Supplementary materials

A On the Definition of LOT_{*r.c*}

Let $(\mathcal{X}, d_{\mathcal{X}})$ and $(\mathcal{Y}, d_{\mathcal{Y}})$ two nonempty compact Polish spaces, $\mu \in \mathcal{M}_1^+(\mathcal{X})$, $\nu \in \mathcal{M}_1^+(\mathcal{Y})$ two probability measures on these spaces and $c : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$ a nonnegative and continuous function. We define the generalized low-rank optimal transport between μ and ν as

$$\operatorname{LOT}_{r,c}(\mu,\nu) \triangleq \inf_{\pi \in \Pi_r(\mu,\nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) d\pi(x,y) .$$

where

$$\Pi_r(\mu,\nu) \triangleq \{\pi \in \Pi(\mu,\nu) : \exists (\mu_i)_{i=1}^r \in \mathcal{M}_1^+(\mathcal{X})^r, \ (\nu_i)_{i=1}^r \in \mathcal{M}_1^+(\mathcal{Y})^r, \ \lambda \in \Delta_r^* \text{ s.t. } \pi = \sum_{i=1}^r \lambda_i \mu_i \otimes \nu_i \}.$$

As \mathcal{X} and \mathcal{Y} are compact, $\Pi_r(\mu, \nu)$ is tight, then Prokhorov's theorem applies and the closure of $\Pi_r(\mu, \nu)$ is sequentially compact. Let us now show that $\Pi_r(\mu, \nu)$ is closed. Indeed, Let $(\pi_n)_{n\geq 0}$ a sequence of $\Pi_r(\mu, \nu)$ converging towards π_* . Then by definition there exists for all $k \in [|1, r|]$, $(\mu_n^{(k)})_{n\geq 0}$, $(\nu_n^{(k)})_{n\geq 0}$ and $(\lambda_n^{(k)})_{n\geq 0}$ such that for all $n\geq 0$

$$\pi_n = \sum_{i=1}^r \lambda_n^{(k)} \mu_n^{(k)} \otimes \nu_n^{(k)}$$

However, $(\mu_n^{(k)})_{n\geq 0}$ and $(\nu_n^{(k)})_{n\geq 0}$ are also tight, and Prokhorov's theorem applies, therefore we can extract a common subsequence such that for all k,

$$\mu_n^{(k)} \rightarrow \mu_*^{(k)} \ \text{ and } \nu_n^{(k)} \rightarrow \nu_*^{(k)}$$

In addition as $(\lambda_n)_{n\geq 0}$ live in the simplex Δ_r , we can also extract a sub-sequence, such that $\lambda_n \to \lambda_* \in \Delta_r$. Finally by unicity of the limit we obtain that

$$\pi_* = \sum_{k=1}^r \lambda_*^{(k)} \mu_*^{(k)} \otimes \nu_*^{(k)}$$
 .

Finally, by denoting $I \triangleq \{k : \lambda_*^{(k)} > 0\}$, and by considering $i^* \in I$, we obtain that

$$\pi_* = \sum_{i \in I \setminus \{i^*\}}^r \lambda_*^{(i)} \mu_*^{(i)} \otimes \nu_*^{(i)} + \sum_{j=1}^{r-|I|+1} \frac{\lambda_*^{(i^*)}}{r-|I|+1} \mu_*^{(i^*)} \otimes \nu_*^{(i^*)} .$$

from which follows that $\pi_* \in \Pi_r(\mu, \nu)$.

B Proofs

B.1 Proof of Proposition

Proposition. Let $n, m \ge 2$, $\mathbf{X} \triangleq \{x_1, \dots, x_n\} \subset \mathcal{X}$, $\mathbf{Y} \triangleq \{y_1, \dots, y_m\} \subset \mathcal{Y}$ and $a \in \Delta_n^*$ and $b \in \Delta_m^*$. Then for $2 \le r \le \min(n, m)$, we have that

$$|\operatorname{LOT}_{r,c}(\mu_{a,\mathbf{X}},\nu_{b,\mathbf{Y}}) - \operatorname{OT}_{c}(\mu_{a,\mathbf{X}},\nu_{b,\mathbf{Y}})| \le ||C||_{\infty} \ln(\min(n,m)/(r-1))$$

Proof. Let $P \in \operatorname{argmin}_{P \in \Pi_{a,b}} \langle C, P \rangle$. As P is a nonnegative matrix, its nonnegative rank cannot exceed $\min(n, m)$. Assume for simplicity, that n = m, then there exists $(R_i)_{i=1}^n$ nonnegative matrices of rank 1 such that

$$P = \sum_{i=1}^{n} R_i \, .$$

As for all $i \in [|1, n|]$, R_i is a rank 1 matrix, there exist $\tilde{q}_i, \tilde{r}_i \in \mathbb{R}^n_+$ such that $R_i = \tilde{q}_i \tilde{r}_i^T$. Then by denoting $q_i = \tilde{q}_i / |\tilde{q}_i|, r_i = \tilde{r}_i / |\tilde{r}_i|$ and $\lambda_i = |\tilde{q}_i| |\tilde{r}_i|$ where for any $h \in \mathbb{R}^n$ $|h| \triangleq \sum_{i=1}^n h_i$, we obtain that

$$P = \sum_{i=1}^{n} \lambda_i q_i r_i^T$$

Without loss of generality, we can consider the case where $\lambda_1 \ge \cdots \ge \lambda_n$. Let us now denote $\lambda := (\lambda_1, \ldots, \lambda_n)$, and by using the fact the P is a coupling we obtain that $\lambda \in \Delta_n$. Also, by definition of λ , we have that for all $k \in [|1, n|], \lambda_k \le 1/k$. Let us now define

$$\tilde{P} \triangleq \sum_{i=1}^{r-1} \lambda_i q_i r_i^T + \left(\sum_{i=r}^n \lambda_i\right) \alpha_r \beta_r^T$$

where

$$\begin{aligned} \alpha_r &\triangleq \frac{\sum_{i=r}^n \lambda_i q_i}{\sum_{i=r}^n \lambda_i} \\ \beta_r &\triangleq \frac{\sum_{i=r}^n \lambda_i r_i}{\sum_{i=r}^n \lambda_i} \end{aligned}$$

Remark that $\tilde{P} \in \Pi_{a,b}(r)$, therefore we obtain that

$$\begin{aligned} |\text{LOT}_{r,c}(\mu_{a,\mathbf{X}},\nu_{b,\mathbf{Y}}) - \text{OT}_{c}(\mu_{a,\mathbf{X}},\nu_{b,\mathbf{Y}})| &= \text{LOT}_{r,c}(\mu_{a,\mathbf{X}},\nu_{b,\mathbf{Y}}) - \text{OT}_{x}(\mu_{a,\mathbf{X}},\nu_{b,\mathbf{Y}}) \\ &\leq \langle C, \tilde{P} \rangle - \langle C, P \rangle \\ &\leq \langle C, \left(\sum_{i=r}^{n} \lambda_{i}\right) \alpha_{r} \beta_{r}^{T} \rangle - \langle C, \sum_{i=r}^{n} \lambda_{i} q_{i} r_{i}^{T} \rangle \\ &\leq \langle C, \left(\sum_{i=r}^{n} \lambda_{i}\right) \alpha_{r} \beta_{r}^{T} \rangle \\ &\leq ||C||_{\infty} \sum_{i=r}^{n} \lambda_{i} \leq ||C||_{\infty} \sum_{i=r}^{n} \frac{1}{i} \leq ||C||_{\infty} \ln(n/(r-1)) \end{aligned}$$

B.2 Proof of Proposition 2

Proposition 10. Let $\mu \in \mathcal{M}_1^+(\mathcal{X})$, $\nu \in \mathcal{M}_1^+(\mathcal{Y})$ and let us assume that c is L-Lipschitz w.r.t. x and y. Then for any $r \ge 1$, we have

$$|LOT_{r,c}(\mu,\nu) - OT_c(\mu,\nu)| \le 2L \max(\mathcal{N}_{\lfloor \log_2(\lfloor \sqrt{r} \rfloor) \rfloor}(\mathcal{X}, d_{\mathcal{X}}), \mathcal{N}_{\lfloor \log_2(\lfloor \sqrt{r} \rfloor) \rfloor}(\mathcal{Y}, d_{\mathcal{Y}}))$$

Proof. As \mathcal{X} and \mathcal{Y} are compact, $\mathcal{N}_{\lfloor \log_2(\lfloor \sqrt{r} \rfloor \rfloor \rfloor}(\mathcal{X}, d), \mathcal{N}_{\lfloor \log_2(\lfloor \sqrt{r} \rfloor \rfloor \rfloor}(\mathcal{Y}, d) < +\infty$ and then by denoting $\varepsilon_{\mathcal{X}} \triangleq \mathcal{N}_{\lfloor \log_2(\lfloor \sqrt{r} \rfloor) \rfloor}(\mathcal{X}, d_{\mathcal{X}})$, there exists $x_1, \ldots, x_{\lfloor \sqrt{r} \rfloor} \in \mathcal{X}$, such that $\mathcal{X} \subset \bigcup_{i=1}^r \mathcal{B}_{\mathcal{X}}(x_i, \varepsilon)$ from which we can extract a partition $(S_{i,\mathcal{X}})_{i=1}^{\lfloor \sqrt{r} \rfloor}$ of \mathcal{X} such that for all $i \in [|1, \lfloor \sqrt{r} \rfloor |]$, and $x, y \in S_{i,\mathcal{X}}, d_{\mathcal{X}}(x, y) \leq \varepsilon_{\mathcal{X}}$. Similarly we can build a partition $(S_{i,\mathcal{Y}})_{i=1}^{\lfloor \sqrt{r} \rfloor}$ of \mathcal{Y} . Let us now define for all $k \in [|1, \lfloor \sqrt{r} \rfloor |]$,

$$\mu_k \triangleq \frac{\mu|_{S_{k,\mathcal{X}}}}{\mu(S_{k,\mathcal{X}})} \text{ and } \nu_k \triangleq \frac{\nu|_{S_{k,\mathcal{Y}}}}{\nu(S_{k,\mathcal{Y}})}$$

with the convention that $\frac{0}{0} = 0$, we can define

$$\pi_r \triangleq \sum_{i,j=1}^{\lfloor \sqrt{r} \rfloor} \pi^* (S_{i,\mathcal{X}} \times S_{j,\mathcal{Y}}) \nu_j \otimes \mu_i .$$

