
A Algorithm Details

Algorithm 2 summarizes the overall framework of M2TD3. The training is stalled if the size of
the replay buffer is smaller than the minibatch size, i.e., if |B| < M . Algorithms 3 and 4 show the
critic network update and the actor network and uncertainty parameter sampler update, respectively.
Although we write the gradient-based update in the form of a mini-batch stochastic gradient update
for simplicity, we employ an adaptive approach such as Adam [16].

Algorithm 2 M2TD3 (Framework)
1: # initialization
2: Initialize uncertainty parameters ω̂i ∈ U(Ω) for i = 1, . . . , N
3: Initialize policy parameter θ and critic parameters ϕ1, ϕ2 with random values
4: Initialize target network parameters θ′ ← θ, ϕ′

1 ← ϕ1, ϕ′
2 ← ϕ2

5: Initialize frequency parameter p1, . . . , pN = 1/N
6: Initialize replay buffer B = ∅
7: # training loop
8: Draw uncertainty parameter ω ∼ α0

9: Observe initial state s ∼ p0ω
10: for t = 1 to Tmax do
11: # interaction
12: Select action a ∼ βt(s)
13: Interact withMω with a, observe next state s′, immediate reward r and termination flag h
14: Store transition tuple (s, a, r, s′, h, ω) in B
15: if h = 1 then
16: Reset uncertainty parameter ω ∼ αt

17: Observe initial state s ∼ p0ω
18: else
19: Update current state s← s′

20: end if
21: # learning
22: Sample mini-batch {(si, ai, ri, s′i, hi, ωi)} of M transitions uniform-randomly from B
23: Perform Algorithm 3 for critic network update
24: if mod(t, Tfreq) = 0 then
25: Perform Algorithm 4 for actor network update and uncertainty parameter sampler update
26: Update target networks analogously to TD3
27: end if
28: end for

Algorithm 3 Critic Update

1: for i = 1, . . . ,M do
2: ãi ← µθ′(s′i) + ϵa, ϵa ∼ Πa(N (0, Σ̃a))

3: ω̃′
i ← ωi + ϵω , ϵω ∼ Πω(N (0, Σ̃ω))

4: yi ← ri +min{Qϕ′
1
(s′i, ãi, ω̃i), Qϕ′

2
(s′i, ãi, ω̃i)}

5: end for
6: for j = 1, 2 do
7: ϕj ← ϕj − λϕ∇ϕj

1
M

∑M
i=1(yi −Qϕj

(si, ai, ωi))
2

8: end for

We maintain the frequency pk of each uncertainty parameter ω̂k being the worst one among
ω̂1, . . . , ω̂N in Algorithm 4. This is used in two ways: criteria for the refreshing strategy of ω̂k

in Algorithm 4; and mixture weights for the uncertainty parameter sampler α. The update of pk
follows the exponential moving average with the momentum (1/Tlast), where Tlast is the number of
steps spent in the last episode (Tlast is set to 1000 for the first episode). The reason behind this design
choice is as follows. The short episode is a meaning that a bad uncertainty parameter ω is used in the
last episode. Because the uncertainty parameter ω used in the interaction is sampled from α, which
is a gaussian mixture with components centered at ω̂1, . . . , ω̂k, it implies that they include a bad
uncertainty parameter as well. Then, there is a high chance that this uncertainty parameter is selected
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Algorithm 4 Actor Update and Uncertainty Parameter Sampler Update
1: # maximin update
2: k′ = argmink

1
M

∑M
i=1 Qϕ1(si, µθ(si), ω̂k)

3: θ ← θ + λθ∇θ
1
M

∑M
i=1 Qϕ1(si, µθ(si), ω̂k′)

4: ω̂k′ ← ω̂k′ − λω∇ω̂k′
1
M

∑M
i=1 Qϕ1(si, µθ(si), ω̂k′)

5: # uncertainty parameter sampler update with refreshing strategy
6: for k = 1, . . . , N do
7: ω̂k ∼ U(Ω) if dω(ω̂k, ω̂ℓ) ⩽ dthre for some ℓ ̸= k
8: ω̂k ∼ U(Ω) if pk ⩽ pthre
9: if ω̂k is refreshed then

