
Appendix: When Does Group Invariant Learning
Survive Spurious Correlations?

A The statistical split algorithm

This section introduces details of the statistical split algorithm, which is for the binary classifica-
tion case. For the multi-class case, the two-sample t-test here should be substituted by one-way
ANOVA [12] or Kruskal-Wallis Test [9].

In our main experiments on PC-MNIST and MNLI, we set the threshold for TB to 10. It can be
seen in Table 1 that the number of groups increases as TB decreases. The two-sample t-statistic is
computed with the function scipy.stats.ttest_ind in the Python package scipy.

We also experimented with the case when the condition for split the block is set as p < pthr, where p
is the p-value of the two sample test, pthr is a threshold for the p-value. We set pthr = 0.01. Results
are shown in Table 1.

B Experimental Details

B.1 Model Selection

It has been argued that model selection is at the heart of domain generalization [7]. In our experiments,
methods are also tested with out-of-distribution data, thus it is important to specify the model selection
criteria as well. Existing works adopt either training set validation [22] or oracle validation using test
data [6] to perform model selection.

In-distribution validation (ID) Hyper-parameters are selected using the in-distribution validation
set, i.e. the validation set randomly split from the training set.

Test-distribution validation (Oracle) Hyper-parameters are selected using the test validation set,
i.e. the validation set randomly split from the test set.

However, both approaches are suggested as non-optimal, by discussions in several literature [7].
Specifically, in-distribution validation sets can fall short in distinguishing the reference models.
Oracle validation supposes the access of test distribution, which sometimes contradicts the setting
of debiasing. As a result, we also test with TEV, by adapting the widely used strategy in domain
generalization, i.e. Training Environments Validation (TEV) [7] to the inferred reweighted groups. A
major advantage of TEV is that it supposes no access to the test data.

Training environments validation (TEV) We split the training set into training and validation
subsets. In the validation step, samples in the validation set are allocated to the inferred groups in
the training set. Specifically, we denote the average outputs of fr on each group as its center. Each
sample in the validation set is allocated to the group with the nearest center, measured by the L2

distance. The weight of the sample is then set to the same as the training samples of the same label in
the group. Hyper-parameters are selected using the reweighted validation set.
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Algorithm 1 Statistical split
Input: S = {fr(x)|x ∈ the training set}, threshold for the t-statistic.
Initialize queue = [S], G = [ ]
repeat

Pop the head item B in queue
Divide B into L0, L1 according to the label, i.e. L0 := {fr(x) ∈ B|the label of x is 0} and
L1 := B \ L0

Compute the two-sample t-statistic TB of log(fr(x)/(1−fr(x))) on L0, L1 and the correspond-
ing p value
if TB > threshold then

Split B using the median value m of {fr(x)0|x ∈ B}, i.e. B′ := {fr(x)|fr(x)0 < m,x ∈
B}, B′′ := B \B′

Append B′, B′′ to the end of the queue
else

Append B to G
end if

until queue is empty
Output: G

B.2 Dataset Details

Patched-Colored MNIST (PC-MNIST) is a synthetic binary classification dataset. It is derived from
MNIST, by assigning color and patch to each image as the spurious features. The design of the
patch feature is inspired by [4]. Firstly, the handwriting with original digit label 0-4 are labeled 0,
and those with 5-9 are labeled 1. Label noise is then added by flipping the label y with probability
pnoise. After that, the color label is assigned by flipping the label y with probability pcolor, i.e.
P(Y = 0|color = 0) = 1− pcolor. Similarly, the patch label is assigned by flipping the label y with
probability ppatch. We attach a 3× 3 black patch on the left top corner to the sample with patch label
1, otherwise on the right bottom corner. In our experiments, the training dataset has pcolor = 0.1,
ppatch = 0.3, and in the test set pcolor and ppatch are both set as 0.5, i.e. uncorrelated with label y.
The pnoise is set to 0.25 following that on Colored-MNIST [3]. The accuracy on test set is regarded
as the performance of the model in solving model’s dependence on spurious correlations.

MNLI-HANS is a benchmark widely used in many previous debiasing works, such as [5; 22]. In our
experiments, we follow the practice to utilize MNLI [25] as the training data and HANS (Heuristic
Analysis for NLI Systems) [17] as the test data. In our experiments, we consider the syntactic
spurious correlations, e.g. the lexical overlap between premise and hypothesis sentences is strongly
correlated with the entailment label [17]. While for HANS, the specific syntactic correlations are
eliminated with manually constructed samples. Therefore, the accuracy on HANS is regarded as the
performance of a concerned model in generalizing to the spurious correlation shift.

The statistics of the two datasets are shown as follows.

PC-MNIST. The training set contains 50000 instances from MNLI. In-distribution validation set,
oracle set, and test set all contain 5000 instances. All four sets are generated by the same algorithm,
only vary in the pcolor and ppatch parameters. The training and validation set have pcolor = 0.1,
ppatch = 0.3. In the oracle and test set pcolor and ppatch are both set as 0.5, i.e. uncorrelated with
label y.

MNLI-HANS. MNLI contains approximately 393 thousand training samples. HANS contains
30000 samples. We use the MNLI-matched development as the in-distribution validation set, which
contains approximately 10000 samples. The oracle set contains 1000 instances randomly selected
from HANS.

B.3 Experimental Settings and Hyper-parameter Tuning

PC-MNIST. The classifier on PC-MNIST is a MLP with two hidden layers of 390 neurons. The
reference model has the same structure but was trained with ERM for 100 epochs on the training
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Table 1: Robustness study on PC-MNIST. It shows the performance of SCILL-IRM with threshold
5, 10, 15, 20 on t-statistics in the statistical split algorithm and when it is substituted with a threshold
on the p-value. Top 2 values are in bold. Results in Table 1 are all under threshold 10.