First remarks that $\pi_r \in \Pi_r(\mu, \nu)$. Indeed we have for any measurable set B

$$\pi_r(\mathcal{X} \times B) = \sum_{j=1}^{\lfloor \sqrt{r} \rfloor^2} \nu_j(B) \sum_{i=1}^r \pi^*(S_{i,\mathcal{X}} \times S_{j,\mathcal{Y}})$$
$$= \sum_{j=1}^{\lfloor \sqrt{r} \rfloor} \nu_j(B) \nu(S_{j,\mathcal{Y}})$$
$$= \sum_{j=1}^{\lfloor \sqrt{r} \rfloor} \nu|_{S_{j,\mathcal{X}}}(B)$$
$$= \nu(B) ,$$

similarly $\pi_r(A \times \mathcal{Y}) = \mu(A)$ and we have that $\lfloor \sqrt{r} \rfloor^2 \leq r$. Therefore we obtain that

$$\begin{aligned} |\text{LOT}_{r,c}(\mu,\nu) - \text{OT}_{c}(\mu,\nu)| &= \text{LOT}_{r,c}(\mu,\nu) - \text{OT}_{c}(\mu,\nu) \\ &\leq \int_{\mathcal{X}\times\mathcal{Y}} c(x,y) d\pi_{r}(x,y) - \int_{\mathcal{X}\times\mathcal{Y}} c(x,y) d\pi^{*}(x,y) \\ &\leq \sum_{i,j=1}^{\lfloor\sqrt{r}\rfloor} \int_{S_{i,\mathcal{X}}\times S_{j,\mathcal{Y}}} c(x,y) d[\pi_{r}(x,y) - \pi^{*}(x,y)] \\ &\leq \sum_{i,j=1}^{\lfloor\sqrt{r}\rfloor} \pi^{*}(S_{i,\mathcal{X}}\times S_{j,\mathcal{Y}}) \\ &\times [\sup_{(x,y)\in S_{i,\mathcal{X}}\times S_{j,\mathcal{Y}}} c(x,y) - \inf_{(x,y)\in S_{i,\mathcal{X}}\times S_{j,\mathcal{Y}}} c(x,y)] \\ &\leq L[\varepsilon_{\mathcal{X}} + \varepsilon_{\mathcal{Y}}] \end{aligned}$$

from which the result follows.

Corollary. Under the same assumptions of Proposition 2 and by assuming in addition that there exists a Monge map solving $OT_c(\mu, \nu)$, we obtain that for any $r \ge 1$,

$$|\mathrm{LOT}_{r,c}(\mu,\nu) - \mathrm{OT}_{c}(\mu,\nu)| \le L\mathcal{N}_{\lfloor \log_{2}(r) \rfloor}(\mathcal{Y}, d_{\mathcal{Y}})$$

Proof. Let us denote T a Monge map solution of $OT_c(\mu, \nu)$ and as in the proof above, let us consider a partition of $(S_{i,\mathcal{Y}})_{i=1}^r$ of \mathcal{Y} such that for all $i \in [|1, r|]$, and $x, y \in S_{i,\mathcal{Y}}$, $d_{\mathcal{Y}}(x, y) \leq \varepsilon_{\mathcal{Y}}$ with $\varepsilon_{\mathcal{Y}} \triangleq \mathcal{N}_{\lfloor \log_2(r) \rfloor}(\mathcal{Y}, d_{\mathcal{Y}})$. Let us now define for all $k \in [|1, \lfloor \sqrt{r} \rfloor|]$,

$$\mu_k \triangleq \frac{\mu|_{T^{-1}(S_{k,\mathcal{Y}})}}{\mu(T^{-1}(S_{k,\mathcal{Y}}))} \text{ and } \nu_k \triangleq \frac{\nu|_{S_{k,\mathcal{Y}}}}{\nu(S_{k,\mathcal{Y}})}$$

with the convention that $\frac{0}{0} = 0$, we can define

$$\pi_r \triangleq \sum_{k=1}^r \pi^* (T^{-1}(S_{k,\mathcal{Y}}) \times S_{k,\mathcal{Y}}) \nu_k \otimes \mu_k .$$

Again we have that $\pi_r \in \Pi_r(\mu, \nu)$, and we obtain that $|\text{LOT}_{r,c}(\mu, \nu) - \text{OT}_c(\mu, \nu)| = \text{LOT}_{r,c}(\mu, \nu) - \text{OT}_c(\mu, \nu)$

$$\begin{aligned} & \leq \int_{\mathcal{X}\times\mathcal{Y}} c(x,y)d\pi_{r}(x,y) - \int_{\mathcal{X}\times\mathcal{Y}} c(x,y)d\pi^{*}(x,y) \\ & \leq \sum_{k=1}^{r} \pi^{*}(T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}) \int_{T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}} c(x,y)d\mu_{k}(y) \otimes \nu_{k}(y) \\ & -\sum_{k=1}^{r} \int_{T^{-1}(S_{k,\mathcal{Y}})} c(x,T(x))d\mu(x) \\ & \leq \sum_{k=1}^{r} \pi^{*}(T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}) \int_{T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}} c(x,y)d\mu_{k}(y) \otimes \nu_{k}(y) \\ & -\sum_{k=1}^{r} \pi^{*}(T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}) \int_{T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}} c(x,T(x))d\mu_{k}(x) \otimes \nu_{k}(y) \\ & \leq \sum_{k=1}^{r} \pi^{*}(T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}) \int_{T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}} c(x,T(x))d\mu_{k}(x) \otimes \nu_{k}(y) \\ & \leq \sum_{k=1}^{r} \pi^{*}(T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}) \int_{T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}} [c(x,y) - c(x,T(x))]d\mu_{k}(x) \otimes \nu_{k}(x) \\ & \leq L\varepsilon_{\mathcal{Y}} \end{aligned}$$

from which the result follows. Note that to obtain the above inequalities, we use the fact that π^* is supported on the graph of T, and therefore we have have for all $k \in [|1, r|]$,

$$\pi^*(T^{-1}(S_{k,\mathcal{Y}}) \times S_{k,\mathcal{Y}}) = \mu(T^{-1}(S_{k,\mathcal{Y}})) = \nu(S_{k,\mathcal{Y}}).$$

B.3 Proof of Proposition **3**

Proposition. Let $r \ge 1$ and $\mu, \nu \in \mathcal{M}_1^+(\mathcal{X})$, then $\operatorname{LOT}_{r,c}(\hat{\mu}_n, \hat{\nu}_n) \xrightarrow[n \to +\infty]{} \operatorname{LOT}_{r,c}(\mu, \nu)$ a.s.

Proof. Let π^* solution of $LOT_{r,c}(\mu, \nu)$. Then there exists $\lambda^* \in \Delta^*_r$, $(\mu^*_i)_{i=1}^r$, $(\nu^*_i)_{i=1}^r \in \mathcal{M}^+_1(\mathcal{X})^r$ such that

$$\pi^* = \sum_{i=1}^r \lambda_i^* \mu_i^* \otimes \nu_i^*.$$

Note that by definition, we have that

$$\mu = \sum_{i=1}^r \lambda_i^* \mu_i^* \text{ and } \nu = \sum_{i=1}^r \lambda_i^* \nu_i^*.$$

Let us now define π_{μ} and π_{μ} both elements of $\mathcal{M}_{1}^{+}(\mathcal{X} \times [|1, r|])$ as follows:

 $\begin{aligned} \pi_{\mu}(A\times\{k\}) &\triangleq \lambda_{k}\mu_{k}(A) \text{ and } \pi_{\nu}(A\times\{k\}) \triangleq \lambda_{k}\nu_{k}(A) \text{ for any measurable set } A \text{ and } k \in [|1,r|] \text{ .} \\ \text{Observe that the right marginals of } \pi_{\mu} \text{ and } \pi_{\nu} \text{ is the same and we will denote it } \rho. \text{ We can now } \\ \text{define for all } x, y \in \mathcal{X} \text{ the family of kernels } (k_{\mu}(\cdot,x))_{x\in\mathcal{X}} \in \mathcal{M}_{1}^{+}([|1,r|])^{\mathcal{X}} \text{ and } (k_{\nu}(\cdot,y))_{y\in\mathcal{X}} \in \mathcal{M}_{1}^{+}([|1,r|])^{\mathcal{X}} \text{ corresponding to the disintegration with respect to the projection of respectively } \mu \\ \text{ad } \nu. \text{ Let us now consider } n \text{ independent samples } (Z_{i}^{\mu})_{i=1}^{n} \text{ and } (Z_{i}^{\nu})_{i=1}^{n} \text{ such that for all } i \in [|1,n|], \\ Z_{i}^{\mu} \sim k_{\mu}(\cdot,X_{i}) \text{ and } Z_{i}^{\nu} \sim k_{\nu}(\cdot,Y_{i}) \text{ and let us define for all } k \in [|1,r|] \end{aligned}$

$$\tilde{\mu}_k \triangleq \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{Z_i^{\mu} = k} \delta_{X_i} \text{ and } \tilde{\nu}_k \triangleq \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{Z_i^{\nu} = k} \delta_{Y_i}.$$