10: pk ← 1/N
11: else
12: pk ← (1− 1/Tlast)pk + (1/Tlast)I{k = k′}
13: end if
14: end for
15: pk ← pk/

∑n
ℓ=1 pℓ for all k = 1, . . . , N

as the worst uncertainty parameter ω̂k′ in Algorithm 4. By setting a greater momentum (1/Tlast), we
can accelerate the approach of pk to I{k = k′}, which is 1 if k = k′ and 0 otherwise. With this fast
update of pk, we expect two consequences. First, there are increased chances to sample ω around
the worst ω̂k′ . Second, there are increased chances to refresh the non-worst uncertainty parameters,
which leads to more exploration of the worst uncertainty parameter search. Preliminary experiments
have confirmed that this momentum setting leads to a better worst-case performance than a constant
momentum.

Our implementation is publicly available (https://github.com/akimotolab/M2TD3).

B Soft-Min Variant: SoftM2TD3

In theory, M2TD3 can obtain a policy that exhibits a better worst-case performance than a policy
obtained by DR as DR does not explicitly maximize the worst-case performance. However, we
empirically observe that DR sometimes achieves a better worst-case performance than M2TD3 on
senarios where the performance does not change significantly over the uncertainty set Ω (Table 1).
We conjecture that this is because the difficulty in the max-min optimization of M2TD3 compared to
the optimization of the expectation in DR.

To mitigate this issue, we propose a variant of M2TD3, called SoftM2TD3. The objective of the
update of the policy parameter θ is replaced with the following soft-min version:

J̃t(θ) =

N∑
k=1

wk

[
1

M

M∑
i=1

Qϕt
(si, µθ(s), ω̂k)

]
, (8)

where wk is the weight for uncertainty parameter ω̂k. A greater weight value should be assigned to
ω̂k with smaller Q-values. We used the frequency pk of ω̂k as the worst-case during the actor update,
i.e., wk = pk. This update is close to M2TD3 if p = (p1, . . . , pN ) is close to a one-hot vector and is
close to DR if p1 ≈ · · · ≈ pN , which is the case at the beginning of the training.

The objective function of SoftM2TD3 is considered an approximation of the objective function of
M2TD3. The difference between M2TD3 and SoftM2TD3 is in the optimization process. Because
the objective function of SoftM2TD3 is closer to that of DR, we expect that the optimization in
SoftM2TD3 is more efficient than M2TD3, where the effect of the accuracy of the estimation of the
worst-case uncertainty parameters is greater than SoftM2TD3.

C Experiment Details

Table 4 lists the senario we used in our experiments. These senarios are created by setting 1 to 3
constants in the original MuJoCo environment to the uncertainty parameters. The uncertainty set
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Table 4: List of senarios used in the experiments

Environment Uncertainty Set Ω Reference Parameter Uncertainty Parameter Name

Baseline MuJoCo Environment: Ant

Ant 1 [0.1, 3.0] 0.33 torso mass

Ant 2 [0.1, 3.0] × [0.01, 3.0] (0.33, 0.04) torso mass × front left leg mass

Ant 3 [0.1, 3.0] × [0.01, 3.0] × [0.01, 3.0] (0.33, 0.04, 0.06) torso mass × front left leg mass × front right leg mass

Baseline MuJoCo Environment: HalfCheetah

HalfCheetah 1 [0.1, 4.0] 0.4 world friction

HalfCheetah 2 [0.1, 4.0] × [0.1, 7.0] (0.4, 6.36) world friction × torso mass

HalfCheetah 3 [0.1, 4.0] × [0.1, 7.0] × [0.1, 3.0] (0.4, 6.36, 1.53) world friction × torso mass × back thigh mass

Baseline MuJoCo Environment: Hopper

Hopper 1 [0.1, 3.0] 1.00 world friction

Hopper 2 [0.1, 3.0] × [0.1, 3.0] (1.00, 3.53) world friction × torso mass

Hopper 3 [0.1, 3.0] × [0.1, 3.0] × [0.1, 4.0] (1.00, 3.53, 3.93) world friction × torso mass × thigh mass

Baseline MuJoCo Environment: HumanoidStandup

HumanoidStandup 1 [0.1, 16.0] 8.32 torso mass

HumanoidStandup 2 [0.1, 16.0] × [0.1, 8.0] (8.32, 1.77) torso mass × right foot mass