Method #G ID Oracle TEV
Val Test Val Test Val Test

ERM - 90.22 ± 0.56 50.64 ± 0.56 89.95 ± 0.45 54.53 ± 0.60 - -

SCILL-thr-20 6 83.15 ± 0.47 60.14 ± 1.12 73.37 ± 0.65 67.95 ± 0.66 72.59 ± 0.33 67.79 ± 0.57
SCILL-thr-15 7 82.84 ± 0.61 59.79 ± 1.00 73.07 ± 0.69 68.17 ± 0.56 72.31 ± 0.32 67.87 ± 0.37
SCILL-thr-10 9 79.65 ± 0.76 62.49 ± 0.55 71.54 ± 0.35 67.46 ± 0.19 71.54 ± 0.35 67.46 ± 0.19
SCILL-thr-5 15 76.91 ± 0.60 55.50 ± 1.78 66.29 ± 13.1 58.81 ± 2.35 60.29 ± 9.97 61.89 ± 3.96
SCILL-p-0.01 23 79.75 ± 0.32 62.47 ± 0.93 69.63 ± 0.54 66.78 ± 0.64 72.63 ± 1.21 67.46 ± 0.46

Table 2: Classification accuracy on HANS. Results of methods marked with dagger are cited
from [22].

Method Penalty ID Oracle TEV
Val Test Val Test Val Test

ERM - 84.12 ± 0.15 64.88 ± 3.00 84.12 ± 0.15 64.88 ± 3.00 - -
PoE† - 82.8 ± 0.2 69.2 ± 2.6 - - - -

ConfReg† - 84.3 ± 0.1 69.1 ± 1.2 - - - -

IRM 84.01 ± 0.08 65.35 ± 0.93 83.82 ± 0.17 66.42 ± 0.98 84.01 ± 0.08 65.35 ± 0.93
EIIL REx 84.10 ± 0.13 65.16 ± 0.19 83.91 ± 0.20 66.87 ± 2.92 84.00 ± 0.48 66.43 ± 1.00

cMMD 83.56 ± 0.03 63.22 ± 1.76 83.22 ± 0.13 64.25 ± 1.63 83.38 ± 0.20 62.72 ± 2.03
PGI 84.17 ± 0.08 65.57 ± 2.25 83.78 ± 0.03 66.02 ± 0.93 83.94 ± 0.64 65.57 ± 2.25

IRM 82.75 ± 0.17 69.11 ± 1.76 82.56 ± 0.33 68.72 ± 1.24 82.67 ± 0.14 69.82 ± 1.29
SCILL REx 82.68 ± 0.28 69.73 ± 1.63 82.59 ± 0.22 71.20 ± 1.81 82.56 ± 0.33 69.75 ± 1.53

cMMD 82.74 ± 0.26 69.15 ± 1.39 82.39 ± 0.45 70.77 ± 1.40 82.61 ± 0.04 70.92 ± 0.79
PGI 82.79 ± 0.30 68.57 ± 0.54 81.69 ± 0.28 70.99 ± 0.48 82.79 ± 0.30 68.57 ± 0.54

set. We train each model with 800 epochs. Following Arjovsky et al. [3], the penalty is applied after
training for several annealing epochs. Models are tested every 60 epochs to get their accuracy on 3
validation sets.

We conduct grid search on hyper-parameters. The learning rate is searched over {1e − 4, 5e −
4, 1e− 3, 5e− 3} for all the method. For each invariant learning based method, the penalty weight
λ is searched over the range of {0.1, 1, 10, 100}. The number of annealing epochs is searched over
{100, 300, 500, 700}.

MNLI-HANS. On MNLI, the reference model is the bias-only classifier proposed in [22] which
is trained on top of some hand-crafted syntactic features, including (1) whether all words in the
hypothesis exist in the premise; (2) whether the hypothesis is a continuous sub-sequence of the
premise; (3) the fraction of premise words that shared with hypotheses; (4) the mean, min, max of
cosine similarities between word vectors in the premise and the hypothesis.

We follow the default setting in [22] to fine-tune the bert-base-uncased model 3 epochs, with the
learning rate set to 5× 10−5. We follow [1] to set a rate which linearly ramp up the penalty weight
according to batch counts. Grid search is also conducted. For each group-IL method, the penalty
weight λ is searched over the range of {1e− 2, 1e− 3, 1e− 4}. The rate to to linearly ramp up λ is
searched over {0.2, 0.4, 0.6}.

B.4 Additional Comparisons

We additionally cite the results on MNLI-HANS of other state-of-the-art methods solving spurious
correlations reported in [22]. These methods use the same reference model adopted in our experiments,
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Table 3: Ablation study on PC-MNIST.

