setup

We begin with the hyperparameters for our Standard Bullet and Noisy Bullet experiments.

D.1 Expert

We use the Stable Baselines 3 [Raffin et al., 2021] implementation of PPO [Schulman et al., 2017] or
SAC [Haarnoja et al., 2018] to train experts for each environment. For the most part, we use already
tuned hyperparameters from [Raffin, 2020] in the implementation. The modifications we used are are
shown in table 1.

PARAMETER VALUE

BUFFER SIZE 300000
BATCH SIZE 256
γ 0.98
τ 0.02
TRAINING FREQ. 64
GRADIENT STEPS 64
LEARNING RATE LIN. SCHED. 7.3E-4
POLICY ARCHITECTURE 256 X 2
STATE-DEPENDENT EXPLORATION TRUE
TRAINING TIMESTEPS 1E6

Table 1: Expert hyperparameters for Walker Bullet Task and Hopper Bullet Task

D.1.1 Noisy Experts

In addition to the default Bullet Tasks, we test performance of algorithms on noisy environments.
Namely, we generate noisy expert data by re-training expert policies with Gaussian noise added to
the actions of the expert during the exploration phase while training. We then re-generate expert data
by sampling from the expert policies trained on noisy data to analyze the performance of our method
under stochasticity. Table 2 lists the standard deviation of the (i.i.d.) noise we applied to the actions
in the different environments.

ENV. NOISE DISTRIBUTION.

HOPPER N (0, 0.1)
WALKER N (0, 0.5)

Table 2: Noise we applied to all policies in each environment.

D.2 Baseline

We average over 5 runs and use a common architecture of 256 x 2 with ReLU activations for both
our method and the MM baseline we compare against. For each datapoint, the cumulative reward
is averaged over 10 trajectories. For all tasks, we train on {6, 12, 18} expert trajectories with a
maximum of 400k iterations of the optimization procedure. Table 3 shows the hyperparameters we
used for MM. Empirically, smaller learning rates, large batch sizes, and gradient penalties were critical
for the stable convergence of our method.

We note that MM requires careful tuning of f UPDATE FREQ. for strong performance. We searched
over step sizes of {1250, 2500, 5000} and selected the one which achieved the most stable updates.
In practice, we recommend evaluating a trained policy on a validation set to set this parameter.

We also used similar parameters for training SAC, also from the Stable Baselines 3 [Raffin et al., 2021]
implementation, as we did for training the expert policy. Table 4 shows the choice of hyperparmeters
we used for training SAC. We directly added in the optimistic mirror descent optimizers [Daskalakis
et al., 2017] for both the critic and actor objectives of SAC.
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PARAMETER VALUE

BATCH SIZE 2048*
LEARNING RATE LINEAR SCHEDULE OF 8E-3*
f UPDATE FREQ. 5000
f GRADIENT TARGET 0.4
f GRADIENT PENALTY WEIGHT 10

Table 3: Learner hyperparameters for MM . * indicates the parameter was different for the Hopper
Initial State shift experiments (4096 for batch size and Linear Schedule of 8e-4, respectively.).

PARAMETER VALUE

γ 0.98
τ 0.02
TRAINING FREQ. 64
GRADIENT STEPS 64
LEARNING RATE LINEAR SCHEDULE OF 7.3E-4
POLICY ARCHITECTURE 256 X 2

Table 4: Leaning hyperparameters for the SAC component of MM

Table 5 shows the learning hyperparameters for any BC policies used for generating simulated data
for the membership oracles. Table 6 shows the number of training steps per task we used for both the
baseline and our method.

PARAMETER VALUE

ENTROPY WEIGHT 0
L2 WEIGHT 0
TRAINING TIMESTEPS 1E5

Table 5: Learner hyperparameters for Behavioral Cloning

D.3 Our Algorithm

In this section, we use bold text to highlight sensitive hyperparameters. We use the same network
architecture choices as the MM baseline. For all environments, we generated 100 trajectories of
simulated behavior cloning data to use with our method.

For all tasks, we rolled out 100 trajectories from a BC trained network to use with our membership
oracle. Table 7 shows how we partitioned our dataset between the BC training set and the expert
membership oracle dataset. We also use the full dataset for moment matching, not just D2, as we
found this lead to slightly better performance.

D.4 Membership Oracle Parameters

For both MVAR and MMAX, we use 5 BC networks in the ensemble. We followed the exact same
parameters in Table 5 to train each BC imitator. Table 8 shows the choice of µ and β values we used
for each membership oracle.

D.5 Initial State Shift Experiments

For these experiments, we used demonstrations generated by an expert trained on the standard
Bullet tasks but subject the learner (both at train and test time) to a initial velocity perturbation of
a zero-mean Gaussian with variance (σ = 1e− 7). We refer interested readers to our code for our
precise method of injecting noise as we believe it might be of interest for future experiments. We
note that in all the demonstrations, we see the expert start from rest. Despite this relatively small

34



ENV. TRAINING STEPS

WALKER (NO NOISE) 400000
WALKER (WITH NOISE) 400000
HOPPER (NO NOISE) 400000
HOPPER (WITH NOISE) 400000

Table 6: Number of training steps for the different tasks

EXPERT SIZE D1 D2

6 TRAJS 4 2
12 TRAJS 10 2
18 TRAJS 16 2

Table 7: Partition of trajectories into D1 and D2 based on the number of expert trajectories provided.
For the Noisy Walker experiments, we used 5, 10, 14 trajectories for D1 instead of the above.

ENV PARAMETER MEXP MRND MVAR MMAX

WALKER β 0.1 0.1 0.01 0.1
WALKER µ 0.33 0.22 0.015 0.35
HOPPER β 0.8 0.25 0.08 0.1
HOPPER µ 0.68 0.4 0.05 0.25

Table 8: Membership oracle hyperparameters across different environments

shift, we see BC performance drop significantly, as is characteristic of real-world problems where it
significantly under-performs on-policy IL methods. All results are averaged over five seeds.

For all environments, we train BC for 1e5 steps (as well as for the query policies for RE ).

For RE , we train 5 policies and use the max-distance approximate membership oracle. We use the
above parameters for MM for our base moment-matcher.

ENV PARAMETER MMAX

WALKER β 0.01
WALKER µ 0.0001
HOPPER β 0.01
HOPPER µ 0.0001

Table 9: Membership oracle hyperparameters across different initial state shift environments.
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