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Abstract

The Gaussian homotopy (GH) method is a popular approach to finding better
stationary points for non-convex optimization problems by gradually reducing a
parameter value t, which changes the problem to be solved from an almost convex
one to the original target one. Existing GH-based methods repeatedly call an
iterative optimization solver to find a stationary point every time t is updated,
which incurs high computational costs. We propose a novel single loop framework
for GH methods (SLGH) that updates the parameter t and the optimization decision
variables at the same. Computational complexity analysis is performed on the
SLGH algorithm under various situations: either a gradient or gradient-free oracle
of a GH function can be obtained for both deterministic and stochastic settings. The
convergence rate of SLGH with a tuned hyperparameter becomes consistent with
the convergence rate of gradient descent, even though the problem to be solved is
gradually changed due to t. In numerical experiments, our SLGH algorithms show
faster convergence than an existing double loop GH method while outperforming
gradient descent-based methods in terms of finding a better solution.

1 Introduction

Let us consider the following non-convex optimization problem:

minimize
x2Rd

f(x), (1)

where f : Rd ! R is a non-convex function. Let us also consider the following stochastic setting:

f(x) := E⇠[f̄(x; ⇠)], (2)

where ⇠ is the random variable following a probability distribution P from which i.i.d. samples can
be generated. Such optimization problems attract significant attention in machine learning, and at
the same time, the need for optimization algorithms that can find a stationary point with smaller
objective value is growing. For example, though it is often said that simple gradient methods can find
global minimizers for deep learning (parameter configurations with zero or near-zero training loss),
such beneficial behavior is not universal, as noted in [16]; the trainability of neural nets is highly
dependent on network architecture design choices, variable initialization, etc. There are also various
other highly non-convex optimization problems in machine learning (see e.g., [13]).

⇤The first two authors contributed equally.
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Table 1: Each theorem shows the iteration complexity of SLGH with respect to ✏ and the dimension
of input space d to reach an ✏-stationary point in the corresponding problem setting. “const. �” shows
the complexity when we treat the decreasing parameter � as a constant. “tuned �” shows the lowest
complexity of SLGH attained by updating t appropriately, which matches the complexity of the
standard first- or zeroth-order methods (see e.g., Theorem 3.4). We also consider two cases of a
zeroth-order setting: “exact f”, in which we can query the exact or stochastic function value, and
“err. f”, in which we can only access the function value with bounded error.

1) first-order zeroth-order
2) exact f 3) err. f

a) deterministic Thm. 3.4 Thm. 4.1 Thm. C.1
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The Gaussian homotopy (GH) method is designed to avoid poor stationary points by building a
sequence of successively smoother approximations of the original objective function f , and it is
expected to find a good stationary point with a small objective value for a non-convex problem. More
precisely, using the GH function F (x, t) with a parameter t � 0 that satisfies F (x, 0) = f(x), the
method starts from solving an almost convex smoothed function F (x, t1) with some sufficiently
large t1 � 0 and gradually changes the optimization problem F (x, t) to the original one f(x) while
decreasing the parameter t. The homotopy method developed so far, then, consists of a double loop
structure; the outer loop reduces t, and the inner loop solves minx F (x, t) for the fixed t.

Related research on the GH method The GH method is popular owing to its ease of implementa-
tion and the quality of its obtained stationary points, i.e., their function values. The nature of this
method was first proposed in [2], and it was then successfully applied in various fields, including
computer vision [24, 3, 4], physical sciences [12] and computation chemistry [29]. [11] introduces
machine learning applications for the GH method, and an application to tuning hyperparameters of
kernel ridge regression [25] has recently been introduced. Although there have been recent studies on
the GH function F (x, t) [19, 20, 11], all existing GH methods use the double loop approach noted
above. Moreover, to the best of our knowledge, there are no existing works that give theoretical
guarantee for the convergence rate except for [11]. It characterizes a family of non-convex functions
for which a GH algorithm converges to a global optimum and derives the convergence rate to an
✏-optimal solution. However, the family covers only a small part of non-convex functions, and it is
difficult to check whether the required conditions are satisfied for each function. See Appendix A for
more discussion on related work.