HumanoidStandup 3 [0.1, 16.0] × [0.1, 5.0] × [0.1, 8.0] (8.32, 1.77, 4.53) torso mass × right foot mass × left thigh mass

Baseline MuJoCo Environment: Inveted Pendulum

InvertedPendulum 1 [1.0, 31.0] 4.90 pole mass

InvertedPendulum 2 [1.0, 31.0] × [1.0, 11.0] (4.90, 9.42) pole mass × cart mass

Baseline MuJoCo Environment: Walker

Walker 1 [0.1, 4.0] 0.7 world friction

Walker 2 [0.1, 4.0] × [0.1, 5.0] (0.7, 3.53) world friction × torso mass

Walker 3 [0.1, 4.0] × [0.1, 5.0] × [0.1, 6.0] (0.7, 3.53, 3.93) world friction × torso mass × thigh mass

Small MuJoCo Environments

Small HalfCheetah 1 [0.1, 3.0] 0.4 world friction

Small Hopper 1 [0.1, 2.0] 1.00 world friction

is designed as an interval. Except for Hopper 2 and Hopper 3, the original value is included in the
uncertainty set; hence, the trivial upper bound of the worst-case performance is the best performance
of the corresponding MuJoCo environment.

In all approaches in all senarios, the same configurations are used for fair comparison as follows.

For DR and RARL, the input to the critic is a (s, a) pair, whereas it is a tuple of (s, a, ω) for M2TD3,
SoftM2TD3, and M3DDPG. Except for this point, we used the same network architecture. The policy
and the critic networks are defined as fully connected layers with two hidden layers of size 256.

The uncertainty parameter sampler αt is

αt =

{
U(Ω) t ⩽ Trand

ΠΩ(
∑N

k=1 pk · N (ω̂k,Σω)) t > Trand ,
(9)

where Σω is a diagonal matrix, with diagonal elements 0.5 times the lengths of the intervals of the
corresponding dimension of Ω, and ΠΩ is the projection onto Ω and Trand = 105. The behavior policy
βt is

βt =

{
U(A) t ⩽ Trand

ΠA(N (µθ(s),Σa)) t > Trand ,
(10)

where Σa is a diagonal matrix, with diagonal elements are the 0.5 times the length of the intervals of
the corresponding dimension of A, and ΠA is the projection onto A. The Σω element is designed to
decay at each time step to 0.05 times the length of the intervals of it when the learning progresses to
half of the total.

The minibatch size is M = 100. The learning rates for the actor update, the uncertainty parameter
update and the critic update are λθ = λω = λϕ = 3× 10−4. The noise covariance matrices for the
target policy smoothing are Σ̃a = 2Σa and Σ̃ω = 2Σω. The noise for the target policy smoothing
is clipped by Πa and Πω into the ranges of ±0.25 times the interval lengths of the corresponding
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Table 5: Taxonomy of robust policy search. Cont.: Continuous space. Disc.: Discrete space.
Method Uncertainty S & A Ω

R-MPO Transition Cont. Disc.
ROPI Transition Disc. Cont.
ATLA, SA-DRL Observation Cont. Cont.
PAIRED, RARL, M3DDPG
RRL, Adv-SAC, RSAC, M2TD3

Reward &
Transition

Cont. Cont.

Table 6: Comparison of action value functions in related methods
Method Action Value Function

R-MPO, ROPI, Robust DP Q(s, a) = r(s, a) + γminω∈Ω E[Q(s′, µθ(s
′)) | s′ ∼ pω(· | s, a)]

DR Q(s, a) = Eω∈Ω[rω(s, a) + γE[Q(s′, µθ(s
′)) | s′ ∼ pω(· | s, a)]]

RRL, RARL, Adv-SAC Qω(s, a) = rω(s, a) + γE[Qω(s′, µθ(s
′)) | s′ ∼ pω(· | s, a)]

M3DDPG Q(s, a, ω) = rω(s, a) + γE[minω′∈Ω Q(s′, µθ(s
′), ω′) | s′ ∼ pω(· | s, a)]

M2TD3 Q(s, a, ω) = rω(s, a) + γE[Q(s′, µθ(s
′), ω) | s′ ∼ pω(· | s, a)]

dimensions of A and Ω, respectively. The actor and target network update frequency is Tfreq = 2.
The above parameter settings follow TD3 [7].

