
Max-Min Off-Policy Actor-Critic Method Focusing on
Worst-Case Robustness to Model Misspecification

Takumi Tanabe
University of Tsukuba & RIKEN AIP

Tsukuba, Ibaraki 305-8573, Japan
tanabe@bbo.cs.tsukuba.ac.jp

Rei Sato
University of Tsukuba & RIKEN AIP

Tsukuba, Ibaraki 305-8573, Japan
reisato@bbo.cs.tsukuba.ac.jp

Kazuto Fukuchi
University of Tsukuba & RIKEN AIP

Tsukuba, Ibaraki 305-8573, Japan
fukuchi@cs.tsukuba.ac.jp

Jun Sakuma
University of Tsukuba & RIKEN AIP

Tsukuba, Ibaraki 305-8573, Japan
jun@cs.tsukuba.ac.jp

Youhei Akimoto
University of Tsukuba & RIKEN AIP

Tsukuba, Ibaraki 305-8573, Japan
akimoto@cs.tsukuba.ac.jp

Abstract

In the field of reinforcement learning, because of the high cost and risk of policy
training in the real world, policies are trained in a simulation environment and
transffered to the corresponding real-world environment. However, differences in
the environments lead to model misspecification. Multiple studies report significant
deterioration of policy performance in a real-world environment. In this study, we
focus on scenarios involving a simulation environment with uncertainty parameters
and the set of their possible values, called the uncertainty parameter set. The
aim is to optimize the worst-case performance on the uncertainty parameter set
to guarantee the performance in the corresponding real-world environment. To
obtain a policy for the optimization, we propose an off-policy actor-critic approach
called the Max-Min Twin Delayed Deep Deterministic Policy Gradient algorithm
(M2TD3), which solves a max-min optimization problem using a simultaneous
gradient ascent descent approach. Experiments in multi-joint dynamics with contact
(MuJoCo) environments show that the proposed method exhibited a worst-case
performance superior to several baseline approaches. Our implementation is
publicly available (https://github.com/akimotolab/M2TD3).

1 Introduction

Applications of deep reinforcement learning (DRL) to control tasks that involving interaction with
the real world are limited because of the need for interaction between the agent and the real-world
environment [37]. This difficulty arises because of high interaction time, agent maintenance costs,
and safety issues during the interaction. Without enough interactions, DRL tends to overfit to specific
interaction histories and yields policies with poor generalizability and safety issues [29].

To solve this problem, simulation environments that estimate the characteristics of real-world envi-
ronments are often employed, which enable enough interactions for effective DRL application. The
policy is trained in the simulation environment and then transferred to the real-world environment [45].

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/akimotolab/M2TD3


Moreover, because fast and general-purpose simulators, such as Open Dynamics Engine [34], Bul-
let [3] and multi-joint dynamics with contact (MuJoCo [38]), are available in the field of robotics,
the cost of developing a simulation environment can sometimes be significantly lower than that for
real-world interactions.

However, because a simulation environment is an estimation of the real-world environment, discrep-
ancies exist between the two [2]. Even if they are entirely similar, discrepancies may still occur,
e.g., because of robot degradation over time or weight changes because of part replacements [22].
Studies report significant degradation of policy trained in a simulation environment when transferred
to the corresponding real-world environment [8]. The above discrepancies limit the use of simulator
environments in practice and, thus, limit the use of DRL.

In this study, to guarantee performance in the corresponding real-world environment, we aim to
obtain a policy that maximizes the expected reward under the worst-case scenario in the uncertainty
parameter set Ω. We focus on a scenario where (1) a simulator Mω is available, (2) the model
uncertainty is parameterized by ω ∈ Ω, and ω is configurable in the simulation, and (3) the real-world
environment is identified with some ω∗ ∈ Ω, where ω∗ is fixed during an episode; however, (4)
ω∗ is unknown, is not uniquely determined, or changes from episode to episode1. The model of
uncertainty described in hypotheses (3) and (4) is referred to as the stationary uncertainty model,
in contrast to the time-varying uncertainty model where ω∗ can vary during an episode [28]. We
develop an off-policy deep deterministic actor-critic approach to optimize the worst-case performance,
called the Max-Min Twin Delayed Deep Deterministic Policy Gradient Algorithm (M2TD3). By
extending the bi-level optimization formulation of the standard actor-critic method [30], we formulate
our problem as a tri-level optimization, where the critic network models a value for each tuple of
state, action, and uncertainty parameter, and the actor network models the policy of an agent and
an estimate of the worst uncertainty parameter value. Based on the existing deep deterministic
actor-critic approach [19; 7], we design an algorithm to solve the tri-level optimization problem by
implementing several technical components to stabilize the training, including multiple uncertainty
parameters, their refreshing strategies, the uncertainty parameter sampler for interaction, and the
soft-min policy update. Numerical experiments on 19 MuJoCo tasks reveal the competitive and
superior worst-case performance of our proposed approaches compared to those of several baseline
approaches.

2 Preliminaries

We consider an episodic Markov Decision Process (MDP) [6] familyMΩ = {Mω}ω∈Ω, where
Mω = ⟨S,A, pω, p

0
ω, rω, γ⟩ is the MDP with uncertainty parameter ω ∈ Ω. The state space S

and the action space A are subsets of real-valued vector spaces. The transition probability density
pω : S × A× S → R, the initial state probability density p0ω : S → R, and the immediate reward
rω : S ×A→ R depend on ω. The discount factor is denoted by γ ∈ (0, 1).

