# Supplementary materials

# A On the Definition of LOT<sub>*r.c*</sub>

Let  $(\mathcal{X}, d_{\mathcal{X}})$  and  $(\mathcal{Y}, d_{\mathcal{Y}})$  two nonempty compact Polish spaces,  $\mu \in \mathcal{M}_1^+(\mathcal{X})$ ,  $\nu \in \mathcal{M}_1^+(\mathcal{Y})$  two probability measures on these spaces and  $c : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$  a nonnegative and continuous function. We define the generalized low-rank optimal transport between  $\mu$  and  $\nu$  as

$$\operatorname{LOT}_{r,c}(\mu,\nu) \triangleq \inf_{\pi \in \Pi_r(\mu,\nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) d\pi(x,y) .$$

where

$$\Pi_r(\mu,\nu) \triangleq \{\pi \in \Pi(\mu,\nu) : \exists (\mu_i)_{i=1}^r \in \mathcal{M}_1^+(\mathcal{X})^r, \ (\nu_i)_{i=1}^r \in \mathcal{M}_1^+(\mathcal{Y})^r, \ \lambda \in \Delta_r^* \text{ s.t. } \pi = \sum_{i=1}^r \lambda_i \mu_i \otimes \nu_i \}.$$

As  $\mathcal{X}$  and  $\mathcal{Y}$  are compact,  $\Pi_r(\mu, \nu)$  is tight, then Prokhorov's theorem applies and the closure of  $\Pi_r(\mu, \nu)$  is sequentially compact. Let us now show that  $\Pi_r(\mu, \nu)$  is closed. Indeed, Let  $(\pi_n)_{n\geq 0}$  a sequence of  $\Pi_r(\mu, \nu)$  converging towards  $\pi_*$ . Then by definition there exists for all  $k \in [|1, r|]$ ,  $(\mu_n^{(k)})_{n\geq 0}$ ,  $(\nu_n^{(k)})_{n\geq 0}$  and  $(\lambda_n^{(k)})_{n\geq 0}$  such that for all  $n\geq 0$ 

$$\pi_n = \sum_{i=1}^r \lambda_n^{(k)} \mu_n^{(k)} \otimes \nu_n^{(k)}$$

However,  $(\mu_n^{(k)})_{n\geq 0}$  and  $(\nu_n^{(k)})_{n\geq 0}$  are also tight, and Prokhorov's theorem applies, therefore we can extract a common subsequence such that for all k,

$$\mu_n^{(k)} \rightarrow \mu_*^{(k)} \ \text{ and } \nu_n^{(k)} \rightarrow \nu_*^{(k)}$$

In addition as  $(\lambda_n)_{n\geq 0}$  live in the simplex  $\Delta_r$ , we can also extract a sub-sequence, such that  $\lambda_n \to \lambda_* \in \Delta_r$ . Finally by unicity of the limit we obtain that

$$\pi_* = \sum_{k=1}^r \lambda_*^{(k)} \mu_*^{(k)} \otimes \nu_*^{(k)}$$
 .

Finally, by denoting  $I \triangleq \{k : \lambda_*^{(k)} > 0\}$ , and by considering  $i^* \in I$ , we obtain that

$$\pi_* = \sum_{i \in I \setminus \{i^*\}}^r \lambda_*^{(i)} \mu_*^{(i)} \otimes \nu_*^{(i)} + \sum_{j=1}^{r-|I|+1} \frac{\lambda_*^{(i^*)}}{r-|I|+1} \mu_*^{(i^*)} \otimes \nu_*^{(i^*)} .$$

from which follows that  $\pi_* \in \Pi_r(\mu, \nu)$ .

#### **B Proofs**

#### **B.1 Proof of Proposition**

**Proposition.** Let  $n, m \ge 2$ ,  $\mathbf{X} \triangleq \{x_1, \dots, x_n\} \subset \mathcal{X}$ ,  $\mathbf{Y} \triangleq \{y_1, \dots, y_m\} \subset \mathcal{Y}$  and  $a \in \Delta_n^*$  and  $b \in \Delta_m^*$ . Then for  $2 \le r \le \min(n, m)$ , we have that

$$|\operatorname{LOT}_{r,c}(\mu_{a,\mathbf{X}},\nu_{b,\mathbf{Y}}) - \operatorname{OT}_{c}(\mu_{a,\mathbf{X}},\nu_{b,\mathbf{Y}})| \le ||C||_{\infty} \ln(\min(n,m)/(r-1))$$

*Proof.* Let  $P \in \operatorname{argmin}_{P \in \Pi_{a,b}} \langle C, P \rangle$ . As P is a nonnegative matrix, its nonnegative rank cannot exceed  $\min(n, m)$ . Assume for simplicity, that n = m, then there exists  $(R_i)_{i=1}^n$  nonnegative matrices of rank 1 such that

$$P = \sum_{i=1}^{n} R_i \, .$$

As for all  $i \in [|1, n|]$ ,  $R_i$  is a rank 1 matrix, there exist  $\tilde{q}_i, \tilde{r}_i \in \mathbb{R}^n_+$  such that  $R_i = \tilde{q}_i \tilde{r}_i^T$ . Then by denoting  $q_i = \tilde{q}_i / |\tilde{q}_i|, r_i = \tilde{r}_i / |\tilde{r}_i|$  and  $\lambda_i = |\tilde{q}_i| |\tilde{r}_i|$  where for any  $h \in \mathbb{R}^n$   $|h| \triangleq \sum_{i=1}^n h_i$ , we obtain that

$$P = \sum_{i=1}^{n} \lambda_i q_i r_i^T$$

Without loss of generality, we can consider the case where  $\lambda_1 \ge \cdots \ge \lambda_n$ . Let us now denote  $\lambda := (\lambda_1, \ldots, \lambda_n)$ , and by using the fact the P is a coupling we obtain that  $\lambda \in \Delta_n$ . Also, by definition of  $\lambda$ , we have that for all  $k \in [|1, n|], \lambda_k \le 1/k$ . Let us now define

$$\tilde{P} \triangleq \sum_{i=1}^{r-1} \lambda_i q_i r_i^T + \left(\sum_{i=r}^n \lambda_i\right) \alpha_r \beta_r^T$$

where

$$\begin{aligned} \alpha_r &\triangleq \frac{\sum_{i=r}^n \lambda_i q_i}{\sum_{i=r}^n \lambda_i} \\ \beta_r &\triangleq \frac{\sum_{i=r}^n \lambda_i r_i}{\sum_{i=r}^n \lambda_i} \end{aligned}$$

Remark that  $\tilde{P} \in \Pi_{a,b}(r)$ , therefore we obtain that

$$\begin{aligned} |\text{LOT}_{r,c}(\mu_{a,\mathbf{X}},\nu_{b,\mathbf{Y}}) - \text{OT}_{c}(\mu_{a,\mathbf{X}},\nu_{b,\mathbf{Y}})| &= \text{LOT}_{r,c}(\mu_{a,\mathbf{X}},\nu_{b,\mathbf{Y}}) - \text{OT}_{x}(\mu_{a,\mathbf{X}},\nu_{b,\mathbf{Y}}) \\ &\leq \langle C, \tilde{P} \rangle - \langle C, P \rangle \\ &\leq \langle C, \left(\sum_{i=r}^{n} \lambda_{i}\right) \alpha_{r} \beta_{r}^{T} \rangle - \langle C, \sum_{i=r}^{n} \lambda_{i} q_{i} r_{i}^{T} \rangle \\ &\leq \langle C, \left(\sum_{i=r}^{n} \lambda_{i}\right) \alpha_{r} \beta_{r}^{T} \rangle \\ &\leq ||C||_{\infty} \sum_{i=r}^{n} \lambda_{i} \leq ||C||_{\infty} \sum_{i=r}^{n} \frac{1}{i} \leq ||C||_{\infty} \ln(n/(r-1)) \end{aligned}$$

### **B.2** Proof of Proposition 2

**Proposition 10.** Let  $\mu \in \mathcal{M}_1^+(\mathcal{X})$ ,  $\nu \in \mathcal{M}_1^+(\mathcal{Y})$  and let us assume that c is L-Lipschitz w.r.t. x and y. Then for any  $r \ge 1$ , we have

$$|LOT_{r,c}(\mu,\nu) - OT_c(\mu,\nu)| \le 2L \max(\mathcal{N}_{\lfloor \log_2(\lfloor \sqrt{r} \rfloor) \rfloor}(\mathcal{X}, d_{\mathcal{X}}), \mathcal{N}_{\lfloor \log_2(\lfloor \sqrt{r} \rfloor) \rfloor}(\mathcal{Y}, d_{\mathcal{Y}}))$$