We used N = 5 uncertainty parameters. For the refreshing strategy of the uncertainty parameters, we
used ℓ1-distance as dω . The distance threshold is dthre = 0.1. The frequency threshold is 0.05.

Experiments were performed on a machine with two NVIDIA RTX A5000 GPUs, two Intel(R)
Xeon(R) Gold 6230 CPUs, and 192GB memory.

D Related Work

Table 5 summarizes the robust policy search method taxonomy. Table 6 compares the related methods
considering their action value function definitions.

E Performance of TD3

Table 7 summarizes the worst-case performance and the average performance of the policies obtained
by TD3 on the Ant, HalfCheetah, Hopper, HumanoidStandup, InvertedPendulum, and Walker
environments with their reference parameters. The results show that the original TD3 policies
learned under the reference parameter cannot be generalized to uncertain parameters set in most
scenarios. These results provide the baseline performances on these environments and show that
these environments are non-trivial for the worst-case and the average performance maximization.

F Original RARL

The performance of the original RARL, whose baseline RL approach is TRPO, is shown in Table 8.
RARL (TRPO) exhibited low worst-case performances, similarly to those of RARL (DDPG). These
low performances of RARL (TRPO) may be due to its defect of the optimization strategy and because
TRPO is an on-policy method, which often requires a greater number of interactions than off-policy
methods [10].

G Learning Curve

The learning curves for each approach are shown in the Figure 2 and Figure 3. Figure 2 shows
that M2TD3 and SoftM2TD3 tended to perform better in the early stages of learning than DR,
even in scenarios where the final worst-case performances of DR, M2TD3, and SoftM2TD3 were
competitive.
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Table 7: Avg. ± std. error of worst-case performance Rworst(µ) and average performance Raverage(µ)
and reference performance Rref(µ) over 10 trials for TD3 (reference parameter)

Environment worst average
Ant (reference parameters): 3.02± 0.15(×103)

Ant 1 (×103) 2.22± 0.50 2.76± 0.50
Ant 2 (×103) 1.59± 0.08 2.28± 0.09
Ant 3 (×102) −0.99± 1.13 3.16± 1.00

HalfCheetah (reference parameters): 10.2± 0.2(×103)
Small HalfCheetah 1 (×103) 0.03± 0.11 3.73± 0.29

HalfCheetah 1 (×103) −0.34± 0.04 2.79± 0.22
HalfCheetah 2 (×103) −0.53± 0.06 2.63± 0.20
HalfCheetah 3 (×103) −0.61± 0.08 2.47± 0.18

Hopper (reference parameters): 3.01± 0.19(×103)
Small Hopper 1 (×103) 2.84± 0.22 2.97± 0.21

Hopper 1 (×103) 0.40± 0.02 2.39± 0.14
Hopper 2 (×103) 0.21± 0.04 1.54± 0.17
Hopper 3 (×103) 0.14± 0.03 1.15± 0.14

HumanoidStandup (reference parameters): 1.08± 0.03(×105)
HumanoidStandup 1 (×105) 0.85± 0.07 1.03± 0.04
HumanoidStandup 2 (×105) 0.73± 0.07 1.03± 0.03
HumanoidStandup 3 (×105) 0.57± 0.04 1.01± 0.03

InvertedPendulum (reference parameters): 10.0± 0.0(×102)
InvertedPendulum 1 (×102) 0.24± 0.10 7.34± 0.76
InvertedPendulum 2 (×102) 0.03± 0.00 4.05± 0.52

Walker (reference parameters): 4.08± 0.16(×103)
Walker 1 (×103) 0.68± 0.12 3.12± 0.20
Walker 2 (×103) 0.28± 0.07 2.70± 0.20
Walker 3 (×103) 0.17± 0.06 2.60± 0.18

Table 8: Avg. ± std. error of worst-case performance Rworst(µ) and average performance Raverage(µ)
over 10 trials for RARL (TRPO)

Environment worst average
Ant 1 (×101) −4.92± 0.48 −2.29± 0.22
Ant 2 (×102) −1.15± 0.19 −0.37± 0.04
Ant 3 (×102) −0.32± 0.41 1.28± 0.68