We focus on an episodic task onMΩ. Let µθ : S → A be a deterministic policy parameterized by
θ ∈ Θ. Given an uncertainty parameter ω ∈ Ω, the initial state follows s0 ∼ p0ω. At each time step
t ⩾ 0, the agent observes state st, select action at = µθ(st), interacts with the environment, and
observes the next state s′t ∼ pω(· | st, at), the immediate reward rt = rω(st, at), and the termination
flag ht. Here, ht = 1 if s′t is a terminal state or a predefined maximal time step for each past episode;
otherwise, ht = 0. If ht = 0, let st+1 = s′t; otherwise, the next state is reset by st+1 ∼ p0ω. For
simplicity, we let qω(st+1 | st, at) be the probability density of st+1 given st and at. The discount
reward of the trajectory starting from time step t is Rt =

∑
k⩾0 γ

krt+k.

The action value function Qµθ (s, a, ω) under ω is the expectation of Rt starting with st = s and at =
a under ω; that is, Qµθ (s, a, ω) = E[Rt | st = s, at = a, st+k+1 ∼ qω(· | st+k, µθ(st+k)) ∀k ⩾ 0],
where the expectation is taken over st+k+1 for k ⩾ 0. Note that we introduce ω to the argument to
explain the Q-value dependence on ω; however, this is essentially the same definition as that for the

1Here are two examples where hypotheses (3) and (4) are reasonable. (I) We train a common controller of
mass-produced robot manipulators that are slightly different due to errors in the manufacturing process (ω∗ is
fixed for each product, but varies in Ω from product to product). (II) We train a controller of a robot manipulator
whose dynamics change over time because of aging, but each episode is short enough that the change in dynamics
during an episode is negligible.
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standard action value function Qµθ (s, a). The recursive formula is as follows:

Qµθ (s, a, ω) = rω(s, a) + γE[Qµθ (s′, µθ(s
′), ω) | s′ ∼ qω(· | s, a)] . (1)

We consider an off-policy reinforcement learning setting, where the agent interacts withMω using a
stochastic behavior policy β : S ×A→ R. However, the target policy to be optimized, denoted by
µθ, is deterministic. Under a fixed ω ∈ Ω, the standard objective of off-policy learning is to maximize
the expected action value function over the stationary distribution ρβ , such that

Jω(θ) =

∫
s∈S

ρβ(s | ω)Qµθ (s, µθ(s), ω)ds . (2)

Here, ρβ(s | ω) = limT→∞
1
T

∑T−1
t=0

∫
s0
qtω,β(s | s0)p0ω(s0)ds0 denotes the stationary distribution

under β and a fixed ω ∈ Ω, where the step-t transition probability density qtω,β is defined as
q1ω,β(s

′ | s) =
∫
a∈A

qω(s
′ | s, a)β(a | s)da and qtω,β(s

′ | s) =
∫
s̄∈S

qt−1
ω,β (s̄ | s)q1ω,β(s

′ | s̄)ds̄.

We assume that the agent can interact withMω for any ω ∈ Ω during the training and can change
ω after every episode, that is, when ht = 1. Our objective is to obtain the µθ that maximizes Jω(θ)
under the worst environment ω ∈ Ω. Hence, we tackle the max-min optimization problem requiring
maxθ∈Θ minω∈Ω Jω(θ).

3 M2TD3

We propose an off-policy actor-critic approach to obtain a policy that maximizes the worst-case
performance on MΩ, called M2TD3. Our approach is based on TD3, an off-policy actor-critic
algorithm for a deterministic target policy. In TD3, the critic network Qϕ parameterized by ϕ ∈ Φ is
trained to approximate the Qµθ of µθ, whereas the actor network models µθ with parameter θ ∈ Θ
and is trained to maximize Jω(θ). Moreover, ω is not considered and is fixed during the training.
In this study, to obtain the µθ that maximizes the performance under the worst ω, we extend TD3
by formulating the objective as a maximin problem and introducing a simultaneous gradient ascent
descent approach.

The main difficulty in the worst-case performance maximization is in estimating the worst-case
performance. Because the objective is expected to be non-concave with respect to (w.r.t.) the
uncertainty parameter because of deep actor-critic networks, solving this problem is considered
intractable in general [4]. To stabilize the worst-case performance estimation, we introduce various
techniques: multiple uncertainty parameters, an uncertainty parameter refresh strategy, and an
uncertainty parameter sampler.

Formulation We can formulate our objective as the following tri-level optimization:

max
θ∈Θ

min
ω̂∈Ω

J(θ, ω̂;ϕ∗) s.t. ϕ∗ ∈ argmin
ϕ∈Φ

L(ϕ; θ) , (3)

where J and L are defined below. Note that this tri-level optimization formulation is an extension of
the bi-level optimization formulation of the actor-critic approach proposed in [30].

We introduce a probability density α : Ω→ R, from which an ω to be used in the interaction during
the training phase is drawn for each episode. The relationship between ω̂ and α is similar to that
between θ and β: namely, ω̂ and θ are the parameters to be optimized while α and β are introduced
for exploration. Let ρβα(s) =

∫
ω∈Ω

ρβ(s | ω)α(ω)dω and ρβα(s, a, ω) = β(a | s)ρβ(s | ω)α(ω) be
the stationary distribution of s and the joint stationary distribution of (s, a, ω), respectively, under α
and β.