*Proof.* As  $\mathcal{X}$  and  $\mathcal{Y}$  are compact,  $\mathcal{N}_{\lfloor \log_2(\lfloor \sqrt{r} \rfloor \rfloor \rfloor}(\mathcal{X}, d), \mathcal{N}_{\lfloor \log_2(\lfloor \sqrt{r} \rfloor \rfloor \rfloor}(\mathcal{Y}, d) < +\infty$  and then by denoting  $\varepsilon_{\mathcal{X}} \triangleq \mathcal{N}_{\lfloor \log_2(\lfloor \sqrt{r} \rfloor ) \rfloor}(\mathcal{X}, d_{\mathcal{X}})$ , there exists  $x_1, \ldots, x_{\lfloor \sqrt{r} \rfloor} \in \mathcal{X}$ , such that  $\mathcal{X} \subset \bigcup_{i=1}^r \mathcal{B}_{\mathcal{X}}(x_i, \varepsilon)$  from which we can extract a partition  $(S_{i,\mathcal{X}})_{i=1}^{\lfloor \sqrt{r} \rfloor}$  of  $\mathcal{X}$  such that for all  $i \in [|1, \lfloor \sqrt{r} \rfloor |]$ , and  $x, y \in S_{i,\mathcal{X}}, d_{\mathcal{X}}(x, y) \leq \varepsilon_{\mathcal{X}}$ . Similarly we can build a partition  $(S_{i,\mathcal{Y}})_{i=1}^{\lfloor \sqrt{r} \rfloor}$  of  $\mathcal{Y}$ . Let us now define for all  $k \in [|1, \lfloor \sqrt{r} \rfloor |]$ ,

$$\mu_k \triangleq \frac{\mu|_{S_{k,\mathcal{X}}}}{\mu(S_{k,\mathcal{X}})} \text{ and } \nu_k \triangleq \frac{\nu|_{S_{k,\mathcal{Y}}}}{\nu(S_{k,\mathcal{Y}})}$$

with the convention that  $\frac{0}{0} = 0$ , we can define

$$\pi_r \triangleq \sum_{i,j=1}^{\lfloor \sqrt{r} \rfloor} \pi^* (S_{i,\mathcal{X}} \times S_{j,\mathcal{Y}}) \nu_j \otimes \mu_i .$$

First remarks that  $\pi_r \in \Pi_r(\mu, \nu)$ . Indeed we have for any measurable set B

$$\pi_r(\mathcal{X} \times B) = \sum_{j=1}^{\lfloor \sqrt{r} \rfloor^2} \nu_j(B) \sum_{i=1}^r \pi^*(S_{i,\mathcal{X}} \times S_{j,\mathcal{Y}})$$
$$= \sum_{j=1}^{\lfloor \sqrt{r} \rfloor} \nu_j(B) \nu(S_{j,\mathcal{Y}})$$
$$= \sum_{j=1}^{\lfloor \sqrt{r} \rfloor} \nu|_{S_{j,\mathcal{X}}}(B)$$
$$= \nu(B) ,$$

similarly  $\pi_r(A \times \mathcal{Y}) = \mu(A)$  and we have that  $\lfloor \sqrt{r} \rfloor^2 \leq r$ . Therefore we obtain that

$$\begin{aligned} |\text{LOT}_{r,c}(\mu,\nu) - \text{OT}_{c}(\mu,\nu)| &= \text{LOT}_{r,c}(\mu,\nu) - \text{OT}_{c}(\mu,\nu) \\ &\leq \int_{\mathcal{X}\times\mathcal{Y}} c(x,y) d\pi_{r}(x,y) - \int_{\mathcal{X}\times\mathcal{Y}} c(x,y) d\pi^{*}(x,y) \\ &\leq \sum_{i,j=1}^{\lfloor\sqrt{r}\rfloor} \int_{S_{i,\mathcal{X}}\times S_{j,\mathcal{Y}}} c(x,y) d[\pi_{r}(x,y) - \pi^{*}(x,y)] \\ &\leq \sum_{i,j=1}^{\lfloor\sqrt{r}\rfloor} \pi^{*}(S_{i,\mathcal{X}}\times S_{j,\mathcal{Y}}) \\ &\times [\sup_{(x,y)\in S_{i,\mathcal{X}}\times S_{j,\mathcal{Y}}} c(x,y) - \inf_{(x,y)\in S_{i,\mathcal{X}}\times S_{j,\mathcal{Y}}} c(x,y)] \\ &\leq L[\varepsilon_{\mathcal{X}} + \varepsilon_{\mathcal{Y}}] \end{aligned}$$

from which the result follows.

**Corollary.** Under the same assumptions of Proposition 2 and by assuming in addition that there exists a Monge map solving  $OT_c(\mu, \nu)$ , we obtain that for any  $r \ge 1$ ,

$$|\mathrm{LOT}_{r,c}(\mu,\nu) - \mathrm{OT}_{c}(\mu,\nu)| \le L\mathcal{N}_{\lfloor \log_{2}(r) \rfloor}(\mathcal{Y}, d_{\mathcal{Y}})$$

*Proof.* Let us denote T a Monge map solution of  $OT_c(\mu, \nu)$  and as in the proof above, let us consider a partition of  $(S_{i,\mathcal{Y}})_{i=1}^r$  of  $\mathcal{Y}$  such that for all  $i \in [|1, r|]$ , and  $x, y \in S_{i,\mathcal{Y}}$ ,  $d_{\mathcal{Y}}(x, y) \leq \varepsilon_{\mathcal{Y}}$  with  $\varepsilon_{\mathcal{Y}} \triangleq \mathcal{N}_{\lfloor \log_2(r) \rfloor}(\mathcal{Y}, d_{\mathcal{Y}})$ . Let us now define for all  $k \in [|1, \lfloor \sqrt{r} \rfloor|]$ ,

$$\mu_k \triangleq \frac{\mu|_{T^{-1}(S_{k,\mathcal{Y}})}}{\mu(T^{-1}(S_{k,\mathcal{Y}}))} \text{ and } \nu_k \triangleq \frac{\nu|_{S_{k,\mathcal{Y}}}}{\nu(S_{k,\mathcal{Y}})}$$

with the convention that  $\frac{0}{0} = 0$ , we can define

$$\pi_r \triangleq \sum_{k=1}^r \pi^* (T^{-1}(S_{k,\mathcal{Y}}) \times S_{k,\mathcal{Y}}) \nu_k \otimes \mu_k .$$

Again we have that  $\pi_r \in \Pi_r(\mu, \nu)$ , and we obtain that  $|\text{LOT}_{r,c}(\mu, \nu) - \text{OT}_c(\mu, \nu)| = \text{LOT}_{r,c}(\mu, \nu) - \text{OT}_c(\mu, \nu)$ 

$$\begin{aligned} & \leq \int_{\mathcal{X}\times\mathcal{Y}} c(x,y)d\pi_{r}(x,y) - \int_{\mathcal{X}\times\mathcal{Y}} c(x,y)d\pi^{*}(x,y) \\ & \leq \sum_{k=1}^{r} \pi^{*}(T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}) \int_{T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}} c(x,y)d\mu_{k}(y) \otimes \nu_{k}(y) \\ & -\sum_{k=1}^{r} \int_{T^{-1}(S_{k,\mathcal{Y}})} c(x,T(x))d\mu(x) \\ & \leq \sum_{k=1}^{r} \pi^{*}(T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}) \int_{T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}} c(x,y)d\mu_{k}(y) \otimes \nu_{k}(y) \\ & -\sum_{k=1}^{r} \pi^{*}(T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}) \int_{T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}} c(x,T(x))d\mu_{k}(x) \otimes \nu_{k}(y) \\ & \leq \sum_{k=1}^{r} \pi^{*}(T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}) \int_{T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}} c(x,T(x))d\mu_{k}(x) \otimes \nu_{k}(y) \\ & \leq \sum_{k=1}^{r} \pi^{*}(T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}) \int_{T^{-1}(S_{k,\mathcal{Y}})\times S_{k,\mathcal{Y}}} [c(x,y) - c(x,T(x))]d\mu_{k}(x) \otimes \nu_{k}(x) \\ & \leq L\varepsilon_{\mathcal{Y}} \end{aligned}$$

from which the result follows. Note that to obtain the above inequalities, we use the fact that  $\pi^*$  is supported on the graph of T, and therefore we have have for all  $k \in [|1, r|]$ ,

$$\pi^*(T^{-1}(S_{k,\mathcal{Y}}) \times S_{k,\mathcal{Y}}) = \mu(T^{-1}(S_{k,\mathcal{Y}})) = \nu(S_{k,\mathcal{Y}}).$$

### **B.3** Proof of Proposition **3**

**Proposition.** Let  $r \ge 1$  and  $\mu, \nu \in \mathcal{M}_1^+(\mathcal{X})$ , then  $\operatorname{LOT}_{r,c}(\hat{\mu}_n, \hat{\nu}_n) \xrightarrow[n \to +\infty]{} \operatorname{LOT}_{r,c}(\mu, \nu)$  a.s.

*Proof.* Let  $\pi^*$  solution of  $LOT_{r,c}(\mu, \nu)$ . Then there exists  $\lambda^* \in \Delta^*_r$ ,  $(\mu^*_i)_{i=1}^r$ ,  $(\nu^*_i)_{i=1}^r \in \mathcal{M}^+_1(\mathcal{X})^r$  such that

$$\pi^* = \sum_{i=1}^r \lambda_i^* \mu_i^* \otimes \nu_i^*.$$

Note that by definition, we have that

$$\mu = \sum_{i=1}^r \lambda_i^* \mu_i^* \text{ and } \nu = \sum_{i=1}^r \lambda_i^* \nu_i^*.$$

Let us now define  $\pi_{\mu}$  and  $\pi_{\mu}$  both elements of  $\mathcal{M}_{1}^{+}(\mathcal{X} \times [|1, r|])$  as follows:

 $\begin{aligned} \pi_{\mu}(A\times\{k\}) &\triangleq \lambda_{k}\mu_{k}(A) \text{ and } \pi_{\nu}(A\times\{k\}) \triangleq \lambda_{k}\nu_{k}(A) \text{ for any measurable set } A \text{ and } k \in [|1,r|] \text{ .} \\ \text{Observe that the right marginals of } \pi_{\mu} \text{ and } \pi_{\nu} \text{ is the same and we will denote it } \rho. \text{ We can now } \\ \text{define for all } x, y \in \mathcal{X} \text{ the family of kernels } (k_{\mu}(\cdot,x))_{x\in\mathcal{X}} \in \mathcal{M}_{1}^{+}([|1,r|])^{\mathcal{X}} \text{ and } (k_{\nu}(\cdot,y))_{y\in\mathcal{X}} \in \mathcal{M}_{1}^{+}([|1,r|])^{\mathcal{X}} \text{ corresponding to the disintegration with respect to the projection of respectively } \mu \\ \text{ad } \nu. \text{ Let us now consider } n \text{ independent samples } (Z_{i}^{\mu})_{i=1}^{n} \text{ and } (Z_{i}^{\nu})_{i=1}^{n} \text{ such that for all } i \in [|1,n|], \\ Z_{i}^{\mu} \sim k_{\mu}(\cdot,X_{i}) \text{ and } Z_{i}^{\nu} \sim k_{\nu}(\cdot,Y_{i}) \text{ and let us define for all } k \in [|1,r|] \end{aligned}$ 

$$\tilde{\mu}_k \triangleq \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{Z_i^{\mu} = k} \delta_{X_i} \text{ and } \tilde{\nu}_k \triangleq \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{Z_i^{\nu} = k} \delta_{Y_i}.$$

