
A Computational Complexity

To approximate the general optimal transport (OT) distance between two discrete distributions of size
n, the time complexity bound scales as n2 log(n)/ε2 to reach ε-accuracy with Sinkhorn’s algorithm,
as demonstrated by Chizat et al. [49], Altschuler et al. [50], and Dvurechensky et al. [51]. In this paper,
we set the maximum iteration number as Itermax = 200 in Sinkhorn algorithm for all experiments,
which is typically enough for Sinkhorn algorithm to converge. We compare the computational cost
of these two algorithms at the testing stage, on a Pentium PC with 3.7-GHz CPU and 64 GB RAM.
Notably, similar to Free-Lunch, our proposed model is built on top of an arbitrary pretrained feature
extractor and can avoid costly fine-tuning. Thus, we compare the computational complexity of two
algorithms at the testing stage in Table 5. Although our model has a higher computational cost (our
limitation) than Free-Lunch for introducing the hierarchical OT, it produces better performance with
an acceptable cost. Below, we develop a deeper analysis.

For the high-level OT, we approximate the OT distance between the discrete distribution P and
distribution Q, where the former has the size of B for B base classes, and the latter has the size
of N ∗K for the N -way-K-shot task. Now the time complexity bound scales as O(max(B,N ∗
K)2 log(max(B,N ∗K)))/ε2 to reach ε-accuracy with Sinkhorn’s algorithm. For the low-level OT,
we approximate the OT distance between the distribution Rb from the bth base class with Jb samples
and distribution Q, where the former has the size of Jb and the latter has the size of N ∗K for the
N -way-K-shot task. Notably, when the number of samples in the bth base class is especially much,
we can use the sub-sampling to build the empirical distribution Rb and then solve the low-level OT
problem for saving the computational complexity. For high-level OT, B is usually larger than N ∗K
and its time complexity is O(B2 log(B)/ε2. For low-level OT, the Jb is generally larger than N ∗K
and thus the time complexity of low-level OT bound scales as O(Jb

2 log(Jb)/ε
2. Here, the number

B of base classes of miniImageNet, CIFAR-FS, CUB, and tieredImageNet is 64, 64, 100, and 351,
respectively. Besides, the average number Jb of images in each base class of miniImageNet, CIFAR-
FS, CUB, and tieredImageNet is 600, 600, 59, and 1281, respectively. As we can see, tieredImageNet
owns the largest B and Jb, whose running time is 9.31s for 5way1shot and 41.12s for 5way5shot.
Therefore, our model can produce better performance with an acceptable overhead on large-scale
dataset with larger numbers of classes and images. Notably, our model avoids the costly fine-tuning
for backbone and it only takes time at the testing stage.

B Additional results

Table 5: Comparison of computational cost when testing a novel task, where s denotes seconds.

Dataset Free-Lunch[14] Our Hierarchical OT
5way1shot 5way5shot 5way1shot 5way5shot

miniImageNet 2.34s 8.41s 2.91s 10.06s
tieredImageNet 5.76s 24.61s 9.31 41.12s

CUB 2.11s 8.24s 2.60s 11.12s
CIFAR-FS 2.22s 8.52s 3.06s 9.72s

B.1 Summary of the test results

To explore how our proposed model improves its baseline (Free-Lunch), we perform the experiments
on 10,000 tasks from CIFAR-FS dataset using these two distribution calibration models, where the
statistics about the classification results are shown in Fig. 4. We can see that our proposed model
can effectively reduce the number of tasks with classification rates of less than 60%. To be our
best knowledge, those novel tasks performed poorly by few-shot learning methods usually have the
relatively large domain differences with all base classes, where the importance of each base class
for novel sample might be similar. Different from Free-lunch, which only selects topw base classes
to estimate the distribution of novel sample and might omit some relevant information, we utilizes
all base classes by introducing the adaptive weight information over all base classes for each novel
sample. It indicates that our proposed H-OT can effectively enhance distribution calibration method
when there is a big domain difference between base and novel classes.
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Figure 4: Statistics of the number of tasks among 10,000 tasks in total by their test accuracy.

B.2 Ablation study about the number of retrieved base classes

To explore how the classification performance of distribution calibration models is influenced by
the number of retrieved base classes, we compare Free-Lunch, our high-level OT+Euc, and our
H-OT in a 5-way-1-shot classification setting for CUB, as summarized in Tab. 6. We consider 5
different settings to select the base classes, including top-1, top-2, top-5, top-10, and all. We find
that increasing the number of retrieved base classes results in a sharp drop in performance in terms
of Free-lunch, but gradually enhances the performance of our proposed methods. We attribute this
to the learning of the adaptive weight for each base class in our method, which is more flexible and
effective than Free-lunch.

Table 6: Ablation study with number of retrieved base class statistics (5way1shot on CUB).
Models top-1 top-2 top-5 top-10 all
Free-lunch 78.37 ± 0.75 79.56 ± 0.87 78.97 ±0.80 78.49±0.91 69.14 ±0.88
High-level OT+Euc 80.08± 0.24 80.11 ± 0.23 80.15 ± 0.23 80.20±0.26 80.29 ± 0.25
Our H-OT 80.77 ±0.33 80.79 ± 0.30 80.87± 0.32 81.05 ±0.32 81.23 ± 0.35

B.3 Visualization of generated features

To qualitatively show the effectiveness of our proposed methods, we show the t-SNE [52] represen-
tation of generated features by Free-Lunch and our proposed method in Fig. 5 and Fig. 6 given a
same 5-way-1-shot task. We find that both our proposed model and Free-Lunch can generate more
representative comprehensive features for each novel data. Besides, the generated features by ours
are more discriminative than those by Free-Lunch. The phenomenon proves the benefits of learning
the adaptive weight over base classes for novel sample.