The critic loss function L(ϕ; θ) is designed to simulate the Q-learning algorithm. Let Tµθ
be the

function satisfying Tµθ
[Q](s, a, ω) = rω(s, a) + γ

∫
s′∈S

Q(s′, µθ(s
′), ω)qω(s

′ | s, a)ds′. Then,
(1) states that Qµθ is the solution to Q = Tµθ

[Q]. Therefore, the critic is trained to minimize the
difference between Qϕ and Tµθ

[Qϕ]. This is achieved by minimizing

L(ϕ; θ) :=

∫
s∈S

∫
a∈A

∫
ω∈Ω

(Tµθ
[Qϕ](s, a, ω)−Qϕ(s, a, ω))

2ρβα(s, a, ω)dsdadω . (4)
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The max-min objective function of the actor network

J(θ, ω̂;ϕ) :=

∫
s∈S

Qϕ(s, µθ(s), ω̂)ρ
β
α(s)ds (5)

measures the performance of µθ under the uncertainty parameter ω̂ ∈ Ω approximated using the critic
network Qϕ instead of the ground truth Qµθ . Similar to the standard actor-critic approach, we expect
Qϕ to approach Qµθ as the critic loss is minimized. Therefore, we expect J(θ, ω̂;ϕ∗) approximates∫
s∈S

Qµθ (s, µθ(s), ω̂)ρ
β
α(s)ds once we obtain ϕ∗ ≈ argminϕ∈Φ L(ϕ; θ).

Particularly, even if Qϕ∗ = Qµθ , our objective function J(θ, ω̂;ϕ∗) differs from Jω(θ) with ω = ω̂
in (2), in that the stationary distribution ρβ(s | ω) under fixed ω in Jω is replaced with ρβα(s) under
ω ∼ α. However, this change allows us to effectively utilize the replay buffer, which stores the
interaction history, to approximate the objective J(θ, ω̂;ϕ). Moreover, if α is concentrated at ω̂,
J(θ, ω̂;ϕ∗) coincides with Jω=ω̂(θ).

Algorithmic Framework The framework of M2TD3 is designed to solve the tri-level optimization
(3). The overall framework of M2TD3 follows that of TD3. In each episode, an uncertainty parameter
ω is sampled from α. The training agent interacts with the environmentMω using behavior policy β.
At each time step t, the transition (st, at, rt, s

′
t, ht, ω) is stored in the replay buffer, which is denoted

by B. The critic network Qϕ is trained at every time step, to minimize (4), with a mini-batch being
drawn uniformly randomly from B. The actor network µθ and the worst-case uncertainty parameter
ω̂ are trained in every Tfreq step to optimize (5). Note that a uniform random sample (s, a, ω) taken
from B can be regarded as a sample from the stationary distribution ρβα(s, a, ω). Similarly, s taken
from B is regarded as a sample from ρβα(s). These facts allow approximation of the expectations
in (4) and (5) using the Monte Carlo method with mini-batch samples uniformly randomly taken
from B. An algorithmic overview of the proposed method is summarized in Algorithm 1. We have
underlined the differences from the general off-policy actor-critic method in the episodic settings.
A detailed description of M2TD3 is summarized in Algorithm 2 in Appendix A. As shown from
Algorithm 1, the differences between the proposed method and the general off-policy actor-critic
are as follows: (1) the introduction of an uncertainty parameter sampler, (2) definition and updating
method of critic, and (3) updating method of actor and uncertainty parameters.

Algorithm 1 Algorithmic overview of the proposed method

1: Draw uncertainty parameter ω ∼ α0

2: Observe initial state s ∼ p0ω
3: for t = 1 to Tmax do
4: # interaction
5: Select action a ∼ βt(s)
6: Interact withMω with a, observe next state s′, immediate reward r and termination flag h
7: Store transition tuple (s, a, r, s′, h, ω) in B
8: if h = 1 then
9: Reset uncertainty parameter ω ∼ αt

10: Observe initial state s ∼ p0ω
11: else
12: Update current state s← s′

13: end if
14: # learning
15: Sample mini-batch {(si, ai, ri, s′i, hi, ωi)} of M transitions uniform-randomly from B
16: Update the critic network by optimizing Equation (6)
17: Update the actor network and the uncertainty parameter by optimizing Equation (7)
18: Update uncertainty parameter sampler α
19: end for

Critic Update The critic network update, namely, minimization of (4), is performed by implement-
ing the TD error-based approach. The concept is as follows. Let {(si, ai, ri, s′i, ωi)}Mi=1 ⊂ B be the
mini-batch, and let θt and ϕt be the actor and critic parameters at time step t, respectively. For each
tuple, Tµθt

[Qϕt
](si, ai, ωi) is approximated by yi = ri + γ · Qϕt

(s′i, µθt(s
′
i), ωi). Then, L(ϕt; θt)
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in (4) is approximated by the mean square error L̃(ϕt), such that

L̃(ϕt) =
1

M

M∑
i=1

(yi −Qϕt(si, ai, ωi))
2 . (6)

Then, the update follows ϕt+1 = ϕt − λϕ∇ϕL̃(ϕt).

We incorporate the techniques introduced in TD3 to stabilize the training: clipped double Q-learning,
target policy smoothing regularization, and target networks. Additionally, we introduce the smoothing
regularization for the uncertainty parameter so that the critic is smooth w.r.t. ω̂. Algorithm 3 in
Appendix A summarizes the critic update and the details of each technique are available in [7].