Let us now define

$$\begin{split} \tilde{\pi} &\triangleq \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k| |\tilde{\nu}_k|} \tilde{\mu}_k \otimes \tilde{\nu}_k \\ &+ \frac{1}{1 - \sum_{k=1}^{r-1} \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)} \left[\hat{\mu} - \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \tilde{\mu}_k \right] \otimes \left[\hat{\nu} - \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|} \tilde{\nu}_k \right] \end{split}$$

with the convention that $\frac{0}{0} = 0$. Now it is easy to check that $\tilde{\pi} \in \Pi_r(\hat{\mu}, \hat{\nu})$, indeed we have that

$$\begin{split} \tilde{\pi}(A \times \mathcal{X}) &= \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \tilde{\mu}_k(A) \\ &+ \frac{1}{1 - \sum_{k=1}^{r-1} \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)} \left[\hat{\mu}(A) - \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \tilde{\mu}_k(A) \right] \left[1 - \sum_{k=1}^{r-1} \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|) \right] \\ &= \hat{\mu}(A) \end{split}$$

in addition by construction we have that

$$\left| \hat{\mu} - \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \tilde{\mu}_k \right| = \left| \hat{\nu} - \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|} \tilde{\nu}_k \right| = 1 - \sum_{k=1}^{r-1} \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)$$

and both $\hat{\mu} - \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \tilde{\mu}_k$ and $\hat{\nu} - \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|} \tilde{\nu}_k$ are positive measures. Therefore we obtain that

$$\operatorname{LOT}_{r,c}(\hat{\mu}, \hat{\nu}) \leq \int_{\mathcal{X}^2} c(x, y) d\tilde{\pi}(x, y)$$

Now we aim at showing at $\int_{\mathcal{X}^2} c(x, y) d\tilde{\pi}(x, y) \to \text{LOT}_{r,c}(\mu, \nu)$ a.s.. Indeed first observe that from the law of large numbers we have that for all $k \in [|1, r|]$, $|\tilde{\mu}_k| \to \lambda_k^*$ and similarly $|\tilde{\nu}_k| \to \lambda_k^*$. In addition, for all k, q we have that almost surely, $\tilde{\mu}_k \otimes \tilde{\nu}_q$ converges weakly towards $\lambda_k^* \lambda_q^* \mu_k \otimes \nu_q$. Indeed one can consider the following algebra $\mathcal{F} \triangleq \{(x, y) \in \mathcal{X}^2 \to f(x)g(y) \ f, g \in \mathcal{C}(\mathcal{X})\}$, and then by Stone-Weierstrass, one obtains by density the desired result. Now remark that

$$\begin{split} \int_{\mathcal{X}^2} c(x,y) d\tilde{\pi}(x,y) &= \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k| |\tilde{\nu}_k|} \int_{\mathcal{X}^2} c(x,y) d\tilde{\mu}_k \otimes \tilde{\nu}_k \\ &+ \frac{1}{\tilde{\lambda}_r} \int_{\mathcal{Z}^2} c(x,y) d\tilde{\mu}_r \otimes \tilde{\nu}_r \\ &+ \frac{1}{\tilde{\lambda}_r} \sum_{k=1}^{r-1} \left(1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|} \right) \int_{\mathcal{X}^2} c(x,y) d\tilde{\mu}_r \otimes \tilde{\nu}_k \\ &+ \frac{1}{\tilde{\lambda}_r} \sum_{k=1}^{r-1} \left(1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \right) \int_{\mathcal{X}^2} c(x,y) d\tilde{\mu}_k \otimes \tilde{\nu}_r \\ &+ \frac{1}{\tilde{\lambda}_r} \sum_{k,q=1}^{r-1} \int_{\mathcal{X}^2} \left(1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \right) \left(1 - \frac{\min(|\tilde{\mu}_q|, |\tilde{\nu}_q|)}{|\tilde{\nu}_q|} \right) c(x,y) d\tilde{\mu}_k(x) d\tilde{\nu}_q(y) \end{split}$$

from which follows directly that $\int_{\mathcal{X}^2} c(x, y) d\tilde{\pi}(x, y) \to \text{LOT}_{r,c}(\mu, \nu)$ a.s. Let us now denote for all $n \geq 1, \pi_n$ a solution of $\text{LOT}_{r,c}(\hat{\mu}, \hat{\nu})$. Let $\omega \in \Omega$ an element of the probability space where live the random variables $(X_i)_{i\geq 0}$ and $(Y_i)_{i\geq 0}$ such that $\int_{\mathcal{X}^2} c(x, y) d\tilde{\pi}^{(\omega)}(x, y) \to \text{LOT}_{r,c}(\mu, \nu)$. As \mathcal{X} is compact Thanks to Prokhorov's Theorem, we can extract a sequence such that $(\pi_n^{(\omega)})_{n\geq 0}$ converge weakly towards $\pi^{(\omega)} \in \Pi_r(\mu, \nu)$. In addition we have that for all $n \geq 1$

$$\int_{\mathcal{X}^2} c(x,y) d\pi_n^{(\omega)}(x,y) \le \int_{\mathcal{X}^2} c(x,y) d\tilde{\pi}^{(\omega)}(x,y)$$

And by considering the limit we obtain that

$$\int c(x,y)d\pi^{(\omega)}(x,y) \leq \operatorname{LOT}_{r,c}(\mu,\nu)$$

However $\pi^{(\omega)} \in \Pi_r(\mu, \nu)$ and by optimality we obtain that

$$\int c(x,y)d\pi^{(\omega)}(x,y) = \mathrm{LOT}_{r,c}(\mu,\nu)$$

This holds for an arbitrary subsequence of $(\pi_n^{(\omega)})_{n\geq 0}$, from which follows that $\int c(x,y)d\pi_n^{(\omega)}(x,y) \to \text{LOT}_{r,c}(\mu,\nu)$. Finally this holds almost surely and the result follows. \Box

B.4 Proof of Proposition 4

Proposition. Let $r \ge 1$ and $\mu, \nu \in \mathcal{M}_1^+(\mathcal{X})$. Then, there exists a constant K_r such that for any $\delta > 0$ and $n \ge 1$, we have, with a probability of at least $1 - 2\delta$, that

$$\mathrm{LOT}_{r,c}(\hat{\mu}_{n},\hat{\nu}_{n}) - \mathrm{LOT}_{r,c}(\mu,\nu) \le 11 \|c\|_{\infty} \sqrt{\frac{r}{n}} + K_{r} \|c\|_{\infty} \left[\sqrt{\frac{\log(40/\delta)}{n}} + \frac{\sqrt{r}\log(40/\delta)}{n} \right]$$

Proof. We reintroduce the same notation as in the proof of Proposition 3. Let π^* solution of $\text{LOT}_{r,c}(\mu,\nu)$. Then there exists $\lambda^* \in \Delta_r^*$, $(\mu_i^*)_{i=1}^r$, $(\nu_i^*)_{i=1}^r \in \mathcal{M}_1^+(\mathcal{Z})^r$ such that

$$\pi^* = \sum_{i=1}^r \lambda_i^* \mu_i^* \otimes \nu_i^*.$$

As before let us also consider π_{μ} and π_{μ} defined as $\pi_{\mu}(A \times \{k\}) \triangleq \lambda_{k}\mu_{k}(A)$ and $\pi_{\nu}(A \times \{k\}) \triangleq \lambda_{k}\nu_{k}(A)$ for any measurable set A and $k \in [|1, r|]$ and denote ρ their common right marginal. We also consider n independent samples $(Z_{i}^{\mu})_{i=1}^{n}$ and $(Z_{i}^{\nu})_{i=1}^{n}$ such that for all $i \in [|1, n|], Z_{i}^{\mu} \sim k_{\mu}(\cdot, X_{i})$ and $Z_{i}^{\nu} \sim k_{\nu}(\cdot, Y_{i})$ and we denote for all $k \in [|1, r|]$

$$\tilde{\mu}_k \triangleq \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{Z_i^{\mu} = k} \delta_{X_i} \text{ and } \tilde{\nu}_k \triangleq \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{Z_i^{\nu} = k} \delta_{Y_i}$$

Let us now define

$$\hat{\pi} \triangleq \sum_{i=1}^r \frac{1}{\lambda_k^*} \tilde{\mu}_k \otimes \tilde{\nu}_k \; .$$

Our goal is to control the following quantity:

$$\left| \operatorname{LOT}_{r,c}(\mu,\nu) - \int_{\mathcal{Z}^2} c(x,y) d\hat{\pi}(x,y) \right|,$$

First observe that

$$\mathbb{E}\left[\int_{\mathcal{Z}^2} c(x,y) d\hat{\pi}(x,y)\right] = \sum_{i=1}^r \frac{1}{\lambda_k^*} \mathbb{E}\left[\int_{\mathcal{Z}^2} c(x,y) d\tilde{\mu}_k(x) d\tilde{\nu}_k(y)\right]$$
$$= \sum_{i=1}^r \frac{1}{\lambda_k^* n^2} \times \sum_{i,j} \mathbb{E}\left[c(X_i,Y_j) \mathbf{1}_{Z_i^\mu = k} \mathbf{1}_{Z_j^\nu = k}\right]$$

Moreover, we have that

$$\mathbb{E}\left[c(X_{i}, Y_{j})\mathbf{1}_{Z_{i}^{\mu}=k}\mathbf{1}_{Z_{j}^{\nu}=k}\right] = \int_{(\mathcal{Z}\times[|1,r|])^{2}} c(x, y)\mathbf{1}_{z=k}\mathbf{1}_{z'=k}d\pi_{\mu}(x, z)d\pi_{\nu}(y, z')$$
$$= \int_{(\mathcal{Z}\times[|1,r|])^{2}} c(x, y)\mathbf{1}_{z=k}\mathbf{1}_{z'=k}d\mu_{z}(x)d\nu_{z'}(y)d\rho(z)d\rho(z')$$
$$= \lambda_{k}^{2}\int_{\mathcal{Z}^{2}} c(x, y)d\mu_{k}(x)d\nu_{k}(y)$$

from which follows that

$$\mathbb{E}\left[\int_{\mathcal{Z}^2} c(x,y) d\hat{\pi}(x,y)\right] = \sum_{i=1}^r \lambda_k^* \int_{\mathcal{Z}^2} c(x,y) d\mu_k(x) d\nu_k(y) = \mathrm{LOT}_{r,c}(\mu,\nu)$$