Method Penalty ID Oracle TEV
Val Test Val Test Val Test

ERM - 90.22 ± 0.56 50.64 ± 0.56 89.95 ± 0.45 54.53 ± 0.60 - -

IRM 79.65 ± 0.76 62.49 ± 0.55 71.54 ± 0.35 67.46 ± 0.19 71.54 ± 0.35 67.46 ± 0.19
SCILL REx 80.23 ± 0.83 62.13 ± 0.99 72.59 ± 1.44 67.60 ± 0.24 70.77 ± 0.50 67.33 ± 0.30

cMMD 83.13 ± 0.93 59.76 ± 0.92 73.12 ± 0.47 67.49 ± 0.52 72.38 ± 0.51 67.81 ± 0.34
PGI 80.67 ± 1.75 62.52 ± 0.32 71.73 ± 1.43 67.26 ± 0.14 71.35 ± 0.24 67.36 ± 0.33

IRM 90.27 ± 0.39 50.95 ± 0.47 90.07 ± 0.34 53.51 ± 1.38 90.28 ± 0.39 50.85 ± 0.47
SCILLuw REx 90.25 ± 0.30 51.50 ± 1.08 81.27 ± 0.13 61.63 ± 0.64 90.25 ± 0.30 51.50 ± 1.08

cMMD 90.31 ± 0.38 51.70 ± 1.02 89.89 ± 0.28 54.50 ± 1.41 90.23 ± 0.32 52.96 ± 0.86
PGI 90.22 ± 0.47 51.00 ± 0.52 70.05 ± 1.01 66.82 ± 1.01 90.18 ± 0.52 51.44 ± 0.58

opt - 75 75 75 75 75 75

Table 4: Results on PCMNIST with ground-truth group splits.

Method Penalty ID Oracle TEV
Val Test Val Test Val Test

ERM - 90.22 ± 0.56 50.64 ± 0.56 89.95 ± 0.45 54.53 ± 0.60 - -

Maj./Min. IRM 90.18 ± 0.26 50.67 ± 0.15 80.10 ± 0.21 63.85 ± 0.58 90.18 ± 0.26 50.67 ± 0.15
REx 90.18 ± 0.27 50.74 ± 0.15 78.95 ± 2.49 64.00 ± 1.47 90.18 ± 0.27 50.74 ± 0.15

SCILLgt IRM 82.55 ± 0.28 61.12 ± 1.17 74.46 ± 0.25 70.19 ± 0.39 72.30 ± 0.40 70.91 ± 0.06
REx 82.22 ± 0.73 60.16 ± 0.21 73.76 ± 0.25 70.63 ± 0.36 72.21 ± 0.31 71.04 ± 0.04

but adjust the training objective directly based on its outputs. For example, PoE [5] reweights the
sample importance via the product-of-expert method. From the table, it shows that SCILL-REx
outperforms methods in out-of-distribution accuracy with ID selection strategy. When SCILL is
selected with TEV, SCILL-IRM and SCILL-cMMD also show improved performance. However,
these baseline methods do not admit the TEV selection strategy, as no group is defined in their
algorithms.

B.5 Empirical verification for the two criteria

We conduct experiments on PC-MNIST to verify the significance of the two criteria for group-IL.

To verify the significance of the falsity exposure criterion, we compare the performance of methods
under the case when label balance criterion is satisfied. On PC-MNIST, to exclude the effect of the
noise in reference model in the group inference, we implement SCILL with the ground-truth spurious
predictor, obtaining SCILLgt in Table 4. The groups then satisfy the falsity exposure criterion. We
construct the ground truth majority/minority split, which violates the falsity exposure, and experiment
with IL methods, obtaining results in the row maj./min.. The significant performance drop of maj./min.
compared with SCILLgt verifies the importance of falsity exposure for group-IL.

To verify the necessity of label balance criterion, we investigate the cases when the falsity exposure
is satisfied. As SCILLgt on PC-MNIST satisfies the falsity exposure, we construct such cases by
disturbing the label balancing weights in SCILL. We multiply the estimated label proportion of class
0 by different values 1/perr to obtain different degrees of imbalance. As shown in Table 5, label
imbalance causes significant performance drop of SCILL-IRM, which verifies the impact of label
balance.

We further show the importance of the instance reweight step in SCILL, which is designed following
the label balance criterion. For this, we remove the instance reweight step in SCILL, obtaining
SCILLuw. The experimental results in Table 3 show that SCILLuw performs worse than SCILL,
demonstrating the importance of the instance reweight step in SCILL.
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Table 5: Results on PCMNIST with ground-truth group splits and varying label proportion deviation.

Method perr
ID Oracle TEV

Val Test Val Test Val Test

1 82.55 ± 0.28 61.12 ± 1.17 74.46 ± 0.25 70.19 ± 0.39 72.30 ± 0.40 70.91 ± 0.06
SCILLgt 1.2 84.70 ± 0.09 59.40 ± 0.42 79.19 ± 0.12 65.44 ± 0.83 77.53 ± 0.01 63.43 ± 0.22

-IRM 1.5 84.61 ± 0.36 59.57 ± 0.23 80.44 ± 0.79 61.27 ± 0.10 73.17 ± 0.08 59.26 ± 0.21
2 84.37 ± 0.53 58.78 ± 0.41 79.27 ± 2.95 59.44 ± 0.44 66.07 ± 0.73 56.20 ± 0.57
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Figure 1: The label proportion varies between the two groups (denoted as 0 and 1 in the figure)
inferred by EI on MNLI. The horizontal axis shows 3 labels on MNLI. The vertical axis shows the
counts of the instance with the corresponding label in two groups.

B.6 Robustness analysis

As shown in Section 5.1 in the main paper, the statistical-split algorithm contains a hyper-parameter
thr. So We study the robustness of SCILL w.r.t. thr by experiments on PC-MNIST with thr set as
5, 10, 15, 20 in SCILL-IRM. From the results shown in Table 1, the models are robust with different
thr = 10, 15, 20, though the model with thr = 5 is worse than others.

B.7 Label proportion of EI groups on MNLI

Figure 1 shows the label proportion of the two groups inferred by the EI algorithm in EIIL. It can be
seen that P(Y = 0|g0)/P(Y = 1|g0) ̸= P(Y = 0|g1)/P(Y = 1|g1). As a result, the label balance
criterion is violated.