Actor Update Updating of the actor as well as the uncertainty parameter, namely, maximin
optimization of (5), is performed via simultaneous gradient ascent descent [27], summarized in
Algorithm 4 in Appendix A. Let ϕt, θt and ω̂t be the critic, policy, and the uncertainty parameters,
respectively, at time step t. Instead of the optimal ϕ∗ in (3), we use ϕt as its estimate. With the
mini-batch {si}Mi=1 ⊂ B, we approximate the max-min objective (5) follows:

J̃t(θ, ω̂) =
1

M

M∑
i=1

Qϕt
(si, µθ(s), ω̂) . (7)

We update θ and ω̂ as θt+1 = θt + λθ∇θJ̃t(θt, ω̂t) and ω̂t+1 = ω̂t − λω∇ω̂J̃t(θt, ω̂t), respectively.

For higher-stability performance, we introduce multiple uncertainty parameters. The motivation
is twofold. One is to deal with multiple local minima of Jt(θ, ω̂;ϕ

∗) w.r.t. ω̂. As the critic
network becomes generally non-convex, there may exist multiple local minima of Jt(θ, ω̂;ϕ

∗)
w.r.t. ω̂. Once ω̂ is stacked at a local minimum point, e.g., ω̂∗, θ may be trained to be robust
around a neighborhood of ω̂∗ and to perform poorly outside that neighborhood. The other is
that the maximin solution (θ∗, ϕ∗) of Jt(θ, ω̂;ϕ∗) is not a saddle point, which occurs when the
objective is non-concave in ω̂ [14]. Here, more than one ω̂ is necessary to approximate the worst-
case performance minω̂ Jt(θ, ω̂;ϕ

∗) around (θ∗, ϕ∗) and a standard simultaneous gradient ascent
descent method fails to converge. To relax this defect of simultaneous gradient ascent descent
methods, we maintain multiple candidates for the worst ω̂, denoted by ω̂1, . . . , ω̂N . Therefore,
replacing minω̂ J(θ, ω̂;ϕ∗) with mink=1,...,N J(θ, ω̂k;ϕ

∗) in (5) has no effect on the optimal θ;
however, this change does affect the training behavior. Our update follows the simultaneous
gradient ascent descent on mink=1,...,N Jt(θ, ω̂k): θ ← θ + λθ∇θ(mink=1,...,N Jt(θ, ω̂k)) and
ω̂k ← ω̂k − λω∇ω̂k

(minℓ=1,...,N Jt(θ, ω̂ℓ)) for k = 1, . . . , N . Hence, θ is updated against the worst
ω̂k, and only the worst ω̂k is updated because the gradient w.r.t. the other ω̂k is zero.

For multiple uncertainty parameters to be effective, they must be distant from each other. Moreover,
all are expected to be selected as the worst parameters with non-negligible frequencies. Otherwise,
the advantage of having multiple uncertainty parameters is lessened. From this perspective, we
introduce a refreshing strategy for uncertainty parameters. Namely, we resample ω̂k ∼ U(Ω) if one
of the following scenarios is observed: there exists ω̂ℓ such that the distance dω̂(ω̂k, ω̂ℓ) ⩽ dthre; the
frequency pk of ω̂k being selected as the worst-case during the actor update is no greater than pthre.

Uncertainty Parameter Sampler The uncertainty parameter sampler α controls the exploration-
exploitation trade-off in the uncertainty parameter. Exploration in Ω is necessary to train the critic
network. If the critic network is not well trained over Ω, it is difficult to locate the worst ω̂ correctly.
On the other hand, for J(θ, ω̂;ϕ∗) in (5) to coincide with Jω(θ) for ω = ω̂ in (2), we require α
to be concentrated at ω̂. Otherwise, the optimal θ for J(θ, ω̂;ϕ∗) may deviate from that of Jω(θ).
We design α as follows. For the first Trand steps, we sample the uncertainty parameter ω uniformly
randomly on Ω, i.e., α = U(Ω). Then, we set α =

∑N
k=1 pk ·N (ω̂k,Σω), where Σω is the predefined

covariance matrix. We decrease Σω as the time step increases. The rationale behind the gradual
decrease of Σω is that the training of the critic network is still important after Trand to make the
estimation of the worst-case uncertainty parameter accurate. Details are provided in Appendix C.

4 Related Work

Methods to handle model misspecification include (1) robust policy searching [26; 31; 23; 17; 12; 22],
(2) transfer learning [36; 43; 32], (3) domain randomization (DR) [37], and (4) approaches minimizing
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worst-case sub-optimality gap [5; 21]. Robust policy searching includes methods that aim to obtain
the optimal policy under the worst possible disturbance or model misspecification, i.e., maximization
of minω∈Ω Jω(θ) for an explicitly or implicitly defined Ω. Transfer learning is a method in which a
policy is trained on source tasks and then fine-tuned through interactions while performing the target
task. DR is a method in which a policy is trained on source tasks that are sampled randomly fromMΩ.
There are two types of DR approaches: vanilla and guided. In vanilla DR [37], the policy is trained
on source tasks that are randomly sampled from a pre-defined distribution on Ω. In guided DR [44],
the policy is trained on source tasks; however, the ω distribution is guided towards the target task.
Because we do not assume access to the target task, transfer learning and many guided DR approaches
are outside the scope of this work. Some guided DR approaches, such as active domain randomization
[24], do not access the target task or consider worst-case optimization either. Vanilla DR can be
applied to the setting considered here. However, the objective of vanilla DR differs from the present
aim, i.e., to maximize the performance averaged over Ω, namely, Eω[Jω(θ) | ω ∼ U(Ω)], if the
sampling distribution is U(Ω). The approaches minimizing the worst-case sub-optimality gap [5; 21]
do not optimize the worst-case performance, instead attempt to obtain a policy that generalizes well
on the uncertainty parameter set while avoiding too conservative performance, which often attributes
to the worst-case performance optimization.