Motivation for this work This paper proposes novel deterministic and stochastic GH methods
employing a single loop structure in which the decision variables x and the smoothing parameter t
are updated at the same time using individual gradient/derivative information. Using a well-known
fact in statistical physics on the relationship between the heat equation and Gaussian convolution of
f , together with the maximum principle (e.g., [9]) for the heat equation, we can see that a solution
(x

⇤
, t

⇤
) minimizing the GH function F (x, t) satisfies t⇤ = 0; thus, x⇤ is also a solution for (1). This

observation leads us to a single loop GH method (SLGH, in short), which updates the current point
(xk, tk) simultaneously for minx2Rd,t�0 F (x, t). The resulting SLGH method can be regarded as an
application of the steepest descent method to the optimization problem, with (x, t) as a variable. We
are then able to investigate the convergence rate of our SLGH method so as to achieve an ✏-stationary
point of (1) and (2) by following existing theoretical complexity analyses.

We propose two variants of the SLGH method: SLGHd and SLGHr, which have different update rules
for t. SLGHd updates t using the derivative of F (x, t) in terms of t, based on the idea of viewing
F (x, t) as the objective function with respect to the variable (x, t). Though this approach is effective
in finding good solutions (as demonstrated in Appendix D.4), it requires additional computational
cost due to the calculation of @F

@t . To avoid this additional computational cost, we also consider
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SLGHr that uses fixed-rate update rule for t. We also show that both SLGHd and SLGHr have the
same theoretical guarantee.

Table 1 summarizes the convergence rate of our SLGH method to reach an ✏-stationary point under a
number of problem settings. Since the convergence rate depends on the decreasing speed of t, we list
two kinds of complexity in the table; details are described in the caption.

We consider the three settings in which available oracles differ. In Case 1), the full (or stochastic)
gradient of F (x, t) in terms of x is available for the deterministic problem (1) (or stochastic problem
(2), respectively). However, in this setting, we have to calculate Gaussian convolution for deriving
GH functions and their gradient vectors, which becomes expensive, especially for high-dimensional
applications, unless closed-form expression of Gaussian convolution is possible. While [18] provides
closed-form expression for some specific functions f , such as polynomials, Gaussian RBFs, and
trigonometric functions, such problem examples are limited. As Case 2), we extend our deterministic
and stochastic GH methods to the zeroth-order setting, for which the convolution computation is
approximated using only the function values. Another zeroth-order setting, Case 3), is also considered
in this paper: the inexact function values (more precisely, the function value with bounded error) can
be queried similarly as in the setting in [14]. See Appendix C for more details.

Although no existing studies have analyzed the complexity of a double loop GH method to find an ✏-
stationary point, we can see that its inner loop requires the same complexity as GD (gradient descent)
method up to constants. Furthermore, as noted above, the complexity of the SLGH method with a
tuned hyperparameter matches that of GD method. Thus, the SLGH method becomes faster than a
double loop GH method by around the number of outer loops. The SLGH method is also superior to
double loop GH methods from practical perspective, because in order to ensure convergence of their
inner loops, we have to set the stepsize conservatively, and furthermore a sufficiently tuned terminate
condition must be required.

Contributions We can summarize our contribution as follows:

(1) We propose novel deterministic and stochastic single loop GH (SLGH) algorithms and analyze
their convergence rates to an ✏-stationary point. As far as we know, this is the first analysis of
convergence rates of GH methods for general non-convex problems (1) and (2). For non-convex
optimization, the convergence rate of SLGH with a tuned hyperparameter becomes consistent with
the convergence rate of gradient descent, even though the problem to be solved is gradually changed
due to t. At this time, the SLGH algorithms become faster than a double loop one by around its
number of outer loops.

(2) We propose zeroth-order SLGH (ZOSLGH) algorithms based on zeroth-order estimators of
gradient and Hessian values, which are useful when Gaussian smoothing convolution is difficult. We
also consider the possibly non-smooth case in which the accessible function contains error, and we
derive the upper bound of the error level for convergence guarantee.