Let us now define

$$\begin{split} \tilde{\pi} &\triangleq \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k| |\tilde{\nu}_k|} \tilde{\mu}_k \otimes \tilde{\nu}_k \\ &+ \frac{1}{1 - \sum_{k=1}^{r-1} \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)} \left[ \hat{\mu} - \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \tilde{\mu}_k \right] \otimes \left[ \hat{\nu} - \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|} \tilde{\nu}_k \right] \end{split}$$

with the convention that  $\frac{0}{0} = 0$ . Now it is easy to check that  $\tilde{\pi} \in \Pi_r(\hat{\mu}, \hat{\nu})$ , indeed we have that

$$\begin{split} \tilde{\pi}(A \times \mathcal{X}) &= \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \tilde{\mu}_k(A) \\ &+ \frac{1}{1 - \sum_{k=1}^{r-1} \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)} \left[ \hat{\mu}(A) - \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \tilde{\mu}_k(A) \right] \left[ 1 - \sum_{k=1}^{r-1} \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|) \right] \\ &= \hat{\mu}(A) \end{split}$$

in addition by construction we have that

$$\left| \hat{\mu} - \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \tilde{\mu}_k \right| = \left| \hat{\nu} - \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|} \tilde{\nu}_k \right| = 1 - \sum_{k=1}^{r-1} \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)$$

and both  $\hat{\mu} - \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \tilde{\mu}_k$  and  $\hat{\nu} - \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|} \tilde{\nu}_k$  are positive measures. Therefore we obtain that

$$\operatorname{LOT}_{r,c}(\hat{\mu}, \hat{\nu}) \leq \int_{\mathcal{X}^2} c(x, y) d\tilde{\pi}(x, y)$$

Now we aim at showing at  $\int_{\mathcal{X}^2} c(x, y) d\tilde{\pi}(x, y) \to \text{LOT}_{r,c}(\mu, \nu)$  a.s.. Indeed first observe that from the law of large numbers we have that for all  $k \in [|1, r|]$ ,  $|\tilde{\mu}_k| \to \lambda_k^*$  and similarly  $|\tilde{\nu}_k| \to \lambda_k^*$ . In addition, for all k, q we have that almost surely,  $\tilde{\mu}_k \otimes \tilde{\nu}_q$  converges weakly towards  $\lambda_k^* \lambda_q^* \mu_k \otimes \nu_q$ . Indeed one can consider the following algebra  $\mathcal{F} \triangleq \{(x, y) \in \mathcal{X}^2 \to f(x)g(y) \ f, g \in \mathcal{C}(\mathcal{X})\}$ , and then by Stone-Weierstrass, one obtains by density the desired result. Now remark that

$$\begin{split} \int_{\mathcal{X}^2} c(x,y) d\tilde{\pi}(x,y) &= \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k| |\tilde{\nu}_k|} \int_{\mathcal{X}^2} c(x,y) d\tilde{\mu}_k \otimes \tilde{\nu}_k \\ &+ \frac{1}{\tilde{\lambda}_r} \int_{\mathcal{Z}^2} c(x,y) d\tilde{\mu}_r \otimes \tilde{\nu}_r \\ &+ \frac{1}{\tilde{\lambda}_r} \sum_{k=1}^{r-1} \left( 1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|} \right) \int_{\mathcal{X}^2} c(x,y) d\tilde{\mu}_r \otimes \tilde{\nu}_k \\ &+ \frac{1}{\tilde{\lambda}_r} \sum_{k=1}^{r-1} \left( 1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \right) \int_{\mathcal{X}^2} c(x,y) d\tilde{\mu}_k \otimes \tilde{\nu}_r \\ &+ \frac{1}{\tilde{\lambda}_r} \sum_{k,q=1}^{r-1} \int_{\mathcal{X}^2} \left( 1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \right) \left( 1 - \frac{\min(|\tilde{\mu}_q|, |\tilde{\nu}_q|)}{|\tilde{\nu}_q|} \right) c(x,y) d\tilde{\mu}_k(x) d\tilde{\nu}_q(y) \end{split}$$

from which follows directly that  $\int_{\mathcal{X}^2} c(x, y) d\tilde{\pi}(x, y) \to \text{LOT}_{r,c}(\mu, \nu)$  a.s. Let us now denote for all  $n \geq 1, \pi_n$  a solution of  $\text{LOT}_{r,c}(\hat{\mu}, \hat{\nu})$ . Let  $\omega \in \Omega$  an element of the probability space where live the random variables  $(X_i)_{i\geq 0}$  and  $(Y_i)_{i\geq 0}$  such that  $\int_{\mathcal{X}^2} c(x, y) d\tilde{\pi}^{(\omega)}(x, y) \to \text{LOT}_{r,c}(\mu, \nu)$ . As  $\mathcal{X}$  is compact Thanks to Prokhorov's Theorem, we can extract a sequence such that  $(\pi_n^{(\omega)})_{n\geq 0}$  converge weakly towards  $\pi^{(\omega)} \in \Pi_r(\mu, \nu)$ . In addition we have that for all  $n \geq 1$ 

$$\int_{\mathcal{X}^2} c(x,y) d\pi_n^{(\omega)}(x,y) \le \int_{\mathcal{X}^2} c(x,y) d\tilde{\pi}^{(\omega)}(x,y)$$

And by considering the limit we obtain that

$$\int c(x,y)d\pi^{(\omega)}(x,y) \leq \operatorname{LOT}_{r,c}(\mu,\nu)$$

However  $\pi^{(\omega)} \in \Pi_r(\mu, \nu)$  and by optimality we obtain that

$$\int c(x,y)d\pi^{(\omega)}(x,y) = \mathrm{LOT}_{r,c}(\mu,\nu)$$

This holds for an arbitrary subsequence of  $(\pi_n^{(\omega)})_{n\geq 0}$ , from which follows that  $\int c(x,y)d\pi_n^{(\omega)}(x,y) \to \text{LOT}_{r,c}(\mu,\nu)$ . Finally this holds almost surely and the result follows.  $\Box$ 

### **B.4** Proof of Proposition 4

**Proposition.** Let  $r \ge 1$  and  $\mu, \nu \in \mathcal{M}_1^+(\mathcal{X})$ . Then, there exists a constant  $K_r$  such that for any  $\delta > 0$  and  $n \ge 1$ , we have, with a probability of at least  $1 - 2\delta$ , that

$$\mathrm{LOT}_{r,c}(\hat{\mu}_{n},\hat{\nu}_{n}) - \mathrm{LOT}_{r,c}(\mu,\nu) \le 11 \|c\|_{\infty} \sqrt{\frac{r}{n}} + K_{r} \|c\|_{\infty} \left[ \sqrt{\frac{\log(40/\delta)}{n}} + \frac{\sqrt{r}\log(40/\delta)}{n} \right]$$

*Proof.* We reintroduce the same notation as in the proof of Proposition 3. Let  $\pi^*$  solution of  $\text{LOT}_{r,c}(\mu,\nu)$ . Then there exists  $\lambda^* \in \Delta_r^*$ ,  $(\mu_i^*)_{i=1}^r$ ,  $(\nu_i^*)_{i=1}^r \in \mathcal{M}_1^+(\mathcal{Z})^r$  such that

$$\pi^* = \sum_{i=1}^r \lambda_i^* \mu_i^* \otimes \nu_i^*.$$

As before let us also consider  $\pi_{\mu}$  and  $\pi_{\mu}$  defined as  $\pi_{\mu}(A \times \{k\}) \triangleq \lambda_{k}\mu_{k}(A)$  and  $\pi_{\nu}(A \times \{k\}) \triangleq \lambda_{k}\nu_{k}(A)$  for any measurable set A and  $k \in [|1, r|]$  and denote  $\rho$  their common right marginal. We also consider n independent samples  $(Z_{i}^{\mu})_{i=1}^{n}$  and  $(Z_{i}^{\nu})_{i=1}^{n}$  such that for all  $i \in [|1, n|], Z_{i}^{\mu} \sim k_{\mu}(\cdot, X_{i})$  and  $Z_{i}^{\nu} \sim k_{\nu}(\cdot, Y_{i})$  and we denote for all  $k \in [|1, r|]$ 

$$\tilde{\mu}_k \triangleq \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{Z_i^{\mu} = k} \delta_{X_i} \text{ and } \tilde{\nu}_k \triangleq \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{Z_i^{\nu} = k} \delta_{Y_i}$$

Let us now define

$$\hat{\pi} \triangleq \sum_{i=1}^r \frac{1}{\lambda_k^*} \tilde{\mu}_k \otimes \tilde{\nu}_k \; .$$

Our goal is to control the following quantity:

$$\left| \operatorname{LOT}_{r,c}(\mu,\nu) - \int_{\mathcal{Z}^2} c(x,y) d\hat{\pi}(x,y) \right|,$$