Some robust policy search methods, some adopt an adversarial approach to policy optimization. For
example, Robust Adversarial Reinforcement Learning (RARL) [31] models the disturbance caused
by an external force produced by an adversarial agent, and alternatively trains the protagonist and
adversarial agents. Robust Reinforcement Learning (RRL) [26] similarly models the disturbance
but has not been applied to the DRL framework. Minimax Multi-Agent Deep Deterministic Policy
Gradient (M3DDPG) [17] has been designed to obtain a robust policy for multi-agent settings. This
method is applicable to the setting targeted in this study if only two agents are considered. The
above approaches frame the problem as a zero-sum game between a protagonist agent attempting
to optimize µθ and an adversarial agent attempting to minimize the protagonist’s performance,
hindering the protagonist by generating the worst possible disturbance. Adv-Soft Actor Critic (Adv-
SAC) [13] learns policies that are robust to both internal disturbances in the robot’s joint space and
those from other robots. Recurrent SAC (RSAC) [42] introduces POMDPs to treat the uncertainty
parameter as an unobservable state. A DDPG based approach robustified by applying stochastic
gradient langevin dynamics is proposed under the noisy robust MDP setting [15]. However, it has
been reported in [42; 15] that their worst-case performances are sometimes even worse than their
baseline non-robust approaches. State-Adversarial-DRL (SA-DRL) [48], and alternating training
with learned adversaries (ATLA) [47] improve the robustness of DRL agents by using an adversary
that perturbs the observations in SAMDP framework that characterizes the decision-making problem
in an adversarial attack on state observations. They do not address the model misspecification in the
reward and transition functions.

Other approaches attempt to estimate the robust value function, i.e., a value function under the worst
uncertainty parameter. Among them, Robust Dynamic Programming (DP) [12] is a DP approach,
while the Robust Options Policy Iteration (ROPI) [23] incorporates robustness into option learning
[35], which allows agents to learn both hierarchical policies and their corresponding option sets. ROPI
is a type of Robust MDP approach [39; 20]. Robust Maximum A-posteriori Policy Optimization
(R-MPO) [22] incorporates robustness in MPO [1].

Neither Robust MDP nor R-MPO require interaction with Mω for an arbitrary ω ∈ Ω. This can
be advantageous in scenarios where the design of a simulator valid over Ω is tedious. However,
these methods typically require additional assumptions for computating the worst-case for each value
function update, such as the finiteness of the state-action space and/or the finiteness of Ω. To apply
R-MPO to our setting, finite scenarios from Ω for training are sampled, but the choice of the training
scenarios affects the worst-case performance.

Additionally, to optimize the worst-case performance in the field of offline RL [40; 46; 41], offline
RL attempts to obtain robust measures by introducing the principle of pessimism. Some studies
that introduce the principle of pessimism in the model-free context [40; 41] and in the actor-critic
context [46]. However, these do not compete with this study due to differences in motivation and
because offline RL requires additional assumptions in the datasets [46; 41] and realizability [40].

Table 5 in Appendix D summarizes the robust policy search method taxonomy. Our proposed
approach, M2TD3, considers the uncertainties in both the reward function and transition probability.
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The state and action spaces, as well as the uncertainty set, are assumed to be continuous. Table 6
in Appendix D compares the related methods considering their action value function definitions.
Methods that do not explicitly utilize the action value function are interpreted from the objective
functions. Both M3DDPG and M2TD3 maintain the value function for the tuple of (s, a, ω). However,
M3DDPG takes the worst ω′ on the right-hand side, yielding a more conservative policy than M2TD3
for our setting because we assume a stationary uncertainty model, whereas M3DDPG assumes
a time-varying uncertainty model in nature [28]. The value functions in RARL and M2TD3 are
identical if ω is fixed. Particularly, ω is not introduced to the RARL value function because it does not
simultaneously optimize µθ and the estimate of the worst ω. RARL repeats the θ and ω̂ optimizations
alternatively. In contrast, M2TD3 optimizes θ and ω̂ simultaneously in a manner similar to the
training processes of generative adversarial networks (GANs) [9]. Hence, we require an action value
for each ω ∈ Ω.

A difference exists between the optimization strategies of RARL and M2TD3. As noted in the afore-
mentioned section, both methods attempt to maximize the worst-case performance minω∈Ω Jω(θ).
Conceptually, RARL repeats θ ← argmaxθ Jω(θ) and ω ← argminω Jω(θ). However, this opti-
mization strategy fails to converge even if the objective function (θ, ω) 7→ Jω(θ) is concave-convex.
As an example, consider the function (x, y) 7→ y2 − x2 + αxy. The RARL optimization strategy
reads x ← (α/2)y and y ← −(α/2)x, which causes divergence if α > 22. Alternating updates
are also employed in other approaches such as Adv-SAC, SA-DRL, and ATLA. These share the
same potential issue as RARL. M2TD3 attempts to alleviate this divergence problem by applying
the gradient-based max-min optimization method, which has been employed in GANs and other
applications and analyzed for its convergence [25; 18].

5 Experiments

In this study, we conducted experiments on the optimal control problem using MuJoCo environments.
Hence, we demonstrated the problems of existing methods and assessed the worst-case performance
and average performance of the policy trained by M2TD3 for different continuous control tasks.

Baseline Methods We summarize the baseline methods adapted to our experiment setting, namely,
DR, RARL, and M3DDPG.