B.8 Penalties

We experiment with 4 kinds of invariant learning penalties: IRM [3], REx [8], cMMD [10; 1], and
PGI [1].

We follow the notations in the main paper. The penalty of IRM is defined as

penaltyIRM := ∥∇wRg(w ◦ f)∥2

where Rg denotes the expected risk on group g, w is a constant scalar multiplier of 1.0 for each
output dimension.

With the same notations, the penalty in V-REx writes as follows.

penaltyREx := Var({Rg(f)}g∈G)

where Var(·) denotes the variance.

Different from IRM and V-REx which enhance the invariance of feature conditioned label distribu-
tion, cMMD and PGI are two penalties to enhance the invariance of the label conditioned feature
distribution across groups, i.e.

P(f(X)|Y, g) = P(f(X)|Y, g′),∀g, g′ ∈ G.
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Figure 2: The causal graph depicting different assumptions on the data generating process in existing
works (some are simplified). Shading indicates the variable is observed. Dotted arrow indicates
possible causal relation. The spurious feature is anti-causal or correlates with Y through E in (a) and
(b), confounded with the invariant feature in (c), and both anti-causal and confounded in (d).

The two penalties are shown to improve model’s out-of-distribution generalization performance when
used with EIIL in [1]. To show the availability of SCILL, we also experiments the two penalties with
SCIIL.

In cMMD, the penalty is defined as the summation of the estimated MMD distances between each
pair of conditional distributions, i.e.

penaltycMMD :=
∑

g,g′∈G

∑
y

M̂MD(f(gy), f(g
′
y))

=
∑

g,g′∈G

∑
y

∑
x∈gy,x′∈g′

y

K(f(x), f(x)) +K(f(x′), f(x′)) + 2K(f(x), f(x′))

where gy := g ∩ {Y = y}, K is a kernel function, which in our implementation is a mixture of 3
Gaussians with bandwidths [1, 5, 10], following [1]. We set f(x) as the logarithm of the model’s
output probability, as advised in [23].

With the same notations, in PGI, the penalty is defined as

penaltyPGI :=
∑
i

d

(
Ê

x∼Pg,y=i
[f(x)] , Ê

x′∼Pg′ ,y′=i
[f(x′)]

)

=
∑

g,g′∈G

∑
y

mean
x∈gy

[f(x)y] log
meanx′∈g′

y
[f(x′)y]

meanx∈gy [f(x)y]
.

Here f(x) is the probability estimation of the predictor, which follows [1]. f(·)y denotes the
component of f(·) on the dimension corresponding to class y.

C Extended Discussions

Assumptions in this paper. In Section 3, we stated our assumptions on the data generating process
as depicted by the causal graphs (a), (b) in Figure 1 of the main paper. In fact, our conclusions can
be further extended to causal structures shown in Figure 2 (a), (b). Compared with Figure 1 in the
main paper, Figure 2 (a) further includes the case when E is a child of both Xsp and Y , depicting the
case that Xsp and Y are subject to different selection mechanisms in different domains, as introduced
in [23]. Figure 2 (b) further includes 1) E is a child of both Xsp and Y ; 2) E is a confounder of Xsp

and Y . In all these cases, we have Xinv ⊥⊥ Xsp|Y . It is the only condition required in our proofs
for theorems and statements in this paper, except for SFC, which needs Y to be a backdoor variable
between Xsp and X .

The conditional independence condition Xinv ⊥⊥ Xsp|Y is an essential assumption in many related
works on solving spurious correlations [23; 5; 26; 20]. For example, it is required in the proof
of conditions of Theorem 4.2 in [23]. The nuisance-varying family defined in [20] satisfies that
p(x|xb, y) keeps invariant, which is equivalent to Xinv ⊥⊥ Xsp|Y . It would be an important direction
to find causal structures on which the assumption is not satisfied while group invariant learning can
still be effective. For example, for the causal structure in Figure 2 (c), group invariant learning may
still handy when combined with an additional information bottleneck penalty [2].
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The algorithm SCIIL. In this paper, the algorithm SCIIL is proposed as a possible but not
necessarily optimal solution to meet the two criteria for group-IL. As this paper focuses on analyzing
group invariant learning, comparing SCILL with other algorithms besides group-IL is beyond the
scope of this paper. However, it can be observed that SCILL has some advantages compared with
existing methods on solving spurious correlations.

Notably, the form of the objective of SCILL appears to be similar to those in two recent methods [16;
20]. They both contain a risk term reweighted by estimations of spurious correlations and an feature
invariance penalty. However, they are only applied for the case when spurious features can be
explicitly defined [20], and are also discrete as assumed in [16]. Also, their feature invariance penalty
is different from that in IL. Specifically, Makar et al. [16] divide samples into groups according to
their spurious feature, and define the pairwise MMD distance of the distributions of embeddings on
these groups as the penalty. It is equivalent to SCILL+cMMD when the spurious feature takes binary
values. [20] suppose the access of Xsp and use a parameterized penalty term which approximates the
mutual information I[(f(X), Y )|Xsp]. Instead, SCILL only assume the access of a reference model,
which fits for more general cases when Xsp is high dimensional or not predefined.

Compared with some other methods that exploiting a reference model [5; 14; 22; 18; 11; 26], the first
term in SCIIL resembles their targets where samples are reweighted according to the outputs of the
reference model. However, the IL penalty in SCIIL serves as an additional regularization. Results in
Section B.4 empirically show SCILL outperforms methods in [5; 22] with the same reference model
in out-of-distribution accuracy.