HalfCheetah 1 (×102) −3.06± 0.85 1.22± 0.63
HalfCheetah 2 (×102) −5.23± 0.89 −0.03± 0.73
HalfCheetah 3 (×102) −9.70± 1.89 −0.70± 0.65

Hopper 1 (×102) 2.89± 0.25 3.49± 0.38
Hopper 2 (×102) 2.67± 0.26 4.82± 0.64
Hopper 3 (×102) 0.71± 0.13 2.24± 0.47

HumanoidStandup 1 (×104) 5.30± 0.22 6.78± 0.21
HumanoidStandup 2 (×104) 5.04± 0.09 6.99± 0.25
HumanoidStandup 3 (×104) 4.99± 0.08 6.64± 0.17

InvertedPendulum 1 (×102) 0.44± 0.10 3.03± 0.98
InvertedPendulum 2 (×102) 0.16± 0.05 5.86± 0.87

Walker 1 (×102) 2.96± 0.16 3.79± 0.34
Walker 2 (×102) 2.53± 0.22 4.16± 0.34
Walker 3 (×102) 2.82± 0.17 3.90± 0.14

Small HalfCheetah 1 (×102) −0.89± 0.80 3.44± 0.95
Small Hopper 1 (×102) 4.37± 0.40 4.44± 0.42

H Cumulative Rewards Under Different Uncertainty Parameters

Figures 4 to 6 show the cumulative rewards of the policies trained by the seven approaches for each
ω ∈ Ω. These results show that in many scenarios, DR achieved good performances in a wide range of
uncertainty parameters. However, the differences between the worst-case and best-case performances
were relatively large for DR, and the worst-case performances were relatively low. Unlike DR,
M2TD3 exhibited smaller performance differences between the worst-case and the best-case, and its
worst-case performances were relatively high.
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Figure 2: Learning curve for worst-case performance: the average (solid line) and standard error
(band) of the worst-case cumulative rewards Rworst(µ)

I Multiple Uncertainty Parameter

Figure 7 shows the learning curves for each uncertainty parameter ω ∈ Ω and the uncertainty parame-
ter ω̂ used to update the actor (ω̂k′ in Algorithm 4) at each time step during the training. For each
senario, the cumulative rewards under 10 equally spaced uncertainty parameters were evaluated every
1e5 time steps. Hence, the lowest cumulative reward at each time step is a rough estimate of the worst-
case performance. The uncertainty parameter with the lowest Q-value, argminω̂1,...,ω̂k,...ω̂N

Jt(θ, ω̂k),
is chosen for the update of the actor among N worst uncertainty parameter candidates. This means
that the selected worst-case uncertainty parameter can be different from the ground truth worst-case
uncertainty parameter because of incomplete optimization for the worst uncertainty parameter, in-
complete training of the critic network, and discrepancy between the cumulative reward and the
Q-values.

Focusing on the behavior of M2TD3 on the HalfCheetah 1 senario (left-most side figures), the
cumulative reward (top figure) shows that the uncertainty parameters 0.1 (green line), 0.5 (orange
line), and 4.0 (light blue line) alternately came to the bottom during learning, indicating that the worst
uncertainty parameter continues to change between these values. The uncertainty parameter selected
during the actor training (bottom figure) were the values around 0.1 and 4.0in the early stages of the
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Figure 3: Learning curve for average performance: the average (solid line) and standard error (band)
of the average cumulative rewards Raverage(µ)

training, and the values around 0.5 were used in the middle of the training. This indicates that the
algorithm was able to track the change of the worst-case uncertainty parameter during the training.
This behavior of M2TD3 and SoftM2TD3 is shown on the other tasks.

J Evaluation Under Adversarial External Force

With a small modification of the proposed approaches, we can apply it to the situation conforming to
[31], where the model misspecification is expressed by an external force given by an adversarial agent.
In this section, we describe the necessary modification of the proposed approaches and compare the
worst-case performance with baselines.