DR: The objective of DR is to maximize the expected cumulative reward for the distribution α = U(Ω)
of ω. In each training episode, ω is drawn randomly from U(Ω), and the agent neglects ω when
training and performing the standard DRL. For a fair comparison, we implemented DR with TD3 as
the baseline DRL method.

RARL: We adapted RARL to our scenario by setting µω̂ : s 7→ ω̂ to the antagonist policy. RARL was
regarded as optimizing (2) for the worst ω ∈ Ω; hence, the objective was the same as that of M2TD3.
Particularly, the main technical difference between M2TD3 and RARL is in the optimization strategy
as described in Section 4. The original RARL is implemented with Trust Region Policy Optimization
(TRPO) [33], but for a fair comparison, we implemented it with DDPG, denoted as RARL (DDPG).
The experimental results of RARL (TRPO), the original RARL, are provided in Appendix F.

M3DDPG: By considering a two-agent scenario and a state-independent policy µω̂ : s 7→ ω̂ as the
opponent-agent’s policy, we adapted M3DDPG to our setting. M3DDPG is different from M2TD3
(and M2-DDPG below) even under a state-independent policy as described in Section 4. Because
of the difficulty in replacing DDPG with TD3 in the M3DDPG framework, we used DDPG as the
baseline DRL.

Additionally, for comparison, we implemented our approach with DDPG instead of TD3, denoted
by M2-DDPG. We also implemented a variant of M2TD3, denoted as SoftM2TD3, performing a
“soft” worst-case optimization to achieve better average performance while considering the worst-case
performance. The detail of SoftM2TD3 is described in Appendix B.

2A simple way to mitigate this issue would be to early-stop the optimization for each step of RARL. However,
the problem remains. The protagonist agent in RARL does not consider the uncertainty parameter in the critic.
This leads to a non-stationary training environment for both protagonist and adversarial agents. As the learning
in a non-stationary environment is generally difficult [11], RARL will be unstable. The instability of RARL has
also been investigated in the linear-quadratic system settings [49].

7



Table 1: Avg. ± std. error of worst-case performance Rworst(µ) over 10 trials for each approach

Environment M2TD3 SoftM2TD3 M2-DDPG M3DDPG RARL (DDPG) DR (TD3)
Ant 1 (×103) 3.84± 0.10 4.08± 0.15 1.28± 0.19 0.49± 0.12 −1.24± 0.10 3.51± 0.08
Ant 2 (×103) 4.13± 0.11 3.92± 0.14 0.95± 0.20 −0.25± 0.13 −1.77± 0.09 1.64± 0.13
Ant 3 (×103) 0.10± 0.10 0.07± 0.20 −1.13± 0.28 −1.38± 0.22 −2.38± 0.07 −0.32± 0.03

HalfCheetah 1 (×103) 3.14± 0.10 3.24± 0.08 2.24± 0.25 −0.13± 0.12 −0.55± 0.02 3.19± 0.08
HalfCheetah 2 (×103) 2.61± 0.16 2.82± 0.16 2.54± 0.23 −0.58± 0.06 −0.70± 0.05 2.12± 0.13
HalfCheetah 3 (×103) 0.93± 0.21 1.53± 0.23 1.20± 0.22 −0.66± 0.08 −0.81± 0.07 1.09± 0.06

Hopper 1 (×102) 6.21± 0.45 5.98± 0.23 5.38± 0.43 4.14± 0.60 3.32± 0.78 5.28± 2.55
Hopper 2 (×102) 5.33± 0.28 5.79± 0.29 4.30± 0.57 2.58± 0.29 3.34± 0.89 4.68± 0.15
Hopper 3 (×102) 2.84± 0.25 1.98± 0.22 2.25± 0.29 0.73± 0.11 1.64± 0.46 2.10± 0.35

HumanoidStandup 1 (×104) 9.33± 0.70 9.49± 0.81 8.09± 0.92 8.00± 0.78 5.29± 0.45 9.68± 0.60
HumanoidStandup 2 (×104) 6.50± 0.70 7.94± 0.90 6.24± 0.54 6.37± 0.72 5.78± 0.73 7.31± 0.78
HumanoidStandup 3 (×104) 6.20± 0.64 5.99± 0.37 5.96± 0.58 6.01± 0.38 5.54± 0.76 5.41± 0.34

InvertedPendulum 1 (×102) 8.22± 1.13 6.53± 1.36 6.49± 1.33 1.09± 0.71 1.53± 0.64 3.18± 1.10
InvertedPendulum 2 (×102) 3.56± 1.32 1.36± 0.30 1.10± 0.62 0.02± 0.00 0.02± 0.00 0.57± 0.02

Walker 1 (×103) 2.83± 0.39 3.02± 0.22 1.19± 0.17 0.89± 0.18 0.09± 0.02 2.19± 0.40
Walker 2 (×103) 3.14± 0.39 2.64± 0.43 0.85± 0.12 0.39± 0.11 0.06± 0.04 2.31± 0.50
Walker 3 (×103) 1.94± 0.40 2.00± 0.35 0.82± 0.13 0.28± 0.09 0.00± 0.02 1.32± 0.34

Small HalfCheetah 1 (×103) 5.27± 0.12 5.07± 0.14 4.51± 0.18 1.26± 0.38 −0.52± 0.02 6.76± 0.18
Small Hopper 1 (×103) 2.88± 0.32 2.23± 0.32 1.40± 0.19 1.39± 0.21 0.51± 0.12 3.42± 0.11
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Figure 1: Cumulative rewards under trained policies for each uncertainty parameter ω ∈ Ω. The
average (solid line) and standard error (band) for each ω ∈ Ω, as well as the worst average value
(dashed line) are shown. Left: Ant 1, Middle: InvertedPendulum 1, Right: Walker 1.