D Proofs

This section contains the following proofs: D.2 proof for the statement in Section 3 on the causal
graph; D.3 proof for Theorem 4.2; D.4 proof for the statement in Section 4.2 that SFC is sufficient
for f(X) to be invariant to the intervention on spurious features; D.5 proof for Theorem 4.4; D.6
proof for the statement in Section 4.3; D.7 proof for Proposition 4.5; and D.8 proof for Theorem 5.1.

Notations. In the following contents, we denote that (X,Y ) ∼ P(X × Y). The image set of Xsp,
Xinv is respectively denoted as B,S . X = r(Xsp, Xinv), where r is a bijective function. We denote
xsp, xinv as the corresponding values of Xsp, Xinv for a given value x ∈ X , i.e. x = r(xsp, xinv).
G denotes a set of sets in X × Y which satisfies ∪g∈Gg = X × Y . GY := {g ∩ {Y = y}}g∈G,y∈Y .
As f(x) = f(r(xsp, xinv)), for convenience we abbreviate f(x) = f(xsp, xinv).

D.1 Lemmas

We first prove the following lemmas.

Lemma D.1. If a set g ∈ X × Y can be formed by a set of sets {gi}i∈I ⊂ GY under set union, then
∀g′, g′′ ∈ G

P(f(X)|g′, Y = y) = P(f(X)|g′′, Y = y),∀y
induces ∀g′ ∈ G

P(f(X)|g, Y = y) = P(f(X)|g′, Y = y),∀y

Proof. We only need to prove the case when for any y, ∃g1, g2 ∈ GY , g ∩ {Y = y} = g1 ∪ g2. As

P(f(X)|g, Y = y) = P(f(X)|g1, Y = y)
P(g1, Y = y)

P(g, Y = y)
) + P(f(X)|g2, Y = y)

P(g2, Y = y)

P(g, Y = y)
)

By P(f(X)|g1, Y = y) = P(f(X)|g2, Y = y), P(g, Y = y) = P(g1, Y = y) + P(g2, Y = y), we
have P(f(X)|g, Y = y) = P(f(X)|g1, Y = y) = P(f(X)|g2, Y = y).

Lemma D.2. Suppose the following conditions are satisfied:
(a) P(Y = y|g)/P(Y = y′|g) = P(Y = y|g′)/P(Y = y′|g′),∀g, g′ ∈ G and ∀y, y′ ∈ Y satisfying
P(Y = y|g),P(Y = y′|g),P(Y = y|g′),P(Y = y′|g′) ̸= 0.
(b) G only depends on Xsp, and ∀g ∈ G, ∃cg,y s.t. P[Xsp = xsp, Y = y] = cg,y,∀x ∈ g, y ∈ Y .
(c) f(X) ⊥⊥ Xsp|g, and f(X) differs with different P(Y |Xinv) given g.
Then EIC induces SFC.
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Proof. Denote Sb
a := {s ∈ S|f(r(s, b)) = a}, Bg := {b ∈ B|∃s, r(s, b) ∈ g}. As ∀b, b′ ∈

Bb,P(Xsp = b, Y = y) = P(Xsp = b′, Y = y),∀y, we have P(Xsp = b) = P(Xsp = b′). Then
P(Y = y|Xsp = b) = P(Y = y|Xsp = b′), ∀y. As

P(Y = y|g) =
∑
b∈Bg

P(Y = y|Xsp = b)P(Xsp = b|g) = P(Y = y|Xsp = b).

Suppose ∀y, b,P(Y = y|Xsp = b) ̸= 0. Then we have ∀b, b′ ∈ B,

P(Y = y|Xsp = b) = P(Y = y|Xsp = b′) = P(Y = y),∀y.
Now

P(Y = y|f(X) = a, g) = P(Y = y| ∪b∈Bg {Xinv ∈ Sb
a, Xsp = b})

=

∑
b∈Bg

P(Y = y,Xinv ∈ Sb
a, Xsp = b)∑

b∈Bg
P(Xinv ∈ Sb

a, Xsp = b)
.

As Xinv ⊥⊥ Xsp|Y , we have

P(Y = y,Xinv ∈ Sb
a, Xsp = b) = P(Xinv ∈ Sb

a, Xsp = b|Y = y)P(Y = y)

= P(Xinv ∈ Sb
a|Y = y)P(Xsp = b, Y = y)

As a result,

P(Y = y|f(X) = a, g) =

∑
b∈Bg

P(Xinv ∈ Sb
a|Y = y)P(Xsp = b, Y = y)∑

b∈Bg
P(Xinv ∈ Sb

a, Xsp = b)

=
P(Y = y,Xsp = bg)

∑
b∈Bg

P(Xinv ∈ Sb
a|Y = y)∑

b∈Bg
P(Xinv ∈ Sb

a, Xsp = b)

=
P(Y = y,Xsp = bg)P(Xinv ∈ Sg

a |Y = y)∑
b∈Bg

P(Xinv ∈ Sb
a, Xsp = b)

where bg is any element in Bg, Sg
a := ∪b∈Bg

Sb
a. Note that condition (c) induces Sb

a = Sb′

a = Sg
a ,

∀b, b′ ∈ g, and the condition (b) induces Xsp ⊥⊥ Xinv|g. We have

P(Y = y|f(X) = a, g) =
P(Y = y,Xsp = bg)P(Xinv ∈ Sg

a |Y = y)

P(Xinv ∈ Sg
a)P(g)

=
P(Y = y,Xsp = bg)P(Y = y|Xinv ∈ Sg

a)

P(Y = y)P(g)

=
P(Xsp = bg)

P(g)
P(Y = y|Xinv ∈ Sg

a)