(3) We empirically compare our proposed algorithm and other algorithms in experiments, including
artificial highly non-convex examples and black-box adversarial attacks. Results show that the
proposed algorithm converges much faster than an existing double loop GH method, while it is yet
able to find better solutions than are GD-based methods.

2 Standard Gaussian homotopy methods

Notation: For an integer N , let [N ] := {1, ..., N}. We express �[N ] := {�1, . . . ,�N} for a set of
some vectors. We also express the range of the smoothing parameter t as T := [0, t1], where t1 is an
initial value of the smoothing parameter. Let k · k denote the Euclidean norm and N (0, Id) denote
the d-dimensional standard normal distribution.

Let us first define Gaussian smoothed function.

Definition 2.1. Gaussian smoothed function F (x, t) of f(x) is defined as follows:

F (x, t) := Eu⇠N (0,Id)[f(x+ tu)] =

Z
f(x+ ty)k(y)dy, (3)

where k(y) = (2⇡)
�d/2

exp (�kyk2/2) is referred to as the Gaussian kernel.
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The idea of Gaussian smoothing is to take an expectation over the function value with a Gaussian
distributed random vector u. For any t > 0, the smoothed function F (x, t) is a C

1 function, and t

plays the role of a smoothing parameter that controls the level of smoothing.

Here, let us show the link between Gaussian smoothing and the heat equation [28]. The Gaussian
smoothing convolution is basically the solution of the heat equation [28].

@

@t
û = �xû, û(·, 0) = f(·), (4)

where �x denotes the Laplacian. The solution of the heat equation is û(x, t) =

(
1

4⇡t )
d
2

R
f(y)e

� kx�yk2
4t dy. This can be made the same as the Gaussian smoothing function F (x, t)

by scaling its coefficient, which only changes the speed of progression.

Corollary 9 in [21] shows a sufficient condition for ensuring that f has the asymptotic strict convexity
in which the smoothed function F (x, t) becomes convex if a sufficiently large smoothing parameter
t is chosen. On this basis, the standard GH method, Algorithm 1, starts with a (almost) convex
optimization problem F (x, t) with large parameter value t 2 R and gradually changes the problem
toward the target non-convex f(·) = F (·, 0) by decreasing t gradually. [11] reduces t by multiplying
by a factor of 1/2 for each iteration k. [20] focuses more on theoretical work w.r.t. the general setting
and do not discuss the update rule for t.

Algorithm 1 Standard GH method ([20, 11])
Require: Objective function f , iteration number T , sequence {t1, . . . , tT } satisfying t1 > · · · > tT .

Find a solution x1 for minimizing F (x, t1).
for k = 1 to T do

Find a stationary point xk+1 of F (x, tk+1) with the initial solution xk.
end for
return xT

3 Single loop Gaussian homotopy algorithm

A function h(x) is L0-Lipschitz with a constant L0 if for any x, y 2 Rd, |h(x)�h(y)|  L0kx�yk
holds. In addition, h(x) is L1-smooth with a constant L1 if for any x, y 2 Rd, krh(x)�rh(y)k 
L1kx� yk holds. Let us here list assumptions for developing algorithms with convergence guarantee.
Assumption A1.

(i) Objective function f satisfies supx2Rd Eu[|f(x + tu)|] < 1 (In the stochastic setting, f
satisfies supx2Rd,⇠ Eu[|f̄(x+ tu; ⇠)|] < 1).

(ii) The optimization problem (1) has an optimal value f
⇤.

(iii) Objective function f(x) is L0-Lipschitz and L1-smooth on Rd (In the stochastic setting,
f̄(x; ⇠) is L0-Lipschitz and L1-smooth on Rd in terms of x for any ⇠).

Assumption (i) for making F (x, t) well-defined and enabling to exchange the order of differentiation
and integration, as well as Assumption (ii), is mandatory for theoretical analysis with the GH method.
Assumption (iii) is often imposed for gradient-based methods. This is a regular boundedness and
smoothness assumption in recent non-convex optimization analyses (see e.g., [1, 17, 7]).