Experiment Setting We constructed 19 tasks based on six MuJoCo environments and with 1-3
uncertainty parameters, as summarized in Table 4 in Appendix C. Here, Ω was defined as an interval,
which mostly included the default ω values.

To assess the worst-case performance of the given policy µ under ω ∈ Ω, we evaluated the cumulative
reward 30 times for each uncertainty parameter value ω1, . . . , ωK ∈ Ω. Here, Rk(µ) was defined
as the cumulative reward on ωk averaged over 30 trials. Then, Rworst(µ) = min1⩽k⩽K Rk(µ) was
measured as an estimate of the worst-case performance of µ on Ω. We also report the average
performance Raverage(µ) =

1
K

∑K
k=1 Rk(µ). A total of K uncertainty parameters ω1, . . . , ωK for

evaluation were drawn as follows: for 1D ω, we chose K = 10 equally spaced points on the 1D
interval Ω; for 2D ω, we chose 10 equally spaced points in each dimension of Ω, thereby obtaining
K = 100 points; and for 3D ω, we chose 10 equally spaced points in each dimension of Ω, thereby
obtaining K = 1000 points.

For each approach, we trained the policy 10 times in each environment. The training time steps
Tmax were set to 2M, 4M, and 5M for the senarios with 1D, 2D, and 3D uncertainty parameters,
respectively. The final policies obtained were evaluated for their worst-case performances. For further
details of the experiment settings, please refer to Appendix C.

Comparison to Baseline Methods Table 1 summarizes the worst-case performances of the
policies trained by M2TD3, SoftM2TD3, M2-DDPG, M3DDPG, RARL, and DR. See also Table 7 in
Appendix E for the results of TD3 trained on the reference uncertainty parameters as baselines and
Figure 2 in Appendix G for the learning curves. In most cases, M2TD3 and SoftM2TD3 outperformed
DR, and RARL, and M3DDPG. Figure 1 shows the cumulative rewards of the policies trained by the
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Table 2: Avg. ± std. error of average performance Raverage(µ) over 10 trials for each approach

Environment M2TD3 SoftM2TD3 M2-DDPG M3DDPG RARL (DDPG) DR (TD3)
Ant 1 (×103) 4.51± 0.08 4.78± 0.16 2.05± 0.21 0.84± 0.14 −0.82± 0.06 5.25± 0.10
Ant 2 (×103) 5.44± 0.05 5.56± 0.01 3.03± 0.19 1.86± 0.38 −1.00± 0.06 6.32± 0.09
Ant 3 (×103) 2.66± 0.22 2.98± 0.23 0.30± 0.46 −0.33± 0.22 −1.31± 0.09 3.62± 0.11

HalfCheetah 1 (×103) 3.89± 0.06 4.00± 0.05 3.50± 0.12 1.01± 0.26 −0.46± 0.02 5.93± 0.18
HalfCheetah 2 (×103) 4.35± 0.05 4.52± 0.07 3.91± 0.08 0.77± 0.12 −0.08± 0.05 5.79± 0.15
HalfCheetah 3 (×103) 3.79± 0.09 4.02± 0.04 3.39± 0.21 0.58± 0.18 −0.21± 0.10 5.54± 0.16

Hopper 1 (×103) 2.68± 0.11 2.67± 0.18 1.79± 0.22 1.12± 0.21 0.38± 0.08 2.57± 0.15
Hopper 2 (×103) 2.51± 0.07 2.26± 0.12 1.49± 0.15 1.15± 0.11 0.66± 0.13 1.89± 0.08
Hopper 3 (×103) 0.85± 0.07 0.79± 0.04 0.87± 0.08 0.49± 0.11 0.47± 0.08 1.50± 0.07

HumanoidStandup 1 (×105) 1.08± 0.04 1.03± 0.07 1.05± 0.06 0.99± 0.06 0.77± 0.06 1.12± 0.05
HumanoidStandup 2 (×105) 0.97± 0.04 1.07± 0.05 0.93± 0.04 0.92± 0.04 0.85± 0.08 1.06± 0.04
HumanoidStandup 3 (×105) 1.09± 0.06 1.04± 0.03 0.98± 0.06 1.01± 0.04 0.87± 0.07 1.04± 0.07

InvertedPendulum 1 (×102) 9.66± 0.25 9.17± 0.54 8.79± 0.87 4.51± 0.12 4.21± 0.81 9.32± 0.11
InvertedPendulum 2 (×102) 6.13± 1.42 6.26± 0.95 8.27± 0.70 1.76± 0.51 3.07± 0.66 9.18± 0.07

Walker 1 (×103) 3.70± 0.31 3.51± 0.16 2.03± 0.26 1.55± 0.25 0.15± 0.03 3.59± 0.26
Walker 2 (×103) 4.72± 0.12 4.37± 0.32 2.39± 0.20 1.63± 0.22 0.26± 0.05 4.54± 0.31
Walker 3 (×103) 4.27± 0.21 4.21± 0.30 2.48± 0.24 1.65± 0.15 0.21± 0.07 4.48± 0.16

Small HalfCheetah 1 (×103) 6.00± 0.15 6.04± 0.13 5.71± 0.07 3.38± 0.34 −0.42± 0.01 8.11± 0.17
Small Hopper 1 (×103) 2.96± 0.31 2.44± 0.31 1.57± 0.21 1.53± 0.21 0.56± 0.13 3.44± 0.10

Table 3: Avg. ± std. error of worst-case performance Rworst(µ) and average performance Raverage(µ)
on InvertedPendulum 1 obtained by M2TD3 variants over 10 trials

Environment N=5 N=1 N=10 w/o DRS w/o PRS

worst-case (×102) 8.22± 1.13 5.77± 1.29 9.07± 0.89 9.07± 0.88 5.41± 1.45

average (×102) 9.66± 0.25 8.10± 0.90 9.89± 0.11 9.08± 0.88 6.90± 1.25

six approaches for each of the ω values on the Ant 1, InvertedPendulum 1, and Walker 1 senarios.
See also Figure 4 in Appendix H for other senarios.