B.4 Learned weights on the toy dataset.

To intuitively reveal whether our proposed model can address the limitations of Free-Lunch and learn
effective weights to measure base classes, we design a synthetic dataset with the following procedure.
1. We sample B base classes from CIFAR-FS to build the base dataset. For easy observation, we
set B = 20 and represent µb ∈ RV as the mean of the bth base class, and obtain the mean matrix
U ∈ RB×V .
2. For the 5way1shot task, i.e., N = 5, K = 1, we use the gamma distribution with shape 0.8 and
scale 1 to sample N vectors and normalize each vector. Now we get a weight matrix W ∈ RN×B

≥0 ,
where wn ∈ ∆B is the probability simplex of RB .
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Figure 5: t-SNE projection of the generated features
of Free-Lunch, where different colors represent differ-
ent classes, the starts are the support set features and
the small diamond are the generated features from the
calibrated distributions, respectively.

Figure 6: t-SNE projection of the generated features
of our H-OT, where different colors represent different
classes, the starts are the support set features and the
small diamond are the generated features from the
calibrated distributions, respectively.

3. Finally, we synthesize N novel samples by weighting the mean matrix U with W, i.e., X =
UW,xn ∈ RV .

Given the base classes and 5way1shot task built from the generated novel samples, we adopt Free-
Lunch and our high-level OT to learn the weight matrix, respectively, where the latter specifies the
cost function with Euclidean distance between the novel sample and mean µb for a fair comparison.
As shown in Fig. 7 in our revised version, we visualize the learned weights of different methods for a
selected novel sample. Clearly, Free-Lunch does a hard selection of the top-2 base classes for the
novel sample based on the Euclidean distance. However, the weights of the top-2 base classes are
equal and the other base classes are ignored although some of them are also closely related to this
novel sample. We observe that the weights based on our high-level OT can fit the ground-truth well.
It indicates that our method can learn effective transport plan to weight the base classes for the novel
sample.

B.5 Learned transport plan matrix and adaptive cost based on Hierarchical OT

One of the benefits of developing the hierarchical optimal transport for the adaptive distribution
calibration is the enhancement of model interpretability. To further examine whether our proposed
H-OT can capture the correlations between the base classes and novel samples, in Fig. 8, we visualize
the adaptive cost learned from low-level OT and the transport plan learned from the high-level OT
given the adaptive cost on CIFAR-FS for 5way1shot task. It is clear that the adaptive cost function
can effectively reflect the distance between base classes and novel samples. For example, the novel
sample from class “baby” is closely related with the base classes, such as “house” , “couch”, “castle”.
And the novel sample from class “plain” is closely related with “elephant”, “dinosaur”, “kangaroo”,
“bear”, “lion”, “tiger”, “wolf” and others. Benefiting from the cost function, the transport plan learned
from the high-level OT can measure the importance of each base class for each novel sample in a
more adaptive way. We note that the transport probability between a base class and a novel class
is usually larger if their cost is smaller (i.e., more relevant). Therefore, it is reasonable to view the
learned transport probability matrix as the adaptive weight matrix, which can reflect the different
contributions of the base classes. These observations suggest that our proposed H-OT can produce
adaptive cost function and the adaptive weight matrix, providing an elegant and principled way to
transfer the statistics from base classes to the novel classes.
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Figure 7: Examples of learned weights of different methods for two synthetic novel samples, respectively.

B.6 Learned transport plan based on low-level OT

Taking the 5way1shot task on CIFAR-FS as an example, we further explore the per-example weights
learned by our low-level OT. Specifically, we select the bth base class and the nth novel sample,
and we visualize the learned Jb-dimensional weight vector {M b

j,n}
Jb
j=1 in Fig. 9, where Jb denotes

the number of samples within the bth base class. As expected, M b
j,n, which tells us the transport

weight between the nth novel sample and jth sample in the bth base class, is very different among Jb
examples within the same base class. That is to say, each sample within the bth base class contributes
to the nth novel class differently. Different from Free-lunch that measures the distance between novel
sample n and base class b by only characterizing the base class as the unweighted average over all its
samples, we use the learned weight vector to adaptively compute the distance between novel sample
n and base class b.

B.7 Learned transport plan on the cross-domain setting

To further explore the learned transport plan when there is a significant shift between base and novel
classes, in Fig. 10, we consider in-domain setting (CUB, top) and cross-domain setting (CIFAR-FS
→ CUB, bottom), both of which adopt same 5way1shot novel task from CUB. Compared with the
in-domain scenario, we find that the transport plan learned in the cross-domain setting has a smaller
magnitude of change. The reason might be that the distance between a base class and a novel class
under the cross-domain settings is generally larger than that of the in-domain setting, making the
importance of each base class for the novel sample more similar and reducing the gap between
weights for base classes.
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Figure 8: Learned cost between the base classes and novel samples and the resultant transport
probability matrix, where we randomly select a novel task (5way1shot) from CIFAR-FS. The lighter
the color is, the smaller the value is.
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Figure 9: Learned per-example weights within base class Laysan Albatross, where the novel sample in the left
figure is from the European Goldfinch class and novel sample in the right figure is from the Chipping Sparrow
class.

Figure 10: Learned transport plan for same 5way1shot task on CUB (only a novel class is presented for
simplify). The base classes in top figure (in-domain) and bottom figure (cross-domain) are from CUB and
CIFAR-FS, respectively.
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