In the remainder of this section, we consider the nature of the GH method and propose a more
efficient algorithm, a SLGH algorithm. We then provide theoretical analyses for our proposed SLGH
algorithm.

3.1 Motivation

The standard GH algorithm needs to solve an optimization problem for a given smoothing factor t in
each iteration and manually reduce t, e.g., by multiplying some decreasing factor. To simplify this
process, we consider an alternative problem as follows:

minimize
x2Rd,t2T

F (x, t), (5)
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where F (x, t) is the Gaussian smoothed function of f(x). This single loop structure can reduce the
number of iterations by optimizing x and t at the same time.

The following theorem is a (almost) special case of Theorem 6 in [9],2 which is studied in statistical
physics but may not be well-known in machine learning and optimization communities. This theorem
shows that the optimal solution of (5) (x⇤

, t
⇤
) satisfies t⇤ = 0, and thus x⇤ is also a solution for (1).

Therefore, we can regard F (x, t) as an objective function in the SLGH method.
Theorem 3.1. Suppose that Assumptions A1 (i) and (ii) are satisfied. Unless f is constant a.e., the

minimum of the GH function F (x, t) will be always found at t = 0, and the corresponding x will be

an optimal solution for (1).

We present a proof of this theorem in Appendix B.1. The proof becomes much easier than that in [9]
due to its considering a specific case.

Let us next introduce an update rule for t utilizing the derivative information. When we solve the
problem (5) using a gradient descent method, the update rule for t becomes tk+1 = tk � ⌘

@F
@t , where

⌘ is a step size. The formula (4) in the heat equation implies that the derivative @F
@t is equal to

the Laplacian �xF , i.e., @F
@t = tr(HF (x)), where HF (x) is the Hessian of F in terms of x. Since

tr(HF (x)) represents the sharpness of minima [8], this update rule can sometimes decrease t quickly
around a minimum and find a better solution. See Appendix D.4 for an example of such a problem.

3.2 SLGH algorithm

Let us next introduce our proposed SLGH algorithm, which has two variants with different update
rules for t: SLGH with a fixed-ratio update rule (SLGHr) and SLGH with a derivative update rule
(SLGHd). SLGHr updates t by multiplying a decreasing factor � (e.g., 0.999) at each iteration.
In contrast to this, SLGHd updates t while using derivative information. Details are described in
Algorithm 2. Algorithm 2 transforms a double loop Algorithm 1 into a single loop algorithm. This
single loop structure can significantly reduce the number of iterations while ensuring the advantages
of the GH method.

Algorithm 2 Deterministic/Stochastic Single Loop GH algorithm (SLGH)
Require: Iteration number T , initial solution x1, initial smoothing parameter t1, step size � for x,

step size ⌘ for t, decreasing factor � 2 (0, 1), sufficient small positive value ✏

for k = 1 to T do
xk+1 = xk � � bGx,

bGx =

⇢
rxF (xk, tk) (determ.)
rxF̄ (xk, tk; ⇠k), ⇠k ⇠ P (stoc.)

tk+1 =

⇢
�tk (SLGHr)

max{min{tk � ⌘ bGt, �tk}, ✏0} (SLGHd)
, bGt =

(
@F (xk,tk)

@t (determ.)
@F̄ (xk,tk;⇠k)

@t , ⇠k ⇠ P (stoc.)

end for

In the stochastic setting of (2), the gradient of F (x, t) in terms of x is approximated by rxF̄ (x, t; ⇠)

with randomly chosen ⇠, where F̄ (x, t; ⇠) is the GH function of f̄(x; ⇠). Likewise, the derivative of
F (x, t) in terms of t is approximated by @F̄ (x,t;⇠)

@t . The stochastic algorithm in Algorithm 2 uses one
sample ⇠k. We can extend the stochastic approach to a minibatch one by approximating rxF (x, t)

by 1
M

PM
i=1 rxF̄ (x, t; ⇠i) with samples {⇠1, . . . , ⇠M} of some batch size M , but for the sake of

simplicity, we here assume one sample in each iteration. In this setting, the gradient complexity
matches the iteration complexity; thus, we also use the term “iteration complexity” in the stochastic
setting. Other methods, such as momentum-accelerated method [27] and Adam [15] can also be
applied here. According to Theorem 3.1, the final smoothing parameter needs to be zero. Thus, we