Now let us define for all $(x_i, z_i)_{i=1}^n, (y_i, z'_i) \in (\mathcal{Z} \times [|1, r|])^n$,

$$g((x_1, z_1), \dots, (x_n, z_n), (y_1, z_1'), \dots, (y_n, z_n')) \triangleq \sum_{q=1}^r \frac{1}{\lambda_q^* n^2} \sum_{i,j} c(x_i, y_j) \mathbf{1}_{z_i = q} \mathbf{1}_{z_j' = q},$$

since ${\mathcal Z}$ is compact and c is continuous, we have that

$$\begin{aligned} |g(\dots,(x_k,z_k),\dots) - g(\dots,(\tilde{x}_k,\tilde{z}_k),\dots)| &= \left| \sum_{q=1}^r \frac{1}{\lambda_q^* n^2} \sum_j [c(x_k,y_j) \mathbf{1}_{z_k=q} - c(\tilde{x}_k,y_j) \mathbf{1}_{\tilde{z}_k=q}] \mathbf{1}_{z'_j=q} \right| \\ &= \left| \frac{1}{\lambda_{z_k}^* n^2} \sum_{j=1}^n c(x_k,y_j) \mathbf{1}_{z'_j=z_k} - \frac{1}{\lambda_{\tilde{z}_k}^* n^2} \sum_{j=1}^n c(\tilde{x}_k,y_j) \mathbf{1}_{z'_j=\tilde{z}_k} \right| \\ &\leq \frac{\|c\|_{\infty}}{n^2} \left[\frac{\sum_{j=1}^n \mathbf{1}_{z'_j=z_k}}{\lambda_{z_k}^*} + \frac{\sum_{j=1}^n \mathbf{1}_{z'_j=\tilde{z}_k}}{\lambda_{\tilde{z}_k}^*} \right] \\ &\leq \frac{2\|c\|_{\infty}}{\min_{1\leq q \leq r} \lambda_q^*} \frac{1}{n} \end{aligned}$$

Then by applying the McDiarmid's inequality we obtain that for $\delta > 0$, with a probability at least of $1 - \delta$, we have

$$\left| \operatorname{LOT}_{r,c}(\mu,\nu) - \int_{\mathcal{Z}^2} c(x,y) d\hat{\pi}(x,y) \right| \le \frac{2\|c\|_{\infty}}{\min_{1 \le q \le r} \lambda_q^*} \sqrt{\frac{\log(2/\delta)}{n}}$$

Now we aim at building a coupling $\tilde{\pi} \in \Pi_r(\hat{\mu}, \hat{\nu})$ from $\hat{\pi}$. Let us consider the same as the one introduce in the proof of Proposition B.3, that is

$$\begin{split} \tilde{\pi} &\triangleq \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k| |\tilde{\nu}_k|} \tilde{\mu}_k \otimes \tilde{\nu}_k \\ &+ \frac{1}{1 - \sum_{k=1}^{r-1} \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)} \left[\hat{\mu} - \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \tilde{\mu}_k \right] \otimes \left[\hat{\nu} - \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|} \tilde{\nu}_k \right] \end{split}$$

with the convention that $\frac{0}{0} = 0$. Let us now expand the above expression, and by denoting $\tilde{\lambda}_r = 1 - \sum_{k=1}^{r-1} \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)$ we obtain that

$$\begin{split} \tilde{\pi} &= \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k| |\tilde{\nu}_k|} \tilde{\mu}_k \otimes \tilde{\nu}_k \\ &+ \frac{1}{\tilde{\lambda}_r} \tilde{\mu}_r \otimes \tilde{\nu}_r \\ &+ \frac{1}{\tilde{\lambda}_r} \tilde{\mu}_r \otimes \left[\sum_{k=1}^{r-1} \left(1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|} \right) \tilde{\nu}_k \right] \\ &+ \frac{1}{\tilde{\lambda}_r} \left[\sum_{k=1}^{r-1} \left(1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \right) \tilde{\mu}_k \right] \otimes \tilde{\nu}_r \\ &+ \frac{1}{\tilde{\lambda}_r} \left[\sum_{k=1}^{r-1} \left(1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \right) \tilde{\mu}_k \right] \otimes \left[\sum_{k=1}^{r-1} \left(1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|} \right) \tilde{\nu}_k \right] \end{split}$$

Now we aim at controlling the following quantity $\left|\int_{Z^2} c(x,y) d\hat{\pi}(x,y) - \int_{Z^2} c(x,y) d\tilde{\pi}(x,y)\right|$ and we observe that

$$\int_{\mathcal{Z}^2} c(x,y) d[\hat{\pi}(x,y) - \tilde{\pi}(x,y)] = \sum_{k=1}^{r-1} \int_{\mathcal{Z}^2} c(x,y) \left[\frac{1}{\lambda_k^*} - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k| |\tilde{\nu}_k|} \right] d\tilde{\mu}_k(x) \tilde{\nu}_k(y) \quad (11)$$

$$+ \int_{\mathcal{Z}^2} c(x,y) \left[\frac{1}{\lambda_r^*} - \frac{1}{\tilde{\lambda}_r} \right] d\tilde{\mu}_r(x) \tilde{\nu}_r(y) \tag{12}$$

$$+\frac{1}{\tilde{\lambda}_r}\sum_{k=1}^{r-1}\int_{\mathcal{Z}^2} \left(1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|}\right) c(x, y) d\tilde{\mu}_r(x) d\tilde{\nu}_k(y)$$
(13)

$$+\frac{1}{\tilde{\lambda}_r}\sum_{k=1}^{r-1}\int_{\mathcal{Z}^2} \left(1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|}\right) c(x, y) d\tilde{\mu}_k(x) d\tilde{\nu}_r(y) \tag{14}$$

$$+\frac{1}{\tilde{\lambda}_{r}}\sum_{k,q=1}^{r-1}\int_{\mathcal{Z}^{2}}\left(1-\frac{\min(|\tilde{\mu}_{k}|,|\tilde{\nu}_{k}|)}{|\tilde{\mu}_{k}|}\right)\left(1-\frac{\min(|\tilde{\mu}_{q}|,|\tilde{\nu}_{q}|)}{|\tilde{\nu}_{q}|}\right)c(x,y)d\tilde{\mu}_{k}(x)d\tilde{\nu}_{q}(y)$$
(15)

Let us now control each term of the RHS of the above equality. Let us first consider the term in Eq. [1] remark that we have

$$\begin{split} & \left| \int_{\mathcal{Z}^2} c(x,y) \left[\frac{1}{\lambda_k^*} - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k| |\tilde{\nu}_k|} \right] d\tilde{\mu}_k(x) \tilde{\nu}_k(y) \right| \\ & \leq \left| \left[\frac{1}{\lambda_k^*} - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k| |\tilde{\nu}_k|} \right] \right| \|c\|_{\infty} |\tilde{\mu}_k| |\tilde{\nu}_k| \\ & \leq \left| \left[\frac{|\tilde{\mu}_k| |\tilde{\nu}_k|}{\lambda_k^*} - \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|) \right] \right| \|c\|_{\infty} \\ & \leq \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|) \left| \frac{\max(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{\lambda_k^*} - 1 \right| \|c\|_{\infty} \\ & \leq \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{\lambda_k^*} |\max(|\tilde{\mu}_k|, |\tilde{\nu}_k|) - \lambda_k^*| \|c\|_{\infty} \\ & \leq \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{\lambda_k^*} \max(\|\tilde{\lambda}_\mu - \lambda^*\|_{\infty}, \|\tilde{\lambda}_\nu - \lambda^*\|_{\infty}) \|c\|_{\infty} \\ & \leq \|c\|_{\infty} \max\left(\left\| \frac{\tilde{\lambda}_\mu}{\lambda^*} \right\|_{\infty}, \left\| \frac{\tilde{\lambda}_\nu}{\lambda^*} \right\|_{\infty} \right) \max(\|\tilde{\lambda}_\mu - \lambda^*\|_{\infty}, \|\tilde{\lambda}_\nu - \lambda^*\|_{\infty}) \|c\|_{\infty} \end{split}$$

where we have denoted $\tilde{\lambda}_{\mu} \triangleq (|\tilde{\mu}_k|)_{k=1}^r$ and $\tilde{\lambda}_{\nu} \triangleq (|\tilde{\nu}_k|)_{k=1}^r$. Now observe that

$$\mathbb{P}\left(\max(\|\tilde{\lambda}_{\mu} - \lambda^*\|_{\infty}, \|\tilde{\lambda}_{\nu} - \lambda^*\|_{\infty}) \ge t\right) \le 2\mathbb{P}\left(\|\tilde{\lambda}_{\mu} - \lambda^*\|_{\infty} \ge t\right)$$
$$\le \mathbb{P}\left(d_K(\lambda^*, \tilde{\lambda}_{\mu}) \ge \frac{t}{2}\right)$$
$$\le 4\exp(-nt^2/2)$$

where $d_{\boldsymbol{K}}$ is the Kolmogorov distance. In addition we have

$$\max\left(\left\|\frac{\tilde{\lambda}_{\mu}}{\lambda^{*}}\right\|_{\infty}, \left\|\frac{\tilde{\lambda}_{\nu}}{\lambda^{*}}\right\|_{\infty}\right) \leq 1 + \frac{1}{\min_{1 \leq i \leq r} \lambda_{i}^{*}} \max\left(\|\tilde{\lambda}_{\mu} - \lambda^{*}\|_{\infty}, \|\tilde{\lambda}_{\nu} - \lambda^{*}\|_{\infty}\right)$$

Combining the two above controls, we obtain that for all $\delta > 0$, with a probability of at least $1 - \delta$,

$$\left| \int_{\mathcal{Z}^2} c(x,y) \left[\frac{1}{\lambda_k^*} - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k| |\tilde{\nu}_k|} \right] d\tilde{\mu}_k(x) \tilde{\nu}_k(y) \right| \le \|c\|_{\infty} \sqrt{\frac{2\ln 8/\delta}{n}} + \frac{\|c\|_{\infty}}{n} \frac{2\ln 8/\delta}{\min_{1 \le i \le r} \lambda_i^*}$$