We have
P(Xsp = bg)

P(g)
=

P(Xsp = bg′)

P(g′)
,P(Y = y|Xinv ∈ Sg

a) = P(Y = y|Xinv ∈ Sg′

a )

As f(X) ⊥⊥ Xsp|g, we have Sb
a = Sg

a , ∀b ∈ g. Then we have ∀b, b′ ∈ B, P(Y = y|Xinv ∈ Sb
a) =

P(Y = y|Xinv ∈ Sb′

a ). As P(Y |Xinv = s) is constant, ∀s ∈ Sb
a, we have f(X) ⊥⊥ Xsp. As a result

Sb
a = Sa. As

P(f(X) = a|g, Y = y) =
∑
b

P(Xinv ∈ Sb
a|Xsp = b, Y = y)P(Xsp = b|g, Y = y)

=
P(Xsp = bg)

P(g)
P(Xinv ∈ Sa|Y = y)

We have
P(f(X) = a|g, Y = y) = P(f(X) = a|g′, Y = y).

And P(f(X) = a|Xsp = b, Y = y) = P(Xinv ∈ Sa|Y = y) = P(f(X) = a|Xsp = b′, Y = y),
i.e. SFC is satisfied.
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D.2 Proof for the statement in Section 3

The statement in Section 3. When the causal model of the data generating process follows the
causal graph in Figure 1(d) in the main paper, whether the invariant mechanism holds on each group
is indeterminate without additional assumptions on the mechanisms between Xsp and Xinv .

Proof. Consider P(Y |Xsp, Xinv), we have

P(Y |Xsp, Xinv) =
P(Xsp|Y,Xinv)P(Y |Xinv)

P(Xsp|Xinv)
∝ P(Xsp|Y,Xinv)P(Y |Xinv)

It shows that the relation between P(Y |Xsp, Xinv) and P(Y |Xinv) is affected by P(Xsp|Y,Xinv).
However,

P(Xsp|Y,Xinv) =
∑

e∈Eall

P(Xsp|Y,E)P(E|Y,Xinv)

As the mechanisms between Y , E and Xsp, and between E and Xinv are unknown, so does
P(Xsp|Y,Xinv). As a result, the relation between P(Y |Xinv, Xsp) and P(Y |Xinv) is indeterminate.
As g ∈ G is an event in σ(Xsp, Y ), we have the relation between P(Y |Xinv, g) and P(Y |Xinv) is
indeterminate.

D.3 Proof for Theorem 4.2

Theorem 4.2 in the main paper states as follows.
Theorem D.3. Suppose the falsity exposure criterion is violated, i.e. ∃h satisfies P(Y |h(Xsp), g) =
P(Y |h(Xsp), g

′) ̸= P(Y ),∀g, g′ ∈ G. Then the optimal solution of group-IL is f(X) =
P[Y |Xinv, h(Xsp)], which fails to generalize when P(Y |Xsp) shifts.

Proof. We first prove that Φ(X) = (Xinv, h(Xsp)) satisfies EIC. As Xinv and Xsp are conditionally
independent given Y , and groups are only defined by Xsp and Y , we have ∀g, g′∈G,

P[Y |Xinv, h(Xsp), g] =
P[Xinv, h(Xsp), g|Y ]P(Y )

P[Xinv, h(Xsp), g]
=

P[Xinv|Y ]P[h(Xsp), g|Y ]P(Y )

P[Xinv, h(Xsp)]

=
P[Y,Xinv]P[Y |h(Xsp), g]P[h(Xsp), g]

P[Xinv, h(Xsp), g]P(Y )
∝ P[Y |Xinv]P[Y |h(Xsp), g]

P(Y )

As a result, P[Y |Xinv, h(Xsp), g] = P[Y |Xinv, h(Xsp), g
′] = P[Y |Xinv, h(Xsp)], and

P[Y |Xinv, h(Xsp)] ̸= P[Y |Xinv]. Without the loss of generality, we suppose any other h′ which
satisfies P(Y |h(Xsp), g) = P(Y |h(Xsp), g

′) ̸= P(Y ),∀g, g′ ∈ G is a function of h, i.e. ∃l s.t.
h′(x) = l(h(x)). In the objective function of group-IL, the optimal predictor is optimized with the
cross-entropy loss. By the Jensen-Inequality, among all the functions of Φ(X), P[Y |Xinv, h(Xsp)]
minimizes the loss. When P(Y |Xsp) encounters arbitrary changes, so does P(Y |h(Xsp)). As
P[Y |Xinv, h(Xsp)] is propositional to P(Y |h(Xsp)), it can also change in a new domain.

D.4 Proof for the sufficiency of SFC

The statement in Section 4.2. SFC is a sufficient condition for a function f(X) to be invariant to
the intervention [19] on Xsp.

Proof. Specifically, the condition "f(X) is invariant to the intervention on Xsp" writes as

P(f(X)|do(Xsp= b)) = P(f(X)|do(Xsp= b′)),∀b, b′ ∈ B.
Equivalently, we can say Xsp has no causal effects on f(X). We consider the causal structures (a)
and (b) shown in Figure 2. In both graphs, Y is a backdoor variable from Xsp to X , as it blocks all
the backdoor path from Xsp to X with an arrow into Xsp, and it is not a child of Xsp (note that, in
(b), we assume the arrows between (E, Y ) points to Y only when E is the con-founder of Y and
Xsp). Then by the Back-door criterion [19],

P(X|do(Xsp= b))=
∑
y

P(X|Xsp= b, Y = y)P(Y = y).
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As a result, for any function f ,

P(f(X)|do(Xsp = b)) =
∑
y

P(f(X)|Xsp = b, Y = y)P(Y = y).