2Although the assumptions in Theorem 3.1 are stronger than those in the theorem proved by Evans, the
statement of ours is also stronger than that of his theorem, in a sense that our theorem guarantees that all optimal
solutions satisfy t = 0.
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multiply � by t even in SLGHd when the decrease of t is insufficient. We also assure that t is larger
than a sufficiently small positive value ✏

0
> 0 during an update to prevent t from becoming negative.

3.3 Convergence analysis for SLGH

Let us next analyze the worst-case iteration complexity for both deterministic and stochastic SLGHs,
but, before that, let us first show some properties for Gaussian smoothed function F (x, t) under
Assumption A1 for the original function f(x). In the complexity analyses in this paper, we always
assume that � is bounded from above by a universal constant �̄ < 1, which implies 1/(1��) = O(1).
Lemma 3.2. Let f(x) be a L0-Lipschitz function. Then, for any t > 0, its Gaussian smoothed

function F (x, t) will then also be L0-Lipschitz in terms of x. Let f(x) be a L1-smooth function.

Then, for any t > 0, F (x, t) will also be L1-smooth in terms of x.

Lemma 3.2 indicates that Assumption A1 given to the function f(x) also guarantees the same
properties for F (x, t). Below, we give some bounds between the smoothed function F (x, t) and the
original function f(x).

Lemma 3.3. Let f be a L0-Lipschitz function. Then, for any x 2 Rd
, F (x, t) is also L0

p
d-

Lipschitz in terms of t, i.e., for any x, smoothing parameter values t1, t2 > 0, we have |F (x, t1)�
F (x, t2)|  L0

p
d|t1 � t2|.

On the basis of Lemmas 3.2 and 3.3, the convergence results of our deterministic and stochastic
SLGH algorithms can be given as in Theorems 3.4 and 3.5, respectively. Proofs of the following
theorems are given in Appendix B.2. Let us first deal with the deterministic setting.
Theorem 3.4 (Convergence of SLGH, Deterministic setting). Suppose Assumption A1 holds , and

let x̂ := xk0 , k
0
= argmink2[T ] krf(xk)k. Set the stepsize for x as � = 1/L1. Then, for any setting

of the parameter �, x̂ satisfies krf(x̂)k  ✏ with the iteration complexity of T = O
�
d
3/2

/✏
2
�
.

Further, if we choose �  d
�⌦(✏2)

, the iteration complexity can be bounded as T = O(1/✏
2
).

This theorem indicates that if we choose � close to 1, then the iteration complexity can be O
�
d
3/2

/✏
2
�
,

which is O(d
3/2

) times larger than the O(1/✏
2
)-iteration complexity by the standard gradient descent

methods [22]. However, we can remove this dependency on d to obtain an iteration complexity
matching that of the standard gradient descent, by choosing �  d

�⌦(✏2), as shown in Theorem 3.4.
Empirically, settings of � close to 1, e.g., � = 0.999, seem to work well enough, as demonstrated in
Section 5.

An inner loop of the double loop GH method using the standard GD requires the same complexity as
the standard GD method up to constants since the objective smoothed function of inner optimization
problem is L1-smooth function. By considering the above results, we can see that the SLGH algorithm
becomes faster than the double loop one by around the number of outer loops.

To provide theoretical analyses in the stochastic setting, we need additional standard assumptions.
Assumption A2.

(i) The stochastic function f̄(x; ⇠) becomes an unbiased estimator of f(x). That is, for any
x 2 Rd, f(x) = E⇠[f̄(x; ⇠)] holds.

(ii) For any x 2 Rd, the variance of the stochastic gradient oracle is bounded as
E⇠[krxf̄(x; ⇠) � rf(x)k2]  �

2. Here, the expectation is taken w.r.t. random vectors
{⇠k}.

The following theorem shows the convergence rate in the stochastic setting.
Theorem 3.5 (Convergence of SLGH, Stochastic setting). Suppose Assumptions A1 and A2 hold.