Let us now consider the term in Eq. 12, we have that

$$\begin{split} \left| \int_{\mathcal{Z}^2} c(x,y) \left[\frac{1}{\lambda_r^*} - \frac{1}{\tilde{\lambda}_r} \right] d\tilde{\mu}_r(x) \tilde{\nu}_r(y) \right| &\leq \frac{|\tilde{\mu}_r||\tilde{\nu}_r|}{\lambda_r^* \tilde{\lambda}_r} \left| 1 - \sum_{i=1}^r \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|) - \lambda_r \right| \|c\|_{\infty} \\ &\leq \max\left(\left\| \frac{\tilde{\lambda}_\mu}{\lambda^*} \right\|_{\infty}, \left\| \frac{\tilde{\lambda}_\nu}{\lambda^*} \right\|_{\infty} \right) \sum_{k=1}^{r-1} |\lambda_k^* - \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)| \|c\|_{\infty} \\ &\leq \max\left(\left\| \frac{\tilde{\lambda}_\mu}{\lambda^*} \right\|_{\infty}, \left\| \frac{\tilde{\lambda}_\nu}{\lambda^*} \right\|_{\infty} \right) \|c\|_{\infty} (\|\lambda^* - \tilde{\lambda}_\mu\|_1 + \|\lambda^* - \tilde{\lambda}_\nu\|_1) \\ &\leq 2\|c\|_{\infty} \max\left(\left\| \frac{\tilde{\lambda}_\mu}{\lambda^*} \right\|_{\infty}, \left\| \frac{\tilde{\lambda}_\nu}{\lambda^*} \right\|_{\infty} \right) \max(\|\lambda^* - \tilde{\lambda}_\mu\|_1, \|\lambda^* - \tilde{\lambda}_\nu\|_1) \end{split}$$

However we have that

$$\mathbb{P}\left(\max(\|\lambda^* - \tilde{\lambda}_{\mu}\|_1, \|\lambda^* - \tilde{\lambda}_{\nu}\|_1) \ge t\right) \le 2\mathbb{P}\left(\|\lambda^* - \tilde{\lambda}_{\mu}\|_1 \ge t\right)$$

In addition we have that $\mathbb{E}(\|\lambda^* - \tilde{\lambda}_{\mu}\|_1) \leq \sqrt{\frac{r}{n}}$ and by applying the McDiarmid's Inequality, we obtain that for all $\delta > 0$, with a probability of $1 - \delta$

$$\|\lambda^* - \tilde{\lambda}_{\mu}\|_1 \le \sqrt{\frac{r}{n}} + \sqrt{\frac{2\ln(2/\delta)}{n}}$$

Therefore we obtain that with a probability of at least $1 - \delta$,

$$\left| \int_{\mathcal{Z}^2} c(x,y) \left[\frac{1}{\lambda_r^*} - \frac{1}{\tilde{\lambda}_r} \right] d\tilde{\mu}_r(x) \tilde{\nu}_r(y) \right| \le 2 \|c\|_{\infty} \left[\sqrt{\frac{r}{n}} + \sqrt{\frac{2\ln(8/\delta)}{n}} + \frac{2\ln(8/\delta) + \sqrt{2r\ln(8/\delta)}}{n \times \min_{1 \le i \le r} \lambda_i^*} \right]$$

For the term in Eq. 13 and 14, we obtain that

$$\begin{aligned} \left| \frac{1}{\tilde{\lambda}_r} \sum_{k=1}^{r-1} \int_{\mathcal{Z}^2} \left(1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|} \right) c(x, y) d\tilde{\mu}_r(x) d\tilde{\nu}_k(y) \\ &\leq \frac{|\tilde{\mu}_r|}{\tilde{\lambda}_r} \sum_{k=1}^{r-1} \left(|\tilde{\nu}_k| - \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|) \right) \|c\|_{\infty} \\ &\leq \frac{|\tilde{\mu}_r|}{\tilde{\lambda}_r} [\tilde{\lambda}_r - |\tilde{\nu}_r|] \|c\|_{\infty} \\ &\leq [|\tilde{\lambda}_r - \lambda_r^*| + |\lambda_r^* - \tilde{\nu}_r|] \|c\|_{\infty} \\ &\leq 3 \|c\|_{\infty} \max(\|\lambda^* - \tilde{\lambda}_{\mu}\|_1, \|\lambda^* - \tilde{\lambda}_{\nu}\|_1) \end{aligned}$$

Therefore we obtain that with a probability of at least $1 - \delta$,

$$\left|\frac{1}{\tilde{\lambda}_r}\sum_{k=1}^{r-1}\int_{\mathcal{Z}^2} \left(1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|}\right) c(x, y) d\tilde{\mu}_r(x) d\tilde{\nu}_k(y)\right| \le 3\|c\|_{\infty} \left[\sqrt{\frac{r}{n}} + \sqrt{\frac{2\ln(2/\delta)}{n}}\right]$$

Finally the last term in Eq. 15 can be controlled as the following:

$$\begin{split} &\left|\frac{1}{\tilde{\lambda}_{r}}\sum_{k,q=1}^{r-1}\int_{\mathcal{Z}^{2}}\left(1-\frac{\min(|\tilde{\mu}_{k}|,|\tilde{\nu}_{k}|)}{|\tilde{\mu}_{k}|}\right)\left(1-\frac{\min(|\tilde{\mu}_{q}|,|\tilde{\nu}_{q}|)}{|\tilde{\nu}_{q}|}\right)c(x,y)d\tilde{\mu}_{k}(x)d\tilde{\nu}_{q}(y)\right.\\ &\leq \frac{\|c\|_{\infty}}{\tilde{\lambda}_{r}}\sum_{k,q=1}^{r-1}\left(1-\frac{\min(|\tilde{\mu}_{k}|,|\tilde{\nu}_{k}|)}{|\tilde{\mu}_{k}|}\right)\left(1-\frac{\min(|\tilde{\mu}_{q}|,|\tilde{\nu}_{q}|)}{|\tilde{\nu}_{q}|}\right)|\tilde{\mu}_{k}||\tilde{\nu}_{q}|\\ &\leq \frac{\|c\|_{\infty}}{\tilde{\lambda}_{r}}\sum_{k=1}^{r-1}(|\tilde{\mu}_{k}|-\min(|\tilde{\mu}_{k}|,|\tilde{\nu}_{k}|))\sum_{k=1}^{r-1}(|\tilde{\nu}_{k}|-\min(|\tilde{\mu}_{k}|,|\tilde{\nu}_{k}|))\\ &\leq 3\|c\|_{\infty}\max(\|\lambda^{*}-\tilde{\lambda}_{\mu}\|_{1},\|\lambda^{*}-\tilde{\lambda}_{\nu}\|_{1}) \end{split}$$

and we obtain that with a probability of at least $1 - \delta$,

$$\begin{aligned} \left| \frac{1}{\tilde{\lambda}_r} \sum_{k,q=1}^{r-1} \int_{\mathcal{Z}^2} \left(1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \right) \left(1 - \frac{\min(|\tilde{\mu}_q|, |\tilde{\nu}_q|)}{|\tilde{\nu}_q|} \right) c(x, y) d\tilde{\mu}_k(x) d\tilde{\nu}_q(y) \right| \\ \leq 3 \|c\|_{\infty} \left[\sqrt{\frac{r}{n}} + \sqrt{\frac{2\ln(2/\delta)}{n}} \right] \end{aligned}$$

Then by applying a union bound we obtain that with a probability of at least $1 - \delta$

$$\left| \int_{\mathcal{Z}^2} c(x,y) d[\hat{\pi}(x,y) - \tilde{\pi}(x,y)] \right| \le \|c\|_{\infty} \left[11\sqrt{\frac{r}{n}} + 12\sqrt{\frac{2\ln 40/\delta}{n}} + \frac{6\ln(40/\delta) + 2\sqrt{2r\ln(40/\delta)}}{n \times \min_{1 \le i \le r} \lambda_i^*} \right]$$

Now observe that

$$\begin{aligned} \mathsf{LOT}_{r,c}(\hat{\mu}, \hat{\nu}) - \mathsf{LOT}_{r,c}(\mu, \nu) &\leq \int_{\mathcal{Z}^2} c(x, y) d\tilde{\pi}(x, y) - \int_{\mathcal{Z}^2} c(x, y) d\pi^*(x, y) \\ &\leq \int_{\mathcal{Z}^2} c(x, y) d[\tilde{\pi} - \hat{\pi}](x, y) + \int_{\mathcal{Z}^2} c(x, y) d[\hat{\pi} - \pi^*](x, y) \end{aligned}$$

and by combining the two control we obtain that with a probability of at least $1 - 2\delta$,

$$\begin{split} \operatorname{LOT}_{r,c}(\hat{\mu}, \hat{\nu}) - \operatorname{LOT}_{r,c}(\mu, \nu) &\leq \|c\|_{\infty} \left[11\sqrt{\frac{r}{n}} + 12\sqrt{\frac{2\ln 40/\delta}{n}} + \frac{1}{\alpha} \left(2\sqrt{\frac{\log(2/\delta)}{n}} + \frac{6\ln(40/\delta) + 2\sqrt{2r\ln(40/\delta)}}{n} \right) \right] \\ &\leq 11\|c\|_{\infty}\sqrt{\frac{r}{n}} + \frac{14\|c\|_{\infty}}{\alpha}\sqrt{\frac{\log(40/\delta)}{n}} + \frac{2\|c\|_{\infty}\max(6, \sqrt{2r})\log(40/\delta)}{n\alpha} \\ & \text{where } \alpha \triangleq \min \ \lambda_{i}^{*} \text{ and the result follows.} \end{split}$$

where $\alpha \triangleq \min_{1 \le i \le r} \lambda_i^*$ and the result follows.