Extension of M2TD3 In this setting, we deal with an MDPM = ⟨S,Ap, Aa, p, p0, r, γ⟩, where
Ap and Aa are the action spaces of the protagonist agent and adversarial agent, respectively, and they
are assumed to be continuous. The transition probability density p : S × Ap × Aa × S → R and
immediate reward r : S ×Ap ×Aa → R are not anymore parameterized by ω but take the action of
the adversarial agent as input. Unless otherwise specified, the other notations are the same as the ones
in Section 2. The protagonist and adversarial agents interact with the environmentM using stochastic
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Figure 4: Cumulative rewards under trained policies for each uncertainty parameter ω ∈ Ω. The
average (solid line) and standard error (band) for each ω ∈ Ω, as well as the worst average value
(dashed line) are shown.

behavior policies β and α, respectively. Let ρβα(s) = limT→∞
1
T Σ

T−1
t=0

∫
s0
qtα,β(s | s0)p0(s0)ds0

represent the stationary distribution of s under β and α, where the step-t transition probability
density qtα,β is defined as q1α,β(s

′|s) =
∫
ap∈Ap

∫
aa∈Aa

q(s′|s, ap, aa)β(ap|s)α(aa|s)daadap and

qtα,β(s
′|s) =

∫
s̄∈S

qt−1
α,β (s̄|s)q1α,β(s′|s̄)ds̄. The joint stationary distribution of (s, ap, aa) is defined

as ρβα(s, a
p, aa) = β(ap|s)α(aa|s)ρβα(s).

We extend the action value function as a function of state s, protagonist agent’s action ap, and
adversarial agent’s action aa, namely,

Qµ
ξ (s, a

p, aa)

= E[Rt | st = s, apt = ap, aat = aa, st+k+1 ∼ q(· | st+k, µ(st+k), ξ(st+k)) ∀k ⩾ 0] , (11)

where µ and ξ represent the policies of the protagonist agent and the adversarial agent, respectively,
to be trained. We suppose that they are parameterized by θp and θa, respectively.

The objective of M2TD3 is extended as

max
θp∈Θ

min
θa∈Θ

J(θp, θa;ϕ
∗) s.t. ϕ∗ ∈ argmin

ϕ∈Φ
L(ϕ; θp, θa) , (12)

where the critic loss function L is extended as

L(ϕ, θp, θa) :=

∫
s∈S

∫
ap∈Ap

∫
aa∈Aa

(T
µθp

ξθa
[Qϕ](s, a

p, aa)−Qϕ(s, a
p, aa))2

× ρβα(s, a
p, aa)dsdapdaa , (13)

where T
µθp

ξθa
is a function satisfying

T
µθp

ξθa
[Q](s, ap, aa) = rω(s, a

p, aa) + γ

∫
s′∈S

Q(s′, µθp(s
′), ξθa(s

′))q(s′|s, ap, aa)ds′ . (14)

The max-min objective function J of the actor network is defined as

J(θp, θa;ϕ) :=

∫
s∈S

Qϕ(s, µθp(s), ξθa(s))ρ
β
α(s)ds , (15)

and ρβα(s, a
p, aa) and ρβα(s) are approximated by the replay buffer B that stores the trajectories

obtained by the interaction using β and α. Let {(si, api , aai , ri, s′i)}Mi=1 ⊂ B be mini-batch samples
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taken uniformly randomly from the replay buffer. The approximated objective function used for the
critic update is

L̃(ϕ) =
1

M

M∑
i=1

(yi −Qϕ(si, a
p
i , a

a
i ))

2, (16)

where yi = ri + γ ·Qϕ(s
′
i, µθp(s

′
i), ξθa(s

′
i)). The approximated objective function used for the actor

update is

J̃(θp, θa) =
1

M

M∑
i=1

Qϕ(si, µθp(si), ξθa(si)) . (17)

Replacing (6) and (7) with above defined functions, we obtain M2TD3 for this setting.