First observe that

$$\mathbb{E}\left[\int_{\mathcal{Z}^2} c(x,y) d\hat{\pi}(x,y)\right] = \sum_{i=1}^r \frac{1}{\lambda_k^*} \mathbb{E}\left[\int_{\mathcal{Z}^2} c(x,y) d\tilde{\mu}_k(x) d\tilde{\nu}_k(y)\right]$$
$$= \sum_{i=1}^r \frac{1}{\lambda_k^* n^2} \times \sum_{i,j} \mathbb{E}\left[c(X_i,Y_j) \mathbf{1}_{Z_i^\mu = k} \mathbf{1}_{Z_j^\nu = k}\right]$$

Moreover, we have that

$$\mathbb{E}\left[c(X_{i}, Y_{j})\mathbf{1}_{Z_{i}^{\mu}=k}\mathbf{1}_{Z_{j}^{\nu}=k}\right] = \int_{(\mathcal{Z}\times[|1,r|])^{2}} c(x, y)\mathbf{1}_{z=k}\mathbf{1}_{z'=k}d\pi_{\mu}(x, z)d\pi_{\nu}(y, z')$$
$$= \int_{(\mathcal{Z}\times[|1,r|])^{2}} c(x, y)\mathbf{1}_{z=k}\mathbf{1}_{z'=k}d\mu_{z}(x)d\nu_{z'}(y)d\rho(z)d\rho(z')$$
$$= \lambda_{k}^{2}\int_{\mathcal{Z}^{2}} c(x, y)d\mu_{k}(x)d\nu_{k}(y)$$

from which follows that

$$\mathbb{E}\left[\int_{\mathcal{Z}^2} c(x,y) d\hat{\pi}(x,y)\right] = \sum_{i=1}^r \lambda_k^* \int_{\mathcal{Z}^2} c(x,y) d\mu_k(x) d\nu_k(y) = \mathrm{LOT}_{r,c}(\mu,\nu)$$

Now let us define for all  $(x_i, z_i)_{i=1}^n, (y_i, z'_i) \in (\mathcal{Z} \times [|1, r|])^n$ ,

$$g((x_1, z_1), \dots, (x_n, z_n), (y_1, z_1'), \dots, (y_n, z_n')) \triangleq \sum_{q=1}^r \frac{1}{\lambda_q^* n^2} \sum_{i,j} c(x_i, y_j) \mathbf{1}_{z_i = q} \mathbf{1}_{z_j' = q},$$

since  ${\mathcal Z}$  is compact and c is continuous, we have that

$$\begin{aligned} |g(\dots,(x_k,z_k),\dots) - g(\dots,(\tilde{x}_k,\tilde{z}_k),\dots)| &= \left| \sum_{q=1}^r \frac{1}{\lambda_q^* n^2} \sum_j [c(x_k,y_j) \mathbf{1}_{z_k=q} - c(\tilde{x}_k,y_j) \mathbf{1}_{\tilde{z}_k=q}] \mathbf{1}_{z'_j=q} \right| \\ &= \left| \frac{1}{\lambda_{z_k}^* n^2} \sum_{j=1}^n c(x_k,y_j) \mathbf{1}_{z'_j=z_k} - \frac{1}{\lambda_{\tilde{z}_k}^* n^2} \sum_{j=1}^n c(\tilde{x}_k,y_j) \mathbf{1}_{z'_j=\tilde{z}_k} \right| \\ &\leq \frac{\|c\|_{\infty}}{n^2} \left[ \frac{\sum_{j=1}^n \mathbf{1}_{z'_j=z_k}}{\lambda_{z_k}^*} + \frac{\sum_{j=1}^n \mathbf{1}_{z'_j=\tilde{z}_k}}{\lambda_{\tilde{z}_k}^*} \right] \\ &\leq \frac{2\|c\|_{\infty}}{\min_{1\leq q \leq r} \lambda_q^*} \frac{1}{n} \end{aligned}$$

Then by applying the McDiarmid's inequality we obtain that for  $\delta > 0$ , with a probability at least of  $1 - \delta$ , we have

$$\left| \operatorname{LOT}_{r,c}(\mu,\nu) - \int_{\mathcal{Z}^2} c(x,y) d\hat{\pi}(x,y) \right| \le \frac{2\|c\|_{\infty}}{\min_{1 \le q \le r} \lambda_q^*} \sqrt{\frac{\log(2/\delta)}{n}}$$

Now we aim at building a coupling  $\tilde{\pi} \in \Pi_r(\hat{\mu}, \hat{\nu})$  from  $\hat{\pi}$ . Let us consider the same as the one introduce in the proof of Proposition B.3, that is

$$\begin{split} \tilde{\pi} &\triangleq \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k| |\tilde{\nu}_k|} \tilde{\mu}_k \otimes \tilde{\nu}_k \\ &+ \frac{1}{1 - \sum_{k=1}^{r-1} \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)} \left[ \hat{\mu} - \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \tilde{\mu}_k \right] \otimes \left[ \hat{\nu} - \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|} \tilde{\nu}_k \right] \end{split}$$

with the convention that  $\frac{0}{0} = 0$ . Let us now expand the above expression, and by denoting  $\tilde{\lambda}_r = 1 - \sum_{k=1}^{r-1} \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)$  we obtain that

$$\begin{split} \tilde{\pi} &= \sum_{k=1}^{r-1} \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k| |\tilde{\nu}_k|} \tilde{\mu}_k \otimes \tilde{\nu}_k \\ &+ \frac{1}{\tilde{\lambda}_r} \tilde{\mu}_r \otimes \tilde{\nu}_r \\ &+ \frac{1}{\tilde{\lambda}_r} \tilde{\mu}_r \otimes \left[ \sum_{k=1}^{r-1} \left( 1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|} \right) \tilde{\nu}_k \right] \\ &+ \frac{1}{\tilde{\lambda}_r} \left[ \sum_{k=1}^{r-1} \left( 1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \right) \tilde{\mu}_k \right] \otimes \tilde{\nu}_r \\ &+ \frac{1}{\tilde{\lambda}_r} \left[ \sum_{k=1}^{r-1} \left( 1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \right) \tilde{\mu}_k \right] \otimes \left[ \sum_{k=1}^{r-1} \left( 1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|} \right) \tilde{\nu}_k \right] \end{split}$$

Now we aim at controlling the following quantity  $\left|\int_{Z^2} c(x,y) d\hat{\pi}(x,y) - \int_{Z^2} c(x,y) d\tilde{\pi}(x,y)\right|$  and we observe that

$$\int_{\mathcal{Z}^2} c(x,y) d[\hat{\pi}(x,y) - \tilde{\pi}(x,y)] = \sum_{k=1}^{r-1} \int_{\mathcal{Z}^2} c(x,y) \left[ \frac{1}{\lambda_k^*} - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k| |\tilde{\nu}_k|} \right] d\tilde{\mu}_k(x) \tilde{\nu}_k(y) \quad (11)$$

$$+ \int_{\mathcal{Z}^2} c(x,y) \left[ \frac{1}{\lambda_r^*} - \frac{1}{\tilde{\lambda}_r} \right] d\tilde{\mu}_r(x) \tilde{\nu}_r(y) \tag{12}$$

$$+\frac{1}{\tilde{\lambda}_r}\sum_{k=1}^{r-1}\int_{\mathcal{Z}^2} \left(1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|}\right) c(x, y) d\tilde{\mu}_r(x) d\tilde{\nu}_k(y)$$
(13)

$$+\frac{1}{\tilde{\lambda}_r}\sum_{k=1}^{r-1}\int_{\mathcal{Z}^2} \left(1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|}\right) c(x, y) d\tilde{\mu}_k(x) d\tilde{\nu}_r(y) \tag{14}$$

$$+\frac{1}{\tilde{\lambda}_{r}}\sum_{k,q=1}^{r-1}\int_{\mathcal{Z}^{2}}\left(1-\frac{\min(|\tilde{\mu}_{k}|,|\tilde{\nu}_{k}|)}{|\tilde{\mu}_{k}|}\right)\left(1-\frac{\min(|\tilde{\mu}_{q}|,|\tilde{\nu}_{q}|)}{|\tilde{\nu}_{q}|}\right)c(x,y)d\tilde{\mu}_{k}(x)d\tilde{\nu}_{q}(y)$$
(15)

Let us now control each term of the RHS of the above equality. Let us first consider the term in Eq. [1] remark that we have

$$\begin{split} & \left| \int_{\mathcal{Z}^2} c(x,y) \left[ \frac{1}{\lambda_k^*} - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k| |\tilde{\nu}_k|} \right] d\tilde{\mu}_k(x) \tilde{\nu}_k(y) \right| \\ & \leq \left| \left[ \frac{1}{\lambda_k^*} - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k| |\tilde{\nu}_k|} \right] \right| \|c\|_{\infty} |\tilde{\mu}_k| |\tilde{\nu}_k| \\ & \leq \left| \left[ \frac{|\tilde{\mu}_k| |\tilde{\nu}_k|}{\lambda_k^*} - \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|) \right] \right| \|c\|_{\infty} \\ & \leq \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|) \left| \frac{\max(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{\lambda_k^*} - 1 \right| \|c\|_{\infty} \\ & \leq \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{\lambda_k^*} |\max(|\tilde{\mu}_k|, |\tilde{\nu}_k|) - \lambda_k^*| \|c\|_{\infty} \\ & \leq \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{\lambda_k^*} \max(\|\tilde{\lambda}_\mu - \lambda^*\|_{\infty}, \|\tilde{\lambda}_\nu - \lambda^*\|_{\infty}) \|c\|_{\infty} \\ & \leq \|c\|_{\infty} \max\left( \left\| \frac{\tilde{\lambda}_\mu}{\lambda^*} \right\|_{\infty}, \left\| \frac{\tilde{\lambda}_\nu}{\lambda^*} \right\|_{\infty} \right) \max(\|\tilde{\lambda}_\mu - \lambda^*\|_{\infty}, \|\tilde{\lambda}_\nu - \lambda^*\|_{\infty}) \|c\|_{\infty} \end{split}$$