Take k1 := ⇥(1/✏
4
) and k2 := O

�
log� min{d�1/2

, d
�3/2

✏
�2}

�
and define k0 = min{k1, k2}. Let

x̂ := xk0 , where k
0

is chosen from a uniform distribution over {k0 + 1, k0 + 2, . . . , T}. Set the

stepsize for x as � = min
�
1/L1, 1/

p
T � k0

 
. Then, for any setting of the parameter �, x̂ satisfies

E[krf(x̂)k]  ✏ with the iteration complexity of T = O
�
d/✏

4
+ d

3/2
/✏

2
�

where the expectation

is taken w.r.t. random vectors {⇠k}. Further, if we choose �  (max{d1/2, d3/2✏2})�⌦(✏4)
, the

iteration complexity can be bounded as T = O(1/✏
4
).
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We note that the iteration complexity of T = O(1/✏
4
) for sufficiently small � matches that for the

standard stochastic gradient descent (SGD) shown, e.g., by [10].

4 Zeroth-order single loop Gaussian homotopy algorithm

In this section, we introduce a zeroth-order version of the SLGH algorithms. This ZOSLGH algorithm
is proposed for those optimization problems in which Gaussian smoothing convolution is difficult to
compute, or in which only function values can be queried.

4.1 ZOSLGH algorithm

For cases in which only function values are accessible, approximations for the gradient in terms of x
and derivative in terms of t are needed. [23] has shown that the gradient of the smoothed function
F (x, t) can be represented as

rxF (x, t) =
1

t
Eu([f(x+ tu)� f(x)]u), u ⇠ N (0, Id). (6)

Thus, the gradient rxF (x, t) can be approximated by an unbiased estimator g̃x(x, t;u) as

g̃x(x, t;u) :=
1

t
(f(x+ tu)� f(x))u, u ⇠ N (0, Id). (7)

The derivative @F
@t is equal to the trace of the Hessian of F (x, t) because the Gaussian smoothed

function is the solution of the heat equation
@F
@t = tr(HF (x)). We can estimate tr(HF (x)) on the

basis of the second order Stein’s identity [26] as follows:

HF (x) ⇡
(vv

> � Id)

t2
(f(x+ tv)� f(x)), v ⇠ N (0, Id). (8)

Thus, the estimator for derivative can be written as:

g̃t(x, t; v) :=
(v

>
v � d)(f(x+ tv)� f(x))

t2
, v ⇠ N (0, Id). (9)

As for the stochastic setting, f(x) in (7) and (9) is replaced by the stochastic function f̄(x; ⇠) with
some randomly chosen sample ⇠. The gradient rxF̄ (x, t; ⇠) of its GH function F̄ (x, t; ⇠) can then
be approximated by G̃x(x, t; ⇠, u) :=

f̄(x+tu;⇠)�f̄(x;⇠)
t u, and the derivative @F̄

@t can be approximated
by G̃t(x, t; ⇠, v) :=

(v>v�d)(f̄(x+tv;⇠)�f̄(x;⇠))
t2 (see Algorithm 3 for more details).

Algorithm 3 Deterministic/Stochastic Zeroth-Order Single Loop GH algorithm (ZOSLGH)
Require: Iteration number T , initial solution x1, initial smoothing parameter t1, step size � for x,

step size ⌘ for t, decreasing factor � 2 (0, 1), sufficient small positive value ✏

for k = 1 to T do
Sample uk from N (0, Id)

xk+1 = xk � �Ḡx,u, Ḡx,u =

⇢
g̃x(xk, tk;uk) (determ.)
G̃x(xk, tk; ⇠k, uk), ⇠k ⇠ P (stoc.)