Comparison with DR: DR does not attempt to optimize the worst-case performance. In fact, it
showed lower worst-case performance than M2TD3 and SoftM2TD3 in many scenarios because the
obtained policy performs poorly on some uncertainty parameters while it performs well on average.
In the results of InvertedPendulum 1 shown in Figure 1, for example, the policy obtained by DR
exhibited a high performance for a wide range of ω ∈ Ω but performed poorly for small ω. M2TD3
outperformed DR and the other baselines on those senarios. However, in some scenarios, such as
HumanoidStandup 1, Small HalfCheetah 1, and Small Hopper 1, DR achieved a better worst-case
performance than M2TD3. This outcome may be because the optimization of worst-case function
values is generally more unstable than that of the expected function values.

Comparison with RARL: M2-DDPG outperformed RARL in most senarios, with this performance
difference originating from the different optimization strategies. As noted above, the optimization
strategy employed in RARL often fails to converge. Specifically, as shown in Figure 1, RARL failed
to optimize the policy not only in the worst-case but also on average in Ant 1 and Walker 1 senarios.
In the InvertedPendulum 1 senario, RARL could train the policy for some uncertainty parameters, but
not for the worst-case uncertainty parameter.

Comparison with M3DDPG: In many cases, M2-DDPG outperformed M3DDPG. Because M3DDPG
considers a stronger adversary than necessary (the worst ω for each time step), it was too conservative
for this experiment and exhibited lower performance.

Average Performance Although our objective is maximizing the worst-case performance, the
average performance is also important in practice. Table 2 compares the average performance of
the six approaches. Generally, DR achieved the highest average performance as expected. However,
interestingly, M2TD3 and SoftM2TD3 achieved competitive average performances to DR on several
senarios such as Hopper 1, 2, and Walker 1, 2. Moreover, Table 1 compared with Table 2 shows that
a few times higher average performance than worst-case performance on several senarios such as Ant
3 and Hopper 1–3.
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Ablation Study Ablation studies were conducted on InvertedPendulum 1 with the pole mass as the
uncertainty parameters. M2TD3 with N = 5 was taken as the baseline. We tested several variants as
follows: with different multiple uncertainty parameters (N = 1 and 10), without a distance-based
refreshing strategy (w/o DRS), and without a probability-based refreshing strategy (w/o PRS). Table 3
shows the results. The inclusion of multiple uncertainty parameters and the probability-based refresh
strategy contributed significantly to the worst-case performance and average performance, implying
that both techniques contribute to better estimating the worst uncertainty parameter. Although DRS
had little impact on the performance, prior knowledge in DRS can be implemented by defining the
distance and the threshold in the uncertainty parameter task-dependently, which we did not implement
here.

Small Uncertainty Set (Limitation of M2TD3) Small HalfCheetah 1 and Small Hopper 1 were
designed to have a smaller uncertainty parameter set than HalfCheetah 1 and Hopper 1 and to
reveal the effect of the size of the uncertainty parameter interval. As expected, a smaller uncertainty
parameter set resulted in higher worst-case (Table 1) and average (Table 2) performances, for all
approaches. Because M2TD3 performs the worst-case optimization, it is expected to show better
worst-case performance than DR, independently of the size of the uncertainty parameter set. However,
in these senarios, DR showed better worst-case performance than that of M2TD3, while M2TD3
achieved competitive or superior worst-case performance to those of DR on HalfCheetah 1 and
Hopper 1. This may be because the max-min optimization performed by M2TD3 resulted in sub-
optimal policies. When the uncertainty parameter set is small, and the performance does not change
significantly over the uncertainty parameter set, maximizing the average performance is likely to lead
to high worst-case performance. The sub-optimal results obtained by M2TD3 is then dominated by
the results obtained by DR. Therefore, the maxmin optimization in M2TD3 can be improed.

Evaluation Under Adversarial External Force Although we developed the proposed approach for
the situation that the uncertainty parameter is directly encoded by ω, we can extend it to the situation
where the model misspecification is expressed by an external force produced by an adversarial agent
as in [31]. The extended approach and its experimental result are given in Appendix J. Superior
worst-case performances of M2TD3 over DR, RARL, and M3DDPG were observed for this setting
as well.

6 Conclusion

In this study, we targeted the policy optimization aimed at maximizing the worst-case performance
in a predefined uncertainty set. The list of the contributions are as follows. (i) We formulated
the off-policy deterministic actor-critic approach to the worst-case performance maximization as a
tri-level optimization problem (3). (ii) We developed the worst-case performance of M2TD3. The
key concepts were the incorporation of the uncertainty parameter into the critic network and use of
the simultaneous gradient ascent descent method. Different technical components were introduced to
stabilize the training. (iii) We evaluated the worst-case performance of M2TD3 on 19 MuJoCo tasks
through comparison with three baseline methods. Ablation studies revealed the usefulness of each
component of M2TD3.
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