where we have denoted  $\tilde{\lambda}_{\mu} \triangleq (|\tilde{\mu}_k|)_{k=1}^r$  and  $\tilde{\lambda}_{\nu} \triangleq (|\tilde{\nu}_k|)_{k=1}^r$ . Now observe that

$$\mathbb{P}\left(\max(\|\tilde{\lambda}_{\mu} - \lambda^*\|_{\infty}, \|\tilde{\lambda}_{\nu} - \lambda^*\|_{\infty}) \ge t\right) \le 2\mathbb{P}\left(\|\tilde{\lambda}_{\mu} - \lambda^*\|_{\infty} \ge t\right)$$
$$\le \mathbb{P}\left(d_K(\lambda^*, \tilde{\lambda}_{\mu}) \ge \frac{t}{2}\right)$$
$$\le 4\exp(-nt^2/2)$$

where  $d_{\boldsymbol{K}}$  is the Kolmogorov distance. In addition we have

$$\max\left(\left\|\frac{\tilde{\lambda}_{\mu}}{\lambda^{*}}\right\|_{\infty}, \left\|\frac{\tilde{\lambda}_{\nu}}{\lambda^{*}}\right\|_{\infty}\right) \leq 1 + \frac{1}{\min_{1 \leq i \leq r} \lambda_{i}^{*}} \max\left(\|\tilde{\lambda}_{\mu} - \lambda^{*}\|_{\infty}, \|\tilde{\lambda}_{\nu} - \lambda^{*}\|_{\infty}\right)$$

Combining the two above controls, we obtain that for all  $\delta > 0$ , with a probability of at least  $1 - \delta$ ,

$$\left| \int_{\mathcal{Z}^2} c(x,y) \left[ \frac{1}{\lambda_k^*} - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k| |\tilde{\nu}_k|} \right] d\tilde{\mu}_k(x) \tilde{\nu}_k(y) \right| \le \|c\|_{\infty} \sqrt{\frac{2\ln 8/\delta}{n}} + \frac{\|c\|_{\infty}}{n} \frac{2\ln 8/\delta}{\min_{1 \le i \le r} \lambda_i^*}$$

Let us now consider the term in Eq. 12, we have that

$$\begin{split} \left| \int_{\mathcal{Z}^2} c(x,y) \left[ \frac{1}{\lambda_r^*} - \frac{1}{\tilde{\lambda}_r} \right] d\tilde{\mu}_r(x) \tilde{\nu}_r(y) \right| &\leq \frac{|\tilde{\mu}_r||\tilde{\nu}_r|}{\lambda_r^* \tilde{\lambda}_r} \left| 1 - \sum_{i=1}^r \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|) - \lambda_r \right| \|c\|_{\infty} \\ &\leq \max\left( \left\| \frac{\tilde{\lambda}_\mu}{\lambda^*} \right\|_{\infty}, \left\| \frac{\tilde{\lambda}_\nu}{\lambda^*} \right\|_{\infty} \right) \sum_{k=1}^{r-1} |\lambda_k^* - \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)| \|c\|_{\infty} \\ &\leq \max\left( \left\| \frac{\tilde{\lambda}_\mu}{\lambda^*} \right\|_{\infty}, \left\| \frac{\tilde{\lambda}_\nu}{\lambda^*} \right\|_{\infty} \right) \|c\|_{\infty} (\|\lambda^* - \tilde{\lambda}_\mu\|_1 + \|\lambda^* - \tilde{\lambda}_\nu\|_1) \\ &\leq 2\|c\|_{\infty} \max\left( \left\| \frac{\tilde{\lambda}_\mu}{\lambda^*} \right\|_{\infty}, \left\| \frac{\tilde{\lambda}_\nu}{\lambda^*} \right\|_{\infty} \right) \max(\|\lambda^* - \tilde{\lambda}_\mu\|_1, \|\lambda^* - \tilde{\lambda}_\nu\|_1) \end{split}$$

However we have that

$$\mathbb{P}\left(\max(\|\lambda^* - \tilde{\lambda}_{\mu}\|_1, \|\lambda^* - \tilde{\lambda}_{\nu}\|_1) \ge t\right) \le 2\mathbb{P}\left(\|\lambda^* - \tilde{\lambda}_{\mu}\|_1 \ge t\right)$$

In addition we have that  $\mathbb{E}(\|\lambda^* - \tilde{\lambda}_{\mu}\|_1) \leq \sqrt{\frac{r}{n}}$  and by applying the McDiarmid's Inequality, we obtain that for all  $\delta > 0$ , with a probability of  $1 - \delta$ 

$$\|\lambda^* - \tilde{\lambda}_{\mu}\|_1 \le \sqrt{\frac{r}{n}} + \sqrt{\frac{2\ln(2/\delta)}{n}}$$

Therefore we obtain that with a probability of at least  $1 - \delta$ ,

$$\left| \int_{\mathcal{Z}^2} c(x,y) \left[ \frac{1}{\lambda_r^*} - \frac{1}{\tilde{\lambda}_r} \right] d\tilde{\mu}_r(x) \tilde{\nu}_r(y) \right| \le 2 \|c\|_{\infty} \left[ \sqrt{\frac{r}{n}} + \sqrt{\frac{2\ln(8/\delta)}{n}} + \frac{2\ln(8/\delta) + \sqrt{2r\ln(8/\delta)}}{n \times \min_{1 \le i \le r} \lambda_i^*} \right]$$

For the term in Eq. 13 and 14, we obtain that

$$\begin{aligned} \left| \frac{1}{\tilde{\lambda}_r} \sum_{k=1}^{r-1} \int_{\mathcal{Z}^2} \left( 1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|} \right) c(x, y) d\tilde{\mu}_r(x) d\tilde{\nu}_k(y) \\ &\leq \frac{|\tilde{\mu}_r|}{\tilde{\lambda}_r} \sum_{k=1}^{r-1} \left( |\tilde{\nu}_k| - \min(|\tilde{\mu}_k|, |\tilde{\nu}_k|) \right) \|c\|_{\infty} \\ &\leq \frac{|\tilde{\mu}_r|}{\tilde{\lambda}_r} [\tilde{\lambda}_r - |\tilde{\nu}_r|] \|c\|_{\infty} \\ &\leq [|\tilde{\lambda}_r - \lambda_r^*| + |\lambda_r^* - \tilde{\nu}_r|] \|c\|_{\infty} \\ &\leq 3 \|c\|_{\infty} \max(\|\lambda^* - \tilde{\lambda}_{\mu}\|_1, \|\lambda^* - \tilde{\lambda}_{\nu}\|_1) \end{aligned}$$

Therefore we obtain that with a probability of at least  $1 - \delta$ ,

$$\left|\frac{1}{\tilde{\lambda}_r}\sum_{k=1}^{r-1}\int_{\mathcal{Z}^2} \left(1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\nu}_k|}\right) c(x, y) d\tilde{\mu}_r(x) d\tilde{\nu}_k(y)\right| \le 3\|c\|_{\infty} \left[\sqrt{\frac{r}{n}} + \sqrt{\frac{2\ln(2/\delta)}{n}}\right]$$

Finally the last term in Eq. 15 can be controlled as the following:

$$\begin{split} &\left|\frac{1}{\tilde{\lambda}_{r}}\sum_{k,q=1}^{r-1}\int_{\mathcal{Z}^{2}}\left(1-\frac{\min(|\tilde{\mu}_{k}|,|\tilde{\nu}_{k}|)}{|\tilde{\mu}_{k}|}\right)\left(1-\frac{\min(|\tilde{\mu}_{q}|,|\tilde{\nu}_{q}|)}{|\tilde{\nu}_{q}|}\right)c(x,y)d\tilde{\mu}_{k}(x)d\tilde{\nu}_{q}(y)\right.\\ &\leq \frac{\|c\|_{\infty}}{\tilde{\lambda}_{r}}\sum_{k,q=1}^{r-1}\left(1-\frac{\min(|\tilde{\mu}_{k}|,|\tilde{\nu}_{k}|)}{|\tilde{\mu}_{k}|}\right)\left(1-\frac{\min(|\tilde{\mu}_{q}|,|\tilde{\nu}_{q}|)}{|\tilde{\nu}_{q}|}\right)|\tilde{\mu}_{k}||\tilde{\nu}_{q}|\\ &\leq \frac{\|c\|_{\infty}}{\tilde{\lambda}_{r}}\sum_{k=1}^{r-1}(|\tilde{\mu}_{k}|-\min(|\tilde{\mu}_{k}|,|\tilde{\nu}_{k}|))\sum_{k=1}^{r-1}(|\tilde{\nu}_{k}|-\min(|\tilde{\mu}_{k}|,|\tilde{\nu}_{k}|))\\ &\leq 3\|c\|_{\infty}\max(\|\lambda^{*}-\tilde{\lambda}_{\mu}\|_{1},\|\lambda^{*}-\tilde{\lambda}_{\nu}\|_{1}) \end{split}$$

and we obtain that with a probability of at least  $1 - \delta$ ,

$$\begin{aligned} \left| \frac{1}{\tilde{\lambda}_r} \sum_{k,q=1}^{r-1} \int_{\mathcal{Z}^2} \left( 1 - \frac{\min(|\tilde{\mu}_k|, |\tilde{\nu}_k|)}{|\tilde{\mu}_k|} \right) \left( 1 - \frac{\min(|\tilde{\mu}_q|, |\tilde{\nu}_q|)}{|\tilde{\nu}_q|} \right) c(x, y) d\tilde{\mu}_k(x) d\tilde{\nu}_q(y) \right| \\ \leq 3 \|c\|_{\infty} \left[ \sqrt{\frac{r}{n}} + \sqrt{\frac{2\ln(2/\delta)}{n}} \right] \end{aligned}$$