It is straightforward that when

P(f(X)|Xsp = b, Y ) = P(f(X)|Xsp = b′, Y ),∀b, b′ ∈ B, (SFC)

we have ∀b, b′ ∈ B,

P(f(X)|do(Xsp= b)) =
∑
y

P(f(X)|Xsp = b′, Y = y)P(Y = y) = P(f(X)|do(Xsp= b′)).

That ends our proof.

D.5 Proof for Theorem 4.4

We repeat Theorem 4.4 here.

Theorem D.4. With a set of groups G inferred by (Xsp, Y ), if the label balance criterion is violated,
functions satisfying EIC can not satisfy SFC.

Proof. Suppose a function f satisfies EIC, i.e.

P(Y |f(X) = a, g) = P(Y |f(X) = a, g′),∀g, g′ ∈ G. (EIC)

where G is defined by some function hG of (Xsp, Y ), i.e. ∀g ∈ G, g := {(x, y)|hG(xsp, y) ∈ Sg} for
some set Sg . Note that here we do not distinguish whether f is the predictor or the feature extractor
Φ, because the two has no clear theoretical distinction.

Recall that SFC is stated as

P(f(X)|Xsp = b, Y = y) = P(f(X)|Xsp = b′, Y = y),∀b, b′ ∈ B. (SFC)

Suppose f also satisfies SFC. Define SB
g := {b ∈ B|∃y, hG(b, y) ∈ Sg}, we have

P(f(X) = a|g, Y = y) = P(f(X) = a|Xsp ∈ SB
g , Y = y) = P(f(X) = a|Xsp = b, Y = y),

we have for ∀y ∈ Y, g, g′ ∈ G, satisfying P(g, Y = y) ̸= 0,P(g′, Y = y) ̸= 0,

P(f(X) = a|g, Y = y) = P(f(X) = a|g′, Y = y),∀y

by EIC, we have
P(Y = y|g)
P(Y = y|g′)

=
P(f(X) = a|g)
P(f(X) = a|g′)

,∀y.

Then for another y′ ∈ Y satisfying P(g, Y = y′) ̸= 0,P(g′, Y = y′) ̸= 0,

P(Y = y|g)
P(Y = y′|g)

=
P(Y = y|g′)
P(Y = y′|g′)

.

As a result, if f satisfies SFC, the above condition must be satisfied.

D.6 Proof for the statement in Section 4.3

The statement in Section 4.3. On both colored-MNIST [3] and coloured-MNIST [1], Y has a
uniform distribution, and the spurious correlation has the same ratio for any spurious features, e.g.
P(Y = 0|color = green) = P(Y = 1|color = red)) on colored-MNIST. It can be proved that in this
case the majority/minority groups satisfy both criteria.

Proof. Denote

P(Y = 0|color = green) = P(Y = 1|color = red)) = p > 0.5

10



As P(Y = 0) = P(Y = 1), we have

P(color|Y ) =
P(Y |color)P(color)

P(Y )
∝ P(Y |color)

then P(color = green|Y = 0) = P(color = red|Y = 1) = p. The majority group gmaj , as proved in
Proposition 1 in [6], consists of {color = green, Y = 0} and {color = red, Y = 1}. As a result,

P(Y = 0|gmaj)

P(Y = 1|gmaj)
=

P(color = green, Y = 0)

P(color = red, Y = 1)
= 1

Similarly, for the minority group gmin,

P(Y = 0|gmaj)

P(Y = 1|gmaj)
=

P(color = red, Y = 0)

P(color = green, Y = 1)
=

1− p

1− p
= 1

The label-balance criterion is thus satisfied. As any function h of the color feature satisfies P(Y =
0|h, gmaj) = P(Y = 0|gmaj) = P(Y = 0), the falsity exposure criterion is satisfied.

D.7 Proof for Proposition 4.5

The proposition states as follows.

Proposition D.5. Suppose we have (X,Y ) ∼ P(X,Y ). Y takes value in {0, 1}. X is formed with
spurious feature variables Xsp = (B0, B1), and invariant feature variable S, i.e. X = r(B0, B1, S),
for some injective function r. B0 and B1 are both binary variables, which take values in {b00, b10} and
{b01, b11} respectively. B0, B1 and S are conditionally independent given Y . Denote P(Y = j|Bi =

bji ) = pi,∀j = 0, 1. Suppose p0 > p1. Then we have 1) the majority/minority split emaj , emin

violates falsity exposure criterion. 2) the optimal classifier under invariant learning objectives
depends on B1.

Proof. Without the loss of generality, we suppose P(Y = 0) = P(Y = 1). Denote Bi takes value in
{b0i , b1i }. We have P(Y = j|Bi = bji ) = pi, i = 0, 1, j = 0, 1. As Bi are conditionally independent
given Y , we have P(Y |B0, B1) ∝ P(Y |B1)P(Y |B0). As p0 > p1, we have

P(Y = 0|B0 = b00, B1 = b11) > P(Y = 1|B0 = b00, B1 = b11)

P(Y = 1|B0 = b10, B1 = b01) > P(Y = 0|B0 = b00, B1 = b11)

The majority group emaj then consists of the following data sets:

{B0 = b00, B1 = b01, Y = 0}, {B0 = b00, B1 = b11, Y = 0},
{B0 = b10, B1 = b01, Y = 1}, {B0 = b10, B1 = b11, Y = 1}

In the majority set,

P(Y = 0|B1 = b01, emaj) =
P(Y = 0, B1 = b01, B0 = b00)

P(Y = 1, B1 = b01, B0 = b11)