B.5 Proof Proposition **5**

Proposition. Let $r \ge 1$, $\delta > 0$ and $\mu, \nu \in \mathcal{M}_1^+(\mathcal{X})$. Then there exists a constant $N_{r,\delta}$ such that if $n \ge N_{r,\delta}$ then with a probability of at least $1 - 2\delta$, we have

$$\operatorname{LOT}_{r,c}(\hat{\mu}_n, \hat{\nu}_n) - \operatorname{LOT}_{r,c}(\mu, \nu) \le 11 \|c\|_{\infty} \sqrt{\frac{r}{n}} + 77 \|c\|_{\infty} \sqrt{\frac{\log(40/\delta)}{n}}.$$

Proof. We consider the same notations as in the proof of Proposition 4. In particular let us define for all $(x_i, z_i)_{i=1}^n, (y_i, z'_i) \in (\mathcal{Z} \times [|1, r|])^n$,

$$g((x_1, z_1), \dots, (x_n, z_n), (y_1, z'_1), \dots, (y_n, z'_n)) \triangleq \sum_{q=1}^r \frac{1}{\lambda_q^* n^2} \sum_{i,j} c(x_i, y_j) \mathbf{1}_{z_i = q} \mathbf{1}_{z'_j = q},$$

Recall that we have

$$\begin{aligned} |g(\dots,(x_k,z_k),\dots) - g(\dots,(\tilde{x}_k,\tilde{z}_k),\dots)| &\leq \frac{\|c\|_{\infty}}{n^2} \left[\frac{\sum_{j=1}^n \mathbf{1}_{z_j'=z_k}}{\lambda_{z_k}^*} + \frac{\sum_{j=1}^n \mathbf{1}_{z_j'=\tilde{z}_k}}{\lambda_{\tilde{z}_k}^*} \right] \\ &\leq \frac{2\|c\|_{\infty}}{n} \max\left(\left\| \frac{\tilde{\lambda}_{\mu}}{\lambda^*} \right\|_{\infty}, \left\| \frac{\tilde{\lambda}_{\nu}}{\lambda^*} \right\|_{\infty} \right) \\ &\leq \frac{2\|c\|_{\infty}}{n} + \frac{2\|c\|_{\infty}}{n \times \min_{1 \leq i \leq r} \lambda_i^*} \max\left(\|\tilde{\lambda}_{\mu} - \lambda^*\|_{\infty}, \|\tilde{\lambda}_{\nu} - \lambda^*\|_{\infty} \right) \end{aligned}$$

In fact if we have a control in probability of the bounded difference we can use an extension of the McDiarmid's Inequality. For that purpose let us first introduce the following definition.

Definition 4. Let $(X_i)_{i=1}^m$, m independent random variables and g a measurable function. We say that g is weakly difference-bounded with respect to $(X_i)_{i=1}^m$ by (b, β, δ) if

$$\mathbb{P}\left(\left|g(X_1,\ldots,X_m) - g(X_1',\ldots,X_m')\right| \le \beta\right) \ge 1 - \delta$$

with $X'_i = X_i$ except for one coordinate k where X'_k is an independent copy of X_k . Furthermore for any $(x_i)_{i=1}^m$ and $(x'_i)_{i=1}^m$ where for all coordinate except on $x_j = x'_j$

$$|g(x_1,\ldots,x_m)-g(x_1',\ldots,x_m')|\leq b.$$

Let us now introduce an extension of McDiarmid's Inequality [Kutin, 2002].

Theorem 1. Let $(X_i)_{i=1}^m$, m independent random variables and g a measurable function which is weakly difference-bounded with respect to $(X_i)_{i=1}^m$ by $(b, \beta/m, \exp(-Km))$, then if $0 < \tau \leq T(b, \beta, K)$ and $m \geq M(b, \beta, K, \tau)$, then

$$\mathbb{P}(|g(X_1,\ldots,X_m) - \mathbb{E}(g(X_1,\ldots,X_m))| \ge \tau) \le 4 \exp\left(\frac{-\tau^2 m}{8\beta^2}\right)$$

where

$$T(b,\beta,K) \triangleq \min\left(\frac{14c}{2}, 4\beta\sqrt{K}, \frac{\beta^2 K}{b}\right)$$
$$M(b,\beta,K,\tau) \triangleq \max\left(\frac{b}{\beta}, \beta\sqrt{40}, 3\left(\frac{24}{K}+3\right)\log\left(\frac{24}{K}+3\right), \frac{1}{\tau}\right)$$

Given the above Theroem we can obtain an asymptotic control of the deviation of g from its mean. Let $\delta' > 0$ and let us denote

$$\begin{split} m &\triangleq 2n \\ b &\triangleq \frac{2\|c\|_{\infty}}{n \times \min_{1 \le i \le r} \lambda_i^*} \\ K &\triangleq \frac{\log(1/\delta')}{2n} \\ \beta &\triangleq 4\|c\|_{\infty} \left[1 + \frac{1}{\min_{1 \le i \le r} \lambda_i^*} \sqrt{\frac{2\log(4/\delta')}{n}} \right] \end{split}$$

Observe now that with a probability of at least $1 - \exp(-Km)$

$$|g(\ldots,(x_k,z_k),\ldots) - g(\ldots,(\tilde{x}_k,\tilde{z}_k),\ldots)| \le \frac{2\|c\|_{\infty}}{n} \left[1 + \frac{1}{\min_{1\le i\le r}\lambda_i^*}\sqrt{\frac{2\log(4/\delta')}{n}}\right]$$

Let us now fix $\delta > 0$ and let us choose δ' such that $\delta' \triangleq 4/n$ and $\tau \triangleq \beta \sqrt{\frac{4 \log(4/\delta)}{n}}$, then we obtain that for n sufficiently large (such that $n \ge M(b, \beta, K, \tau)/2$ and $\tau \le T(b, \beta, K)$), we have that with a probability of at least $1 - \delta$

-

$$\begin{aligned} \left| \text{LOT}_{r,c}(\mu,\nu) - \int_{\mathcal{Z}^2} c(x,y) d\hat{\pi}(x,y) \right| &\leq 4 \|c\|_{\infty} \left| 1 + \frac{1}{\min_{1 \leq i \leq r} \lambda_i^*} \sqrt{\frac{2\log(n)}{n}} \right| \sqrt{\frac{4\log(4/\delta)}{n}} \\ &\leq 4 \|c\|_{\infty} \sqrt{\frac{4\log(4/\delta)}{n}} + \frac{16\sqrt{5} \|c\|_{\infty} \sqrt{\log(n)\log(4/\delta)}}{n \times \min_{1 \leq i \leq r} \lambda_i^*} \end{aligned}$$

Recall also from the proof of Proposition 4, that we have with a probability of at least $1 - \delta$

$$\int_{\mathcal{Z}^2} c(x,y) d[\hat{\pi}(x,y) - \tilde{\pi}(x,y)] \leq \|c\|_{\infty} \left| 11\sqrt{\frac{r}{n}} + 12\sqrt{\frac{2\ln 40/\delta}{n}} + \frac{6\ln(40/\delta) + 2\sqrt{2r\ln(40/\delta)}}{n \times \min_{1 \le i \le r} \lambda_i^*} \right|_{1 \le i \le r}$$

Finally by imposing in addition that

$$\sqrt{\frac{n}{\log(n)}} \geq \frac{1}{\min\limits_{1 \leq i \leq r} \lambda_i^*} \ , \ \sqrt{n} \geq \frac{\sqrt{\log(40/\delta)}}{\min\limits_{1 \leq i \leq r} \lambda_i^*} \ \text{ and } \ \sqrt{n} \geq \frac{\sqrt{r}}{\min\limits_{1 \leq i \leq r} \lambda_i^*}$$

we obtain that for n is large enough (such that (such that $n \ge M(b, \beta, K, \tau)/2$ and $\tau \le T(b, \beta, K)$) and satysfing the above inequalities, we have with a probability of at least $1 - 2\delta$ that

$$\mathrm{LOT}_{r,c}(\hat{\mu}, \hat{\nu}) - \mathrm{LOT}_{r,c}(\mu, \nu) \le 11 \|c\|_{\infty} \sqrt{\frac{r}{n}} + 77 \|c\|_{\infty} \sqrt{\frac{\log(40/\delta)}{n}}$$

B.6 Proof Proposition 6

Proposition. Let $\mu, \nu \in \mathcal{M}_1^+(\mathcal{X})$. Let us assume that c is symmetric, then we have

DLOT_{1,c}(
$$\mu, \nu$$
) = $\frac{1}{2} \int_{\mathcal{X}^2} -c(x, y) d[\mu - \nu] \otimes d[\mu - \nu](x, y)$.

If in addition we assume the c is Lipschitz w.r.t to x and y, then we have

$$\operatorname{DLOT}_{r,c}(\mu,\nu) \xrightarrow[r \to +\infty]{} \operatorname{OT}_{c}(\mu,\nu)$$
.

Proof. When r = 1, it is clear that for any $\mu, \nu \in \mathcal{M}_1^+(\mathcal{X})$, $\Pi_r(\mu, \nu) = \{\mu \otimes \nu\}$ and thanks to the symmetry of c, we have directly that

$$\mathsf{DLOT}_{1,c}(\mu,\nu) = \frac{1}{2} \int_{\mathcal{X}^2} -c(x,y)d[\mu-\nu] \otimes d[\mu-\nu](x,y) = \frac{1}{2}\mathsf{MMD}_{-c}(\mu,\nu) \ .$$

The limit is a direct consequence of Proposition 2

B.7 Proof of Proposition 8

Proposition. Let $r \ge 1$ and $(\mu_n)_{n\ge 0}$ and $(\nu_n)_{n\ge 0}$ two sequences of probability measures such that $\mu_n \to \mu$ and $\nu_n \to \nu$ with respect to the convergence in law. Then we have that

$$LOT_{r,c}(\mu_n,\nu_n) \to LOT_{r,c}(\mu,\nu)$$
.