Then by applying a union bound we obtain that with a probability of at least  $1 - \delta$ 

$$\left| \int_{\mathcal{Z}^2} c(x,y) d[\hat{\pi}(x,y) - \tilde{\pi}(x,y)] \right| \le \|c\|_{\infty} \left[ 11\sqrt{\frac{r}{n}} + 12\sqrt{\frac{2\ln 40/\delta}{n}} + \frac{6\ln(40/\delta) + 2\sqrt{2r\ln(40/\delta)}}{n \times \min_{1 \le i \le r} \lambda_i^*} \right]$$

Now observe that

$$\begin{aligned} \mathsf{LOT}_{r,c}(\hat{\mu}, \hat{\nu}) - \mathsf{LOT}_{r,c}(\mu, \nu) &\leq \int_{\mathcal{Z}^2} c(x, y) d\tilde{\pi}(x, y) - \int_{\mathcal{Z}^2} c(x, y) d\pi^*(x, y) \\ &\leq \int_{\mathcal{Z}^2} c(x, y) d[\tilde{\pi} - \hat{\pi}](x, y) + \int_{\mathcal{Z}^2} c(x, y) d[\hat{\pi} - \pi^*](x, y) \end{aligned}$$

and by combining the two control we obtain that with a probability of at least  $1 - 2\delta$ ,

$$\begin{split} \operatorname{LOT}_{r,c}(\hat{\mu}, \hat{\nu}) - \operatorname{LOT}_{r,c}(\mu, \nu) &\leq \|c\|_{\infty} \left[ 11\sqrt{\frac{r}{n}} + 12\sqrt{\frac{2\ln 40/\delta}{n}} + \frac{1}{\alpha} \left( 2\sqrt{\frac{\log(2/\delta)}{n}} + \frac{6\ln(40/\delta) + 2\sqrt{2r\ln(40/\delta)}}{n} \right) \right] \\ &\leq 11\|c\|_{\infty}\sqrt{\frac{r}{n}} + \frac{14\|c\|_{\infty}}{\alpha}\sqrt{\frac{\log(40/\delta)}{n}} + \frac{2\|c\|_{\infty}\max(6, \sqrt{2r})\log(40/\delta)}{n\alpha} \\ & \text{where } \alpha \triangleq \min \ \lambda_{i}^{*} \text{ and the result follows.} \end{split}$$

where  $\alpha \triangleq \min_{1 \le i \le r} \lambda_i^*$  and the result follows.

### **B.5** Proof Proposition **5**

**Proposition.** Let  $r \ge 1$ ,  $\delta > 0$  and  $\mu, \nu \in \mathcal{M}_1^+(\mathcal{X})$ . Then there exists a constant  $N_{r,\delta}$  such that if  $n \ge N_{r,\delta}$  then with a probability of at least  $1 - 2\delta$ , we have

$$\operatorname{LOT}_{r,c}(\hat{\mu}_n, \hat{\nu}_n) - \operatorname{LOT}_{r,c}(\mu, \nu) \le 11 \|c\|_{\infty} \sqrt{\frac{r}{n}} + 77 \|c\|_{\infty} \sqrt{\frac{\log(40/\delta)}{n}}.$$

*Proof.* We consider the same notations as in the proof of Proposition 4. In particular let us define for all  $(x_i, z_i)_{i=1}^n, (y_i, z'_i) \in (\mathcal{Z} \times [|1, r|])^n$ ,

$$g((x_1, z_1), \dots, (x_n, z_n), (y_1, z'_1), \dots, (y_n, z'_n)) \triangleq \sum_{q=1}^r \frac{1}{\lambda_q^* n^2} \sum_{i,j} c(x_i, y_j) \mathbf{1}_{z_i = q} \mathbf{1}_{z'_j = q},$$

#### Recall that we have

$$\begin{aligned} |g(\dots,(x_k,z_k),\dots) - g(\dots,(\tilde{x}_k,\tilde{z}_k),\dots)| &\leq \frac{\|c\|_{\infty}}{n^2} \left[ \frac{\sum_{j=1}^n \mathbf{1}_{z_j'=z_k}}{\lambda_{z_k}^*} + \frac{\sum_{j=1}^n \mathbf{1}_{z_j'=\tilde{z}_k}}{\lambda_{\tilde{z}_k}^*} \right] \\ &\leq \frac{2\|c\|_{\infty}}{n} \max\left( \left\| \frac{\tilde{\lambda}_{\mu}}{\lambda^*} \right\|_{\infty}, \left\| \frac{\tilde{\lambda}_{\nu}}{\lambda^*} \right\|_{\infty} \right) \\ &\leq \frac{2\|c\|_{\infty}}{n} + \frac{2\|c\|_{\infty}}{n \times \min_{1 \leq i \leq r} \lambda_i^*} \max\left( \|\tilde{\lambda}_{\mu} - \lambda^*\|_{\infty}, \|\tilde{\lambda}_{\nu} - \lambda^*\|_{\infty} \right) \end{aligned}$$

In fact if we have a control in probability of the bounded difference we can use an extension of the McDiarmid's Inequality. For that purpose let us first introduce the following definition.

**Definition 4.** Let  $(X_i)_{i=1}^m$ , m independent random variables and g a measurable function. We say that g is weakly difference-bounded with respect to  $(X_i)_{i=1}^m$  by  $(b, \beta, \delta)$  if

$$\mathbb{P}\left(\left|g(X_1,\ldots,X_m) - g(X_1',\ldots,X_m')\right| \le \beta\right) \ge 1 - \delta$$

with  $X'_i = X_i$  except for one coordinate k where  $X'_k$  is an independent copy of  $X_k$ . Furthermore for any  $(x_i)_{i=1}^m$  and  $(x'_i)_{i=1}^m$  where for all coordinate except on  $x_j = x'_j$ 

$$|g(x_1,\ldots,x_m)-g(x_1',\ldots,x_m')|\leq b.$$

Let us now introduce an extension of McDiarmid's Inequality [Kutin, 2002].

**Theorem 1.** Let  $(X_i)_{i=1}^m$ , m independent random variables and g a measurable function which is weakly difference-bounded with respect to  $(X_i)_{i=1}^m$  by  $(b, \beta/m, \exp(-Km))$ , then if  $0 < \tau \leq T(b, \beta, K)$  and  $m \geq M(b, \beta, K, \tau)$ , then

$$\mathbb{P}(|g(X_1,\ldots,X_m) - \mathbb{E}(g(X_1,\ldots,X_m))| \ge \tau) \le 4 \exp\left(\frac{-\tau^2 m}{8\beta^2}\right)$$

where

$$T(b,\beta,K) \triangleq \min\left(\frac{14c}{2}, 4\beta\sqrt{K}, \frac{\beta^2 K}{b}\right)$$
$$M(b,\beta,K,\tau) \triangleq \max\left(\frac{b}{\beta}, \beta\sqrt{40}, 3\left(\frac{24}{K}+3\right)\log\left(\frac{24}{K}+3\right), \frac{1}{\tau}\right)$$

Given the above Theroem we can obtain an asymptotic control of the deviation of g from its mean. Let  $\delta' > 0$  and let us denote

$$\begin{split} m &\triangleq 2n \\ b &\triangleq \frac{2\|c\|_{\infty}}{n \times \min_{1 \le i \le r} \lambda_i^*} \\ K &\triangleq \frac{\log(1/\delta')}{2n} \\ \beta &\triangleq 4\|c\|_{\infty} \left[ 1 + \frac{1}{\min_{1 \le i \le r} \lambda_i^*} \sqrt{\frac{2\log(4/\delta')}{n}} \right] \end{split}$$

Observe now that with a probability of at least  $1 - \exp(-Km)$ 

$$|g(\ldots,(x_k,z_k),\ldots) - g(\ldots,(\tilde{x}_k,\tilde{z}_k),\ldots)| \le \frac{2\|c\|_{\infty}}{n} \left[1 + \frac{1}{\min_{1\le i\le r}\lambda_i^*}\sqrt{\frac{2\log(4/\delta')}{n}}\right]$$

Let us now fix  $\delta > 0$  and let us choose  $\delta'$  such that  $\delta' \triangleq 4/n$  and  $\tau \triangleq \beta \sqrt{\frac{4 \log(4/\delta)}{n}}$ , then we obtain that for n sufficiently large (such that  $n \ge M(b, \beta, K, \tau)/2$  and  $\tau \le T(b, \beta, K)$ ), we have that with a probability of at least  $1 - \delta$ 

-

$$\begin{aligned} \left| \text{LOT}_{r,c}(\mu,\nu) - \int_{\mathcal{Z}^2} c(x,y) d\hat{\pi}(x,y) \right| &\leq 4 \|c\|_{\infty} \left| 1 + \frac{1}{\min_{1 \leq i \leq r} \lambda_i^*} \sqrt{\frac{2\log(n)}{n}} \right| \sqrt{\frac{4\log(4/\delta)}{n}} \\ &\leq 4 \|c\|_{\infty} \sqrt{\frac{4\log(4/\delta)}{n}} + \frac{16\sqrt{5} \|c\|_{\infty} \sqrt{\log(n)\log(4/\delta)}}{n \times \min_{1 \leq i \leq r} \lambda_i^*} \end{aligned}$$