∝ P(Y = 0, B1 = b01)

P(Y = 1, B1 = b11)
=

P(Y = 0|B1 = b01)

P(Y = 1|B1 = b11)

As a result, P(Y = 0|B1 = b01, emaj) = P(Y = 0|B1 = b01). Similarly,

P(Y = 1|B1 = b11, emaj) =
P(Y = 1, B1 = b11, B0 = b10)

P(Y = 0, B1 = b01, B0 = b00)
∝ P(Y = 0|B1 = b11)

P(Y = 0|B1 = b11)

As a result P(Y = 1|B1 = b11, emaj) = P(Y = 1|B1 = b11). Then we have P(Y |B1, emaj) =
P(Y |B1, emin), which means B1 satisfies EIC. As S is invariant, according to the proof of Theorem.
4.2 in D.3, we have f∗ = P(Y |S,B1).
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D.8 Proof for Theorem 5.1

We repeat the theorem as follows.
Theorem D.6. If G satisfies f∗

r (X) ⊥⊥ Y |g, ∀g ∈ G, where f∗
r : X → Y is spurious-only, i.e.

σ(Xsp)-measurable, and minimizes the prediction loss Lr
ce = E[

∑
y P(Y = y|X) log fr(X)y], the

optimal model minimizing the following objective satisfies SFC.

L(f) :=
∑
g∈G

E[wg(Y )Lg(f(X), Y )] + λ · penalty({Sg(f)}g∈G)

=:
∑
g∈G

R̃g(f) + λ · penalty({Sg(f)}g∈G)

where R̃g(f) is defined as

R̃g(f) = Ex,y∈g ω
g(y)Lce(y, f(X)), ωg(y) := P(Y = y)/P(Y = y|g) (1)

Proof. For convenience, in the following we denote wg
y := ωg(y), x(b, s) := r(Xsp = b,Xinv = s),

x = r(Xsp = xb, Xinv = xs). We use p with lower-cased letters to denote the probability of the
event that the corresponding random variable denoted by the upper-cased letter equals that value, e.g.
p(x, y) := P(X = x, Y = y), p(x|g) = P(X = x|g). f(·)y denotes the component of f(·) on the
dimension corresponding to class y.

Denote fr as the reference model, which satisfies fr(x) = l(xb), where l is a classifier l : B → Y .
Denote θr as the parameter of fr, the training loss of fr is defined as

Lce(fr, θr) =
∑
x

p(x)
∑
y

p(y|x) log fr(x, θr)y

=
∑
xb,xs

p(xb, xs)
∑
y

p(y|xb, xs) log l(xb, θr)y

=
∑
xb,y

p(y, xb) log l(xb, θr)y

The above equation induces that for f∗
r := fr(x, θ

∗), where θ∗ := argminLce(fr, θ), f∗
r (x) =

f∗
r (x

′) if and only if p(y, xb) = p(y, xb
′). If we define ga := {x|f∗

r (x) = a}, we have P(Xsp =
b|ga) = P(Xsp = b′|ga),∀b, b′ ∈ B, and p(y|ga) = ay. We denote the set of strata of fr as Gfr .
Now for any g ∈ Gfr ,

R̃g(f) =
∑
x

p(x|g)
∑
y

wg
yp(y|x, g) log(f(x)y)

=
∑
b,s

P(Xinv = s,Xsp = b|g)
∑
y

wg
yP(y|Xinv = s,Xsp = b, g) log(f(x(b, s))y)

By the conditional independence of Xinv and Xsp given Y ,
P(Xinv = s,Xsp = b|Y = y) = P(Xinv = s|Y = y)P(Xsp = b|Y = y) (2)

As e is a function of Xsp, Y , we have
P(Xinv = s,Xsp = b, g|Y = y) = P(Xinv = s|Y = y)P(Xsp = b, g|Y = y) (3)

By the above, we have

R̃g(f) =
∑
b,s

P(Xinv = s,Xsp = b|g)
∑
y

wg
yP(Y = y|Xinv = s,Xsp = b, g) log(f(x(b, s))y)

=
∑
b,s

P(Xinv = s,Xsp = b|g)
∑
y

wg
y

P(Y = y,Xinv = s,Xsp = b, g)

P(Xinv = s,Xsp = b, g)
log(f(x(b, s))y)

=
∑
b,s

1

P(g)
∑
y

wg
yP(Xinv = s,Xsp = b, g|Y = y)p(y) log(f(x(b, s))y)

=
∑
b,s

1

P(g)
∑
y

wg
yP(Xinv = s|Y = y)P(Xsp = b, g, Y = y) log(f(x(b, s))y)
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By the definition of g, we have

P(Y = y|Xsp = b, g) = ay (4)

So we have

R̃g(f) =
∑
b,s

1

P(g)
∑
y

wg
yayP(Xinv = s|Y = y)P(Xsp = b, g) log(f(x(b, s))y)

=
∑
b

P(Xsp = b|g)
∑
y

∑
s

P(Xinv = s|Y = y) log(f(x(b, s))y)

As P(Xsp = b|g) is uniform, we have R̃g(f) ∝
∑

y

∑
b∈g,s P(Xinv = s|y) log(fy(x(b, s))). As a

result
Lce(f) =

∑
g

Cgp(g)
∑
y

∑
x∈g

P(xinv|Y = y) log(f(x)y) (5)

where Cg is a constant depend on g. This equation indicates that the loss on f(·)y only depends on g
and P(Xinv = s|Y = y). By imposing invariance constraints on P(Y |f, g), by Lemma D.2, we have
SFC is satisfied, which ends the proof.
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