Proof. Let us denote π an optimal solution of $\text{LOT}_{r,c}(\mu, \nu)$ and let us denote $(\mu^{(i)})_{i=1}^r$, $(\nu^{(i)})_{i=1}^r$ and $(\lambda^{(i)})_{i=1}^r$ the decomposition associated. In the following Lemma, we aim at building specific decompositions of the sequences $(\mu_n)_{n\geq 0}$ and $(\nu_n)_{n\geq 0}$.

Lemma 1. Let $r \ge 1$, $\mu \in \mathcal{M}_1^+(\mathcal{X})$ and $(\mu^{(i)})_{i=1}^r \in \mathcal{M}_1^+(\mathcal{X})$ and $(\lambda^{(i)})_{i=1}^r \in \Delta_r^*$ such that $\mu = \sum_{i=1}^r \lambda_i \mu^{(i)}$. Then for any sequence of probability measures $(\mu_n)_{\ge 0}$ such that $\mu_n \to \mu$, there exist for all $i \in [|1, r|]$ a sequence of nonnegative measures $(\mu_n^{(i)})_{n\ge 0}$ such that

$$\mu_n^{(i)} \to \lambda_i \mu^{(i)} \text{ for all } i \in [|1, r|] \text{ and}$$
$$\sum_{i=1}^r \mu_n^{(i)} = \mu_n \text{ for all } n \ge 0$$

Proof. For r = 1 the result is clear. Let us now show the result for r = 2. Let us denote $(\tilde{\mu}_n^{(1)})$ a sequence converging weakly towards $\lambda_1 \mu^{(1)}$. Then by denoting $\mu_n^{(1)} \triangleq \mu_n - (\mu_n - \tilde{\mu}_n^{(1)})_+$ where $(\cdot)_+$ correspond to the non-negative part of the measure, we have that

$$\begin{split} \mu_n^{(1)} &\geq 0, \ \ \mu_n^{(1)} \to \lambda_1 \mu^{(1)}, \\ \mu_n^{(2)} &\triangleq \mu_n - \mu_n^{(1)} \ge 0, \ \ \mu_n^{(2)} \to \lambda_2 \mu^{(2)} \ \text{ and } \\ \mu_n &= \mu_n^{(1)} + \mu_n^{(2)} \ \text{ for all } \ n \ge 0 \end{split}$$

which is the result. Let $r \ge 2$ and let us assume that the result holds for all $1 \le k \le r$. Let us now consider a decomposition of μ such that $\mu = \sum_{i=1}^{r+1} \lambda_i \mu^{(i)}$. By denoting $\tilde{\mu}^{(1)} \triangleq \frac{\sum_{i=1}^r \lambda_i \mu^{(i)}}{\sum_{i=1}^r \lambda_i}$, we obtain that

$$\mu = \left(\sum_{i=1}^{r} \lambda_i\right) \tilde{\mu}^{(1)} + \lambda_{r+1} \mu^{(r+1)}$$

Then by recursion we have that there exists sequences of nonnegative measures $(\tilde{\mu}_n^{(1)})$ and $(\mu_n^{(r+1)})$ such that

$$\tilde{\mu}_n^{(1)} \to \left(\sum_{i=1}^r \lambda_i\right) \tilde{\mu}^{(1)}, \ \mu_n^{(r+1)} \to \lambda_{r+1} \mu^{(r+1)} \text{ and } \mu_n = \tilde{\mu}_n^{(1)} + \mu_n^{(r+1)} \text{ for all } n \ge 0$$

Now observe that $\frac{\tilde{\mu}_n^{(1)}}{|\tilde{\mu}_n^{(1)}|} \to \tilde{\mu}^{(1)} = \sum_{i=1}^r \frac{\lambda_i}{\sum_{i=1}^r \lambda_i} \mu^{(i)}$. Therefore applying the recursion on this problem allows us to obtain a decomposition of $\tilde{\mu}_n^{(1)}$ of the form

$$\begin{split} \frac{\tilde{\mu}_{n}^{(1)}}{\tilde{\mu}_{n}^{(1)}|} &= \sum_{i=1}^{r} \mu_{n}^{(i)} \text{ where } \\ \mu_{n}^{(i)} &\geq 0 \text{ and } \mu_{n}^{(i)} \to \frac{\lambda_{i}}{\sum_{i=1}^{r} \lambda_{i}} \mu^{(i)} \end{split}$$

Therefore we obtain that

$$\mu_n = \sum_{i=1}^r |\tilde{\mu}_n^{(1)}| \mu_n^{(i)} + \mu_n^{(r+1)} \text{ where}$$

$$\mu_n^{(i)} \ge 0, \quad |\tilde{\mu}_n^{(1)}| \mu_n^{(i)} \to \lambda_i \mu^{(i)} \text{ for all } i \in [|1, r|] \text{ and}$$

$$\mu_n^{(r+1)} \ge 0, \quad \mu_n^{(r+1)} \to \lambda_{r+1} \mu^{(r+1)}$$

from which follows the result.

Let us now consider such decompositions of $(\mu_n)_{n\geq 0}$ and $(\nu_n)_{n\geq 0}$ such that each factor converges toward the target decomposition of μ . Now let us build the following coupling:

$$\begin{split} \tilde{\pi}_n &\triangleq \sum_{k=1}^{r-1} \frac{\min(|\mu_n^{(k)}|, |\nu_n^{(k)}|)}{|\mu_n^{(k)}| |\nu_n^{(k)}|} \mu_n^{(k)} \otimes \mu_n^{(k)} \\ &+ \frac{1}{1 - \sum_{k=1}^{r-1} \min(|\mu_n^{(k)}|, |\nu_n^{(k)}|)} \left[|\mu_n| - \sum_{k=1}^{r-1} \frac{\min(|\mu_n^{(k)}|, |\nu_n^{(k)}|)}{|\mu_n^{(k)}|} \mu_n^{(k)} \right] \otimes \left[\nu_n - \sum_{k=1}^{r-1} \frac{\min(|\mu_n^{(k)}|, |\nu_n^{(k)}|)}{|\nu_n^{(k)}|} \nu_n^{(k)} \right] \end{split}$$

with the convention that $\frac{0}{0} = 0$. Now it is easy to check that $\tilde{\pi}_n \in \Pi_r(\mu_n, \nu_n)$, and we have that

$$\operatorname{LOT}_{r,c}(\mu_n,\nu_n) \le \int_{\mathcal{X}^2} d(x,y) d\tilde{\pi}_n(x,y) \to \operatorname{LOT}_{r,c}(\mu,\nu)$$

and by Prokhorov's theorem and the optimality of the limit of $(\tilde{\pi}_n)_{n\geq 0}$ (up to an extraction) we obtain that $\text{LOT}_{r,c}(\mu_n,\nu_n) \to \text{LOT}_{r,c}(\mu,\nu)$.

B.8 Proof Proposition 7

Proposition. Let $r \ge 1$, and let us assume that c is a semimetric of negative type. Then for all $\mu, \nu \in \mathcal{M}_1^+(\mathcal{X})$, we have that

$$DLOT_r(\mu,\nu) \ge 0$$
.

In addition, if c has strong negative type then we have also that

 $DLOT_{r,c}(\mu,\nu) = 0 \iff \mu = \nu \text{ and}$ $\mu_n \to \mu \iff DLOT_{r,c}(\mu_n,\mu) \to 0.$

where the convergence of the sequence of probability measures considered is the convergence in law.

Proof. Let π^* solution of $LOT_{r,c}(\mu, \nu)$. Then there exists $\lambda^* \in \Delta^*_r$, $(\mu^*_i)_{i=1}^r$, $(\nu^*_i)_{i=1}^r \in \mathcal{M}^+_1(\mathcal{X})^r$ such that

$$\pi^* = \sum_{i=1}^r \lambda_i^* \mu_i^* \otimes \nu_i^*.$$

Note that by definition, we have that

$$\mu = \sum_{i=1}^{r} \lambda_i^* \mu_i^*$$
 and $\nu = \sum_{i=1}^{r} \lambda_i^* \nu_i^*$,

By definition we have also that

$$\operatorname{LOT}_{r,c}(\mu,\mu) \leq \sum_{k=1}^{r} \lambda_k^* \int_{\mathcal{X}^2} c(x,y) d\mu_k^* \otimes \mu_k^*$$

similarly for $LOT_{r,c}(\nu, \nu)$ we have

$$\operatorname{LOT}_{r,c}(\nu,\nu) \leq \sum_{k=1}^{r} \lambda_k^* \int_{\mathcal{X}^2} c(x,y) d\nu_k^* \otimes \nu_k^*$$

Therefore we have

$$\begin{aligned} \mathsf{DLOT}_{r,c}(\mu,\nu) &\geq \sum_{k=1}^{r} \lambda_{k}^{*} \left(\int_{\mathcal{X}^{2}} c(x,y) d\mu_{k}^{*} \otimes \nu_{k}^{*} - \frac{1}{2} \left[\int_{\mathcal{X}^{2}} c(x,y) d\mu_{k}^{*} \otimes \mu_{k}^{*} + \int_{\mathcal{X}^{2}} c(x,y) d\nu_{k}^{*} \otimes \nu_{k}^{*} \right] \right) \\ &\geq \sum_{k=1}^{r} \lambda_{k}^{*} \int_{\mathcal{X}^{2}} -c(x,y) d[\mu_{k}^{*} - \nu_{k}^{*}] \otimes [\mu_{k}^{*} - \nu_{k}^{*}] \\ &\geq \sum_{k=1}^{r} \frac{\lambda_{k}^{*}}{2} D_{c}(\mu_{k}^{*}, \nu_{k}^{*}) \end{aligned}$$

where for any any probability measures α, β on \mathcal{X} we define

$$D_c(\alpha,\beta) \triangleq 2\int_{\mathcal{X}^2} c(x,y)d\alpha \otimes \beta - \int_{\mathcal{X}^2} c(x,y)d\alpha \otimes \alpha - \int_{\mathcal{X}^2} c(x,y)d\beta \otimes \beta$$

However, as c is assumed to have a negative type, we have that

$$D_c(\mu_k^*, \nu_k^*) \ge 0 \ \forall k$$

In addition if we assume that c has a strong negative type, then we obtain directly that

$$\text{DLOT}_{r,c}(\mu,\nu) = 0 \implies \mu_k^* = \nu_k^* \ \forall k$$
.