Recall also from the proof of Proposition 4, that we have with a probability of at least  $1 - \delta$ 

$$\int_{\mathcal{Z}^2} c(x,y) d[\hat{\pi}(x,y) - \tilde{\pi}(x,y)] \leq \|c\|_{\infty} \left| 11\sqrt{\frac{r}{n}} + 12\sqrt{\frac{2\ln 40/\delta}{n}} + \frac{6\ln(40/\delta) + 2\sqrt{2r\ln(40/\delta)}}{n \times \min_{1 \le i \le r} \lambda_i^*} \right|_{1 \le i \le r}$$

Finally by imposing in addition that

$$\sqrt{\frac{n}{\log(n)}} \geq \frac{1}{\min\limits_{1 \leq i \leq r} \lambda_i^*} \ , \ \sqrt{n} \geq \frac{\sqrt{\log(40/\delta)}}{\min\limits_{1 \leq i \leq r} \lambda_i^*} \ \text{ and } \ \sqrt{n} \geq \frac{\sqrt{r}}{\min\limits_{1 \leq i \leq r} \lambda_i^*}$$

we obtain that for n is large enough (such that (such that  $n \ge M(b, \beta, K, \tau)/2$  and  $\tau \le T(b, \beta, K)$ ) and satysfing the above inequalities, we have with a probability of at least  $1 - 2\delta$  that

$$\mathrm{LOT}_{r,c}(\hat{\mu}, \hat{\nu}) - \mathrm{LOT}_{r,c}(\mu, \nu) \le 11 \|c\|_{\infty} \sqrt{\frac{r}{n}} + 77 \|c\|_{\infty} \sqrt{\frac{\log(40/\delta)}{n}}$$

# **B.6 Proof Proposition** 6

**Proposition.** Let  $\mu, \nu \in \mathcal{M}_1^+(\mathcal{X})$ . Let us assume that c is symmetric, then we have

DLOT<sub>1,c</sub>(
$$\mu, \nu$$
) =  $\frac{1}{2} \int_{\mathcal{X}^2} -c(x, y) d[\mu - \nu] \otimes d[\mu - \nu](x, y)$ .

If in addition we assume the c is Lipschitz w.r.t to x and y, then we have

$$\operatorname{DLOT}_{r,c}(\mu,\nu) \xrightarrow[r \to +\infty]{} \operatorname{OT}_{c}(\mu,\nu)$$
.

*Proof.* When r = 1, it is clear that for any  $\mu, \nu \in \mathcal{M}_1^+(\mathcal{X})$ ,  $\Pi_r(\mu, \nu) = \{\mu \otimes \nu\}$  and thanks to the symmetry of c, we have directly that

$$\mathsf{DLOT}_{1,c}(\mu,\nu) = \frac{1}{2} \int_{\mathcal{X}^2} -c(x,y)d[\mu-\nu] \otimes d[\mu-\nu](x,y) = \frac{1}{2}\mathsf{MMD}_{-c}(\mu,\nu) \ .$$

The limit is a direct consequence of Proposition 2

### **B.7** Proof of Proposition 8

**Proposition.** Let  $r \ge 1$  and  $(\mu_n)_{n\ge 0}$  and  $(\nu_n)_{n\ge 0}$  two sequences of probability measures such that  $\mu_n \to \mu$  and  $\nu_n \to \nu$  with respect to the convergence in law. Then we have that

$$LOT_{r,c}(\mu_n,\nu_n) \to LOT_{r,c}(\mu,\nu)$$
.

*Proof.* Let us denote  $\pi$  an optimal solution of  $\text{LOT}_{r,c}(\mu, \nu)$  and let us denote  $(\mu^{(i)})_{i=1}^r$ ,  $(\nu^{(i)})_{i=1}^r$  and  $(\lambda^{(i)})_{i=1}^r$  the decomposition associated. In the following Lemma, we aim at building specific decompositions of the sequences  $(\mu_n)_{n\geq 0}$  and  $(\nu_n)_{n\geq 0}$ .

**Lemma 1.** Let  $r \ge 1$ ,  $\mu \in \mathcal{M}_1^+(\mathcal{X})$  and  $(\mu^{(i)})_{i=1}^r \in \mathcal{M}_1^+(\mathcal{X})$  and  $(\lambda^{(i)})_{i=1}^r \in \Delta_r^*$  such that  $\mu = \sum_{i=1}^r \lambda_i \mu^{(i)}$ . Then for any sequence of probability measures  $(\mu_n)_{\ge 0}$  such that  $\mu_n \to \mu$ , there exist for all  $i \in [|1, r|]$  a sequence of nonnegative measures  $(\mu_n^{(i)})_{n\ge 0}$  such that

$$\mu_n^{(i)} \to \lambda_i \mu^{(i)} \text{ for all } i \in [|1, r|] \text{ and}$$
$$\sum_{i=1}^r \mu_n^{(i)} = \mu_n \text{ for all } n \ge 0$$

*Proof.* For r = 1 the result is clear. Let us now show the result for r = 2. Let us denote  $(\tilde{\mu}_n^{(1)})$  a sequence converging weakly towards  $\lambda_1 \mu^{(1)}$ . Then by denoting  $\mu_n^{(1)} \triangleq \mu_n - (\mu_n - \tilde{\mu}_n^{(1)})_+$  where  $(\cdot)_+$  correspond to the non-negative part of the measure, we have that

$$\begin{split} \mu_n^{(1)} &\geq 0, \ \ \mu_n^{(1)} \to \lambda_1 \mu^{(1)}, \\ \mu_n^{(2)} &\triangleq \mu_n - \mu_n^{(1)} \ge 0, \ \ \mu_n^{(2)} \to \lambda_2 \mu^{(2)} \ \text{ and } \\ \mu_n &= \mu_n^{(1)} + \mu_n^{(2)} \ \text{ for all } \ n \ge 0 \end{split}$$

which is the result. Let  $r \ge 2$  and let us assume that the result holds for all  $1 \le k \le r$ . Let us now consider a decomposition of  $\mu$  such that  $\mu = \sum_{i=1}^{r+1} \lambda_i \mu^{(i)}$ . By denoting  $\tilde{\mu}^{(1)} \triangleq \frac{\sum_{i=1}^r \lambda_i \mu^{(i)}}{\sum_{i=1}^r \lambda_i}$ , we obtain that

$$\mu = \left(\sum_{i=1}^{r} \lambda_i\right) \tilde{\mu}^{(1)} + \lambda_{r+1} \mu^{(r+1)}$$

Then by recursion we have that there exists sequences of nonnegative measures  $(\tilde{\mu}_n^{(1)})$  and  $(\mu_n^{(r+1)})$  such that

$$\tilde{\mu}_n^{(1)} \to \left(\sum_{i=1}^r \lambda_i\right) \tilde{\mu}^{(1)}, \ \mu_n^{(r+1)} \to \lambda_{r+1} \mu^{(r+1)} \text{ and } \mu_n = \tilde{\mu}_n^{(1)} + \mu_n^{(r+1)} \text{ for all } n \ge 0$$

Now observe that  $\frac{\tilde{\mu}_n^{(1)}}{|\tilde{\mu}_n^{(1)}|} \to \tilde{\mu}^{(1)} = \sum_{i=1}^r \frac{\lambda_i}{\sum_{i=1}^r \lambda_i} \mu^{(i)}$ . Therefore applying the recursion on this problem allows us to obtain a decomposition of  $\tilde{\mu}_n^{(1)}$  of the form

$$\begin{split} \frac{\tilde{\mu}_{n}^{(1)}}{\tilde{\mu}_{n}^{(1)}|} &= \sum_{i=1}^{r} \mu_{n}^{(i)} \text{ where } \\ \mu_{n}^{(i)} &\geq 0 \text{ and } \mu_{n}^{(i)} \to \frac{\lambda_{i}}{\sum_{i=1}^{r} \lambda_{i}} \mu^{(i)} \end{split}$$

Therefore we obtain that

$$\mu_n = \sum_{i=1}^r |\tilde{\mu}_n^{(1)}| \mu_n^{(i)} + \mu_n^{(r+1)} \text{ where}$$
  
$$\mu_n^{(i)} \ge 0, \quad |\tilde{\mu}_n^{(1)}| \mu_n^{(i)} \to \lambda_i \mu^{(i)} \text{ for all } i \in [|1, r|] \text{ and}$$
  
$$\mu_n^{(r+1)} \ge 0, \quad \mu_n^{(r+1)} \to \lambda_{r+1} \mu^{(r+1)}$$

from which follows the result.

Let us now consider such decompositions of  $(\mu_n)_{n\geq 0}$  and  $(\nu_n)_{n\geq 0}$  such that each factor converges toward the target decomposition of  $\mu$ . Now let us build the following coupling:

$$\begin{split} \tilde{\pi}_n &\triangleq \sum_{k=1}^{r-1} \frac{\min(|\mu_n^{(k)}|, |\nu_n^{(k)}|)}{|\mu_n^{(k)}| |\nu_n^{(k)}|} \mu_n^{(k)} \otimes \mu_n^{(k)} \\ &+ \frac{1}{1 - \sum_{k=1}^{r-1} \min(|\mu_n^{(k)}|, |\nu_n^{(k)}|)} \left[ |\mu_n| - \sum_{k=1}^{r-1} \frac{\min(|\mu_n^{(k)}|, |\nu_n^{(k)}|)}{|\mu_n^{(k)}|} \mu_n^{(k)} \right] \otimes \left[ \nu_n - \sum_{k=1}^{r-1} \frac{\min(|\mu_n^{(k)}|, |\nu_n^{(k)}|)}{|\nu_n^{(k)}|} \nu_n^{(k)} \right] \end{split}$$

with the convention that  $\frac{0}{0} = 0$ . Now it is easy to check that  $\tilde{\pi}_n \in \Pi_r(\mu_n, \nu_n)$ , and we have that

$$\operatorname{LOT}_{r,c}(\mu_n,\nu_n) \le \int_{\mathcal{X}^2} d(x,y) d\tilde{\pi}_n(x,y) \to \operatorname{LOT}_{r,c}(\mu,\nu)$$

and by Prokhorov's theorem and the optimality of the limit of  $(\tilde{\pi}_n)_{n\geq 0}$  (up to an extraction) we obtain that  $\text{LOT}_{r,c}(\mu_n,\nu_n) \to \text{LOT}_{r,c}(\mu,\nu)$ .