Sample vk from N (0, Id)

tk+1 =

⇢
�tk (SLGHr)

max{min{tk � ⌘Ḡt,v, �tk}, ✏0} (SLGHd)
, Ḡt,v =

⇢
g̃t(xk, tk; vk) (determ.)
G̃t(xk, tk; ⇠k, vk), ⇠k ⇠ P (stoc.)

end for

4.2 Convergence analysis for ZOSLGH

We can analyze the convergence results using concepts similar to those used with the first-order SLGH
algorithm. Below are the convergence results for ZOSLGH in both the deterministic and stochastic
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settings. Proofs of the following theorems are given in Appendix B.3, and the definitions of x̂ are
provided in the proofs. We start from the deterministic setting, which is aimed at the deterministic
problem (1).
Theorem 4.1 (Convergence of ZOSLGH, Deterministic setting). Suppose Assumption A1 holds.

Take k1 := ⇥(d/✏
2
) and k2 := O

�
log� d

�1/2
�
, and define k0 = min{k1, k2}. Let x̂ := xk0 , where

k
0

is chosen from a uniform distribution over {k0 + 1, k0 + 2, . . . , T}. Set the stepsize for x as

� = 1/(2(d + 4)L1). Then, for any setting of the parameter �, x̂ satisfies E[krf(x̂)k]  ✏ with

the iteration complexity of T = O(d
2
/✏

2
), where the expectation is taken w.r.t. random vectors

{uk} and {vk}. Further, if we choose �  d
�⌦(✏2/d)

, the iteration complexity can be bounded as

T = O(d/✏
2
).

This complexity of O(d/✏
2
) for �  d

�⌦(✏2/d) matches that of zeroth-order GD (ZOGD) [23].

Let us next introduce the convergence result for the stochastic setting. As shown in [10], if we take
the expectation for our stochastic zeroth-order gradient oracle with respect to both ⇠ and u, under
Assumption A2 (i), we will have

E⇠,u[G̃x(x, t; ⇠, u)] = Eu[E⇠[G̃x(x, t; ⇠, u)|u]] = rxF (x, t).

Therefore, ⇣k := (⇠k, uk) behaves similarly to uk in the deterministic setting.
Theorem 4.2 (Convergence of ZOSLGH, Stochastic setting). Suppose Assumptions A1 and A2

hold. Take k1 := ⇥(d/✏
4
) and k2 := O

�
log� d

�1/2
�
, and define k0 = min{k1, k2}. Let x̂ := xk0 ,

where k
0

is chosen from a uniform distribution over {k0 + 1, k0 + 2, . . . , T}. Set the stepsize for

x as � = min{ 1
2(d+4)L1

,
1p

(T�k0)(d+4)
}. Then, for any setting of the parameter �, x̂ satisfies

E[krf(x̂)k]  ✏ with the iteration complexity of T = O(d
2
/✏

4
), where the expectation is taken

w.r.t. random vectors {uk}, {vk}, and {⇠k}. Further, if we choose �  d
�⌦(✏4/d)

, the iteration

complexity can be bounded as T = O(d/✏
4
).

This complexity of O(d/✏
4
) for �  d

�⌦(✏4/d) also matches that of ZOSGD [10].

5 Experiments

In this section, we present our experimental results. We conducted two experiments. The first was
to compare the performance of several algorithms including the proposed ones, using test functions
for optimization. We were able to confirm the effectiveness and versatility of our SLGH methods
for highly non-convex functions. We also created a toy problem in which ZOSLGHd, which utilizes
the derivative information @F

@t for the update of t, can decrease t quickly around a minimum and
find a better solution than that with ZOSLGHr. The second experiment was to generate examples
for a black-box adversarial attack with different zeroth-order algorithms. The target models were
well-trained DNNS for CIFAR-10 and MNIST, respectively. All experiments were conducted using
Python and Tensorflow on Intel Xeon CPU and NVIDIA Tesla P100 GPU. We show the results of
only the adversarial attacks due to the space limitations; other results are given in Appendix D.