Let us now show that $\text{DLOT}_{r,c}$ metrize the convergence in law. The direct implication is a direct consequence of the Proposition 8. Conversely, if $\text{DLOT}_{r,c}(\mu_n, \mu) \to 0$, then by compacity of \mathcal{X} and thanks to the Prokhorov's theorem we can extract a subsequence of $\mu_n \to \mu^*$, and thanks to Proposition 8. we also obtain that $\text{DLOT}_{r,c}(\mu_n, \mu) \to \text{DLOT}_{r,c}(\mu^*, \mu)$. Finally we deduce that $\text{DLOT}_{r,c}(\mu^*, \mu) = 0$ and $\mu^* = \mu$.

B.9 Proof Proposition 9

Proposition. Let $n \ge k \ge 1$, $\mathbf{X} \triangleq \{x_1, \ldots, x_n\} \subset \mathcal{X}$ and $a \in \Delta_n^*$. If c is a semimetric of negative type, then by denoting $C = (c(x_i, x_j))_{i,j}$, we have that

$$\operatorname{LOT}_{k,c}(\mu_{a,\mathbf{X}},\mu_{a,\mathbf{X}}) = \min_{Q} \langle C, Q \operatorname{diag}(1/Q^{T} \mathbf{1}_{n}) Q^{T} \rangle \quad s.t. \quad Q \in \mathbb{R}^{n \times k}_{+} \quad , \quad Q \mathbf{1}_{k} = a \; .$$
(16)

Proof. First remarks that one can reformulate the $LOT_{k,c}$ problem as

$$\operatorname{LOT}_{k,c}(\mu,\mu) \triangleq \min_{g \in \Delta_k^*} \min_{(\mathbf{x},\mathbf{y}) \in K_{a,g}^2} \sum_{i=1}^k \frac{\mathbf{x}_i^T C \mathbf{y}_i}{g_i}$$

where

$$\begin{split} K_{a,g} &\triangleq \{ \mathbf{x} \in \mathbb{R}^{nk} \text{ s.t. } A\mathbf{x} = [a,g]^T, \ \mathbf{x} \ge 0 \} \\ A &\triangleq \begin{pmatrix} \mathbf{1}_n^T \otimes \mathbb{I}_k \\ \mathbb{I}_n^T \otimes \mathbf{1}_k \end{pmatrix} \text{ and} \\ \mathbf{x}_i &\triangleq [x_{(i-1)\times n+1}, \dots, x_{i\times n}]^T, \ \mathbf{y}_i \triangleq [y_{(i-1)\times n+1}, \dots, y_{i\times n}]^T \text{ for all } i \in [|1,k|] \end{split}$$

Indeed the above optimization problem is just a reformulation of $LOT_{k,c}(\mu, \mu)$ where we have vectorized the couplings in a column-wise order. Let us now show the following lemma from which the result will follow.

Lemma 2. Under the same assumption of Proposition 9 we have that for all $g \in \Delta_k^*$

$$\min_{(\mathbf{x},\mathbf{y})\in K_{a,g}^2} \sum_{i=1}^k \frac{\mathbf{x}_i^T C \mathbf{y}_i}{g_i} = \min_{\mathbf{x}\in K_{a,g}} \sum_{i=1}^k \frac{\mathbf{x}_i^T C \mathbf{x}_i}{g_i}$$

Proof. Let $(\mathbf{x}^*, \mathbf{y}^*)$ solution of the LHS optimization problem. Then we have that

$$\sum_{i=1}^{k} \frac{(\mathbf{x}_i^*)^T C \mathbf{x}_i^*}{g_i} \ge \sum_{i=1}^{k} \frac{(\mathbf{x}_i^*)^T C \mathbf{y}_i^*}{g_i}$$
$$\sum_{i=1}^{k} \frac{(\mathbf{y}_i^*)^T C \mathbf{y}_i^*}{g_i} \ge \sum_{i=1}^{k} \frac{(\mathbf{x}_i^*)^T C \mathbf{y}_i^*}{g_i}$$

Therefore we obtain that

$$0 \le \sum_{i=1}^{k} \frac{(\mathbf{x}_{i}^{*})^{T} C \mathbf{x}_{i}^{*}}{g_{i}} - \sum_{i=1}^{k} \frac{(\mathbf{x}_{i}^{*})^{T} C \mathbf{y}_{i}^{*}}{g_{i}} = \sum_{i=1}^{k} \frac{(\mathbf{x}_{i}^{*})^{T} C (\mathbf{x}_{i}^{*} - \mathbf{y}_{i}^{*})}{g_{i}}$$
$$0 \le \sum_{i=1}^{k} \frac{(\mathbf{y}_{i}^{*})^{T} C \mathbf{y}_{i}^{*}}{g_{i}} - \sum_{i=1}^{k} \frac{(\mathbf{x}_{i}^{*})^{T} C \mathbf{y}_{i}^{*}}{g_{i}} = \sum_{i=1}^{k} \frac{(\mathbf{y}_{i}^{*} - \mathbf{x}_{i}^{*})^{T} C \mathbf{y}_{i}^{*}}{g_{i}}$$

Then by symmetry of C, we obtain by adding the two terms that

$$\sum_{i=1}^{k} \frac{(\mathbf{x}_i^* - \mathbf{y}_i^*)^T C(\mathbf{x}_i^* - \mathbf{y}_i^*)}{g_i} \ge 0$$

However, thanks to the linear constraints, we have that for all $i \in [|1, k|]$,

$$\sum_{q=0}^{n-1} x^*_{(i-1)\times n+1+q} = \sum_{q=0}^{n-1} y^*_{(i-1)\times n+1+q} = g_i$$

Therefore $(\mathbf{x}_i^* - \mathbf{y}_i^*)^T \mathbf{1}_n = 0$ and thanks to the negativity of the cost function c we obtain that $(\mathbf{x}_i^* - \mathbf{y}_i^*)^T C(\mathbf{x}_i^* - \mathbf{y}_i^*) \le 0$

Therefore we have that

$$(\mathbf{x}_i - \mathbf{y}_i)^T C(\mathbf{x}_i - \mathbf{y}_i) = 0$$

from which follows that

$$\sum_{i=1}^{k} \frac{(\mathbf{x}_{i}^{*})^{T} C \mathbf{x}_{i}^{*}}{g_{i}} = \sum_{i=1}^{k} \frac{(\mathbf{x}_{i}^{*})^{T} C \mathbf{y}_{i}^{*}}{g_{i}} = \sum_{i=1}^{k} \frac{(\mathbf{y}_{i}^{*})^{T} C \mathbf{y}_{i}^{*}}{g_{i}}$$

and the result follows.

As the above result holds for any $g \in \Delta_k^*$, we obtain that

$$\operatorname{LOT}_{k,c}(\mu,\mu) = \min_{g \in \Delta_k^*} \min_{\mathbf{x} \in K_{a,g}} \sum_{i=1}^k \frac{(\mathbf{x}_i^*)^T C \mathbf{x}_i^*}{g_i}$$

Then by formulating back this problem in term of matrices, we obtain that

$$\operatorname{LOT}_{k,c}(\mu,\mu) = \min_{g \in \Delta_k^*} \min_{Q \in \Pi_{a,g}} \langle C, Q \operatorname{diag}(1/g) Q^T \rangle$$

from which the result follows.

C Additional Experiments

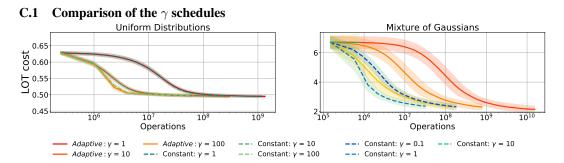


Figure 5: In this experiment, we compare two strategies for the choice of the step-size in the MD scheme proposed by Scetbon et al. [2021] on two different problems. More precisely, we compare the constant γ schedule with the proposed adaptive one and compare them when the distributions are sampled from either uniform distributions (*left*) or mixtures of anisotropic Gaussians (*right*). We show that the range of admissible γ when considering a constant schedule varies from one problem to another. Indeed, in the right plot, we observe that the algorithm converges only when $\gamma \leq 1$, while in the left plot, the algorithm manages to converge for $\gamma \leq 100$. We also observe that our adaptive strategy allows to have a consistent choice of admissible values for γ whatever the problem considered. It is worth noticing that whatever the γ chosen, the algorithm converges towards the same value, however the larger γ is chosen in its admissible range, the faster the algorithm converges.

C.2 Gradient Flows between two Moons

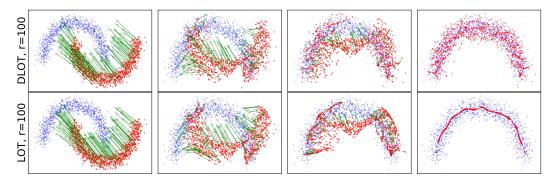


Figure 6: We compare the gradient flows $(\mu_t)_{t\geq 0}$ (in red) starting from a moon shape distribution, μ_0 , to another moon shape distribution (in blue), ν , in 2D when minimizing either $L(\mu) \triangleq \text{DLOT}_{r,c}(\mu,\nu)$ or $L(\mu) \triangleq \text{LOT}_{r,c}(\mu,\nu)$. The ground cost is the squared Euclidean distance and we fix r = 100. We consider 1000 samples from each distribution and and we plot the evolution of the probability measure obtained along the iterations of a gradient descent scheme. We also display in green the vector field in the descent direction. We show that the debiased version allows to recover the target distribution while $\text{LOT}_{r,c}$ is learning a biased version with a low-rank structure.