Experiment We used the tasks provided in [31]3. For each trained policy, the worst-case per-
formance is estimated by fixing the trained policy of the protagonist agent and training the ad-
versarial agent’s policy to minimize the protagonist agent’s performance. To evaluate the worst-
case performance of each approach, we performed 5 independent training for 2 × 106 time steps
for each approach. The trial is indexed as n ∈ {1, . . . , 5}. Then, for each obtained protago-
nist policy, we trained the adversarial policy for 2 × 106 time steps. We performed the adver-
sarial policy training three times, and they are indexed as m ∈ {1, 2, 3}. During the training
of the adversarial policy, we recorded the performance of the protagonist agent under the ad-
versarial policy at time step et ∈ {105, 2 × 105, . . . , 2 × 106} (every 105 time steps), denoted
as R(µ, ξm,et). Then, the worst-case performance of a protagonist policy µ was estimated by
Rworst(µ) = minm=1,2,3 minet∈{105,2×105,...,2×106} R(µ, ξm,et). The average and standard error of
Rworst(µ) over 5 trials are reported for each approach. The parameters and network architecture of
the protagonist agent used in all methods and the adversarial agents used in M2TD3, M2-DDPG,
M3DDPG, RARL (TD3), and RARL (TRPO) are the same as in the situation that the uncertainty
parameter is directly encoded by ω. In the situation that the uncertainty parameter was directly
encoded by ω, multiple uncertainty parameters were trained, but in this setting, only one adversarial
agent was trained. The adversarial TD3 agents used to estimate worst-case performance were similar
to the parameters and network architecture used in [7].

The result is shown in Table 9.

M2TD3 showed better worst-case performance than DR in all but the HalfCheetahAdv-v1 senarios.
The reference performances were comparable to those of DR. Compared to those of RARL, M2TD3
showed competitive or superior performances, both in the worst-case and reference-case. Comparing
M2-DDPG (the proposed approach based on DDPG instead of TD3) and M3DDPG, we observed
similar performances in many scenarios in both reference-case and worst-case, and M2-DDPG
significantly outperformed M3DDPG on HopperAdv-v1.

3https://github.com/lerrel/gym-adv
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Table 9: Avg. ± std. error of reference performance (performance under no disturbance) and worst-
case performance over five trials for each approach

TD3 DR M2TD3 M2-DDPG M3DDPG RARL (TD3) RARL (TRPO)
MuJoCo Environment: HalfCheetahAdv-v1 (×104)
reference 1.13± 0.09 1.21± 0.03 1.15± 0.09 1.19± 0.04 1.21± 0.03 1.04± 0.09 0.68± 0.27

worst-case 1.02± 0.11 1.12± 0.05 1.07± 0.09 1.13± 0.06 1.13± 0.02 1.00± 0.10 0.33± 0.32

MuJoCo Environment: HopperAdv-v1 (×103)
reference 3.48± 0.16 3.55± 0.14 3.25± 0.56 2.63± 0.52 1.66± 0.33 2.42± 0.94 0.29± 0.07
worst-case 0.50± 0.13 1.79± 1.25 2.64± 0.84 2.16± 0.53 0.69± 0.23 0.82± 0.45 0.26± 0.08

MuJoCo Environment: InvertedPendulumAdv-v1 (×103)
reference 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.63± 0.46 0.10± 0.07
worst-case 0.03± 0.01 0.23± 0.39 0.83± 0.35 0.70± 0.31 0.80± 0.38 0.04± 0.01 0.03± 0.01

MuJoCo Environment: SwimmerAdv-v1 (×102)
reference 1.42± 0.09 1.22± 0.25 1.38± 0.09 1.51± 0.10 1.51± 0.06 1.21± 0.05 0.21± 0.10
worst-case 0.96± 0.15 0.60± 0.48 1.14± 0.08 1.19± 0.04 1.21± 0.04 0.80± 0.05 −0.71± 0.37

MuJoCo Environment: Walker2dAdv-v1 (×103)
reference 4.18± 0.44 4.27± 0.61 4.59± 1.05 2.81± 0.81 2.26± 0.50 3.95± 0.27 0.32± 0.08
worst-case 3.74± 0.59 3.61± 0.93 4.26± 1.04 1.75± 0.62 1.63± 0.32 3.11± 0.13 0.14± 0.08
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Figure 5: Cumulative rewards under trained policies for each uncertainty parameter ω ∈ Ω.
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Figure 6: Cumulative rewards under trained policies for each uncertainty parameter ω ∈ Ω.
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Figure 7: Cumulative reward under each uncertainty parameter (upper). Uncertainty parameter used
to update at each time step (under). From left to right (scenario, algorithm): (HalfCheetah 1, M2TD3),
(HalfCheetah 1, SoftM2TD3), (Walker 1, M2TD3), (Walker 1, SoftM2TD3).
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