Generation of per-image black-box adversarial attack example. Let us consider the unconstrained
black-box attack optimization problem in [6], which is given by

minimize
x2Rd

f(x) :=�`(0.5tanh(tanh�1
(2a) + x)) + k0.5tanh(tanh�1

(2a) + x)� ak2,

where � is a regularization parameter, a is the input image data, and tanh is the element-wise operator
which helps eliminate the constraint representing the range of adversarial examples. The first term
`(·) of f(x) is the loss function for the untargeted attack in [5], and the second term L2 distortion is
the adversarial perturbation (the lower the better). The goal of this problem is to find the perturbation
that makes the loss `(·) reach its minimum while keeping L2 distortion as small as possible. The
initial adversarial perturbation x0 was set to 0. We say a successful attack example has been generated
when the loss `(·) is lower than the attack confidence (e.g., 1e� 10).

Let us here compare our algorithms, ZOSLGHr and ZOSLGHd, to three zeroth-order algorithms:
ZOSGD [10], ZOAdaMM [6], and ZOGradOpt [11]. ZOGradOpt is a homotopy method with a
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double loop structure. In contrast to this, ZOSGD and ZOAdaMM are SGD-based zeroth-order
methods and thus do not change the smoothing parameter during iterations.

Table 2 and Figure 1 show results for our experiment. We can see that SGD-based algorithms are able
to succeed in the first attack with far fewer iterations than our GH algorithms (e.g., Figure 1(a), Figure
1(d)). Accordingly, the value of L2 distortion decreases slightly more than GH methods. However,
SGD-based algorithms have lower success rates than do our SLGH algorithms. This is because
SGD-based algorithms remain around a local minimum x = 0 when it is difficult to attack, while
GH methods can escape the local minima due to sufficient smoothing (e.g., Figure 1(b), Figure 1(e)).
Thus, the SLGH algorithms are, on average, able to decrease total loss over that with SGD-based
algorithms. In a comparison within GH methods, ZOGradOpt requires more than 6500 iterations to
succeed in the first attack due to its double loop structure (e.g., Figure 1(c), Figure 1(f)). In contrast
to this, our SLGH algorithms achieve a high success rate with far fewer iterations. Please note that
SLGHd takes approximately twice the computational time per iteration than the other algorithms
because it needs additional queries for the computation of the derivative in terms of t. See Appendix
E for a more detailed presentation of the experimental setup and results.

Table 2: Performance of a per-image attack over 100 images of CIFAR-10 under T = 10000 iterations.
“Succ. rate” indicates the ratio of success attack, “Avg. iters to 1st succ.” is the average number of
iterations to reach the first successful attack , “Avg. L2 (succ.)” is the average of L2 distortion taken
among successful attacks, and “Avg. total loss” is the average of total loss f(x) over 100 samples.
Please note that the standard deviations are large since the attack difficulty varies considerably from
sample to sample.

Methods Succ. rate Avg. iters
to 1st succ.

Avg. L2

(succ.) Avg. total loss

SGD algo. ZOSGD 88% 835 ± 1238 0.076± 0.085 27.70± 74.80

ZOAdaMM 85% 3335± 2634 0.050 ± 0.055 20.24± 62.48

GH algo. ZOGradOpt 65% 6789± 1901 0.249± 0.159 41.45± 76.04

ZOSLGHr (� = 0.999) 93% 4979± 756 0.246± 0.178 14.26 ± 54.61

ZOSLGHd (� = 0.999) 92% 4436± 805 0.150± 0.084 16.49 ± 58.69

(a) CIFAR-10, Image ID = 56 (b) CIFAR-10, Image ID = 34 (c) CIFAR-10, Image ID = 102

(d) MNIST, Image ID = 32 (e) MNIST, Image ID = 45 (f) MNIST, Image ID = 95

Figure 1: Total loss for generating per-image black-box adversarial examples for different images
of CIFAR-10 and MNIST (log scale).
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6 Summary and future work

We have presented here the deterministic/stochastic SLGH and ZOSLGH algorithms as well as their
convergence results. They have been designed for the purpose of finding better solutions with fewer
iterations by simplifying the homotopy process into a single loop. We consider this work to be a first
attempt to improve the standard GH method.

Although this study has considered the case in which the accessible function contains some error and
is possibly non-smooth, we assume the underlying objective function to be smooth. Further work
should be carried out to investigate the case in which the objective function itself is non-smooth.
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