# **B.8** Proof Proposition 7

**Proposition.** Let  $r \ge 1$ , and let us assume that c is a semimetric of negative type. Then for all  $\mu, \nu \in \mathcal{M}_1^+(\mathcal{X})$ , we have that

$$DLOT_r(\mu,\nu) \ge 0$$
.

In addition, if c has strong negative type then we have also that

 $DLOT_{r,c}(\mu,\nu) = 0 \iff \mu = \nu \text{ and}$  $\mu_n \to \mu \iff DLOT_{r,c}(\mu_n,\mu) \to 0.$ 

where the convergence of the sequence of probability measures considered is the convergence in law.

*Proof.* Let  $\pi^*$  solution of  $LOT_{r,c}(\mu, \nu)$ . Then there exists  $\lambda^* \in \Delta^*_r$ ,  $(\mu^*_i)_{i=1}^r$ ,  $(\nu^*_i)_{i=1}^r \in \mathcal{M}^+_1(\mathcal{X})^r$  such that

$$\pi^* = \sum_{i=1}^r \lambda_i^* \mu_i^* \otimes \nu_i^*.$$

Note that by definition, we have that

$$\mu = \sum_{i=1}^{r} \lambda_i^* \mu_i^*$$
 and  $\nu = \sum_{i=1}^{r} \lambda_i^* \nu_i^*$ ,

By definition we have also that

$$\operatorname{LOT}_{r,c}(\mu,\mu) \leq \sum_{k=1}^{r} \lambda_k^* \int_{\mathcal{X}^2} c(x,y) d\mu_k^* \otimes \mu_k^*$$

similarly for  $LOT_{r,c}(\nu, \nu)$  we have

$$\operatorname{LOT}_{r,c}(\nu,\nu) \leq \sum_{k=1}^{r} \lambda_k^* \int_{\mathcal{X}^2} c(x,y) d\nu_k^* \otimes \nu_k^*$$

Therefore we have

$$\begin{aligned} \mathsf{DLOT}_{r,c}(\mu,\nu) &\geq \sum_{k=1}^{r} \lambda_{k}^{*} \left( \int_{\mathcal{X}^{2}} c(x,y) d\mu_{k}^{*} \otimes \nu_{k}^{*} - \frac{1}{2} \left[ \int_{\mathcal{X}^{2}} c(x,y) d\mu_{k}^{*} \otimes \mu_{k}^{*} + \int_{\mathcal{X}^{2}} c(x,y) d\nu_{k}^{*} \otimes \nu_{k}^{*} \right] \right) \\ &\geq \sum_{k=1}^{r} \lambda_{k}^{*} \int_{\mathcal{X}^{2}} -c(x,y) d[\mu_{k}^{*} - \nu_{k}^{*}] \otimes [\mu_{k}^{*} - \nu_{k}^{*}] \\ &\geq \sum_{k=1}^{r} \frac{\lambda_{k}^{*}}{2} D_{c}(\mu_{k}^{*}, \nu_{k}^{*}) \end{aligned}$$

where for any any probability measures  $\alpha, \beta$  on  $\mathcal{X}$  we define

$$D_c(\alpha,\beta) \triangleq 2\int_{\mathcal{X}^2} c(x,y)d\alpha \otimes \beta - \int_{\mathcal{X}^2} c(x,y)d\alpha \otimes \alpha - \int_{\mathcal{X}^2} c(x,y)d\beta \otimes \beta$$

However, as c is assumed to have a negative type, we have that

$$D_c(\mu_k^*, \nu_k^*) \ge 0 \ \forall k$$

In addition if we assume that c has a strong negative type, then we obtain directly that

$$\text{DLOT}_{r,c}(\mu,\nu) = 0 \implies \mu_k^* = \nu_k^* \ \forall k$$
.

Let us now show that  $\text{DLOT}_{r,c}$  metrize the convergence in law. The direct implication is a direct consequence of the Proposition 8. Conversely, if  $\text{DLOT}_{r,c}(\mu_n, \mu) \to 0$ , then by compacity of  $\mathcal{X}$  and thanks to the Prokhorov's theorem we can extract a subsequence of  $\mu_n \to \mu^*$ , and thanks to Proposition 8. we also obtain that  $\text{DLOT}_{r,c}(\mu_n, \mu) \to \text{DLOT}_{r,c}(\mu^*, \mu)$ . Finally we deduce that  $\text{DLOT}_{r,c}(\mu^*, \mu) = 0$  and  $\mu^* = \mu$ .

#### **B.9 Proof Proposition** 9

**Proposition.** Let  $n \ge k \ge 1$ ,  $\mathbf{X} \triangleq \{x_1, \ldots, x_n\} \subset \mathcal{X}$  and  $a \in \Delta_n^*$ . If c is a semimetric of negative type, then by denoting  $C = (c(x_i, x_j))_{i,j}$ , we have that

$$\operatorname{LOT}_{k,c}(\mu_{a,\mathbf{X}},\mu_{a,\mathbf{X}}) = \min_{Q} \langle C, Q \operatorname{diag}(1/Q^{T} \mathbf{1}_{n}) Q^{T} \rangle \quad s.t. \quad Q \in \mathbb{R}^{n \times k}_{+} \quad , \quad Q \mathbf{1}_{k} = a \; .$$
(16)

*Proof.* First remarks that one can reformulate the  $LOT_{k,c}$  problem as

$$\operatorname{LOT}_{k,c}(\mu,\mu) \triangleq \min_{g \in \Delta_k^*} \min_{(\mathbf{x},\mathbf{y}) \in K_{a,g}^2} \sum_{i=1}^k \frac{\mathbf{x}_i^T C \mathbf{y}_i}{g_i}$$

where

$$\begin{split} K_{a,g} &\triangleq \{ \mathbf{x} \in \mathbb{R}^{nk} \text{ s.t. } A\mathbf{x} = [a,g]^T, \ \mathbf{x} \ge 0 \} \\ A &\triangleq \begin{pmatrix} \mathbf{1}_n^T \otimes \mathbb{I}_k \\ \mathbb{I}_n^T \otimes \mathbf{1}_k \end{pmatrix} \text{ and} \\ \mathbf{x}_i &\triangleq [x_{(i-1)\times n+1}, \dots, x_{i\times n}]^T, \ \mathbf{y}_i \triangleq [y_{(i-1)\times n+1}, \dots, y_{i\times n}]^T \text{ for all } i \in [|1,k|] \end{split}$$

Indeed the above optimization problem is just a reformulation of  $LOT_{k,c}(\mu, \mu)$  where we have vectorized the couplings in a column-wise order. Let us now show the following lemma from which the result will follow.

**Lemma 2.** Under the same assumption of Proposition 9 we have that for all  $g \in \Delta_k^*$ 

$$\min_{(\mathbf{x},\mathbf{y})\in K_{a,g}^2} \sum_{i=1}^k \frac{\mathbf{x}_i^T C \mathbf{y}_i}{g_i} = \min_{\mathbf{x}\in K_{a,g}} \sum_{i=1}^k \frac{\mathbf{x}_i^T C \mathbf{x}_i}{g_i}$$

*Proof.* Let  $(\mathbf{x}^*, \mathbf{y}^*)$  solution of the LHS optimization problem. Then we have that

$$\sum_{i=1}^{k} \frac{(\mathbf{x}_i^*)^T C \mathbf{x}_i^*}{g_i} \ge \sum_{i=1}^{k} \frac{(\mathbf{x}_i^*)^T C \mathbf{y}_i^*}{g_i}$$
$$\sum_{i=1}^{k} \frac{(\mathbf{y}_i^*)^T C \mathbf{y}_i^*}{g_i} \ge \sum_{i=1}^{k} \frac{(\mathbf{x}_i^*)^T C \mathbf{y}_i^*}{g_i}$$

Therefore we obtain that

$$0 \le \sum_{i=1}^{k} \frac{(\mathbf{x}_{i}^{*})^{T} C \mathbf{x}_{i}^{*}}{g_{i}} - \sum_{i=1}^{k} \frac{(\mathbf{x}_{i}^{*})^{T} C \mathbf{y}_{i}^{*}}{g_{i}} = \sum_{i=1}^{k} \frac{(\mathbf{x}_{i}^{*})^{T} C (\mathbf{x}_{i}^{*} - \mathbf{y}_{i}^{*})}{g_{i}}$$
$$0 \le \sum_{i=1}^{k} \frac{(\mathbf{y}_{i}^{*})^{T} C \mathbf{y}_{i}^{*}}{g_{i}} - \sum_{i=1}^{k} \frac{(\mathbf{x}_{i}^{*})^{T} C \mathbf{y}_{i}^{*}}{g_{i}} = \sum_{i=1}^{k} \frac{(\mathbf{y}_{i}^{*} - \mathbf{x}_{i}^{*})^{T} C \mathbf{y}_{i}^{*}}{g_{i}}$$

Then by symmetry of C, we obtain by adding the two terms that

$$\sum_{i=1}^{k} \frac{(\mathbf{x}_i^* - \mathbf{y}_i^*)^T C(\mathbf{x}_i^* - \mathbf{y}_i^*)}{g_i} \ge 0$$

However, thanks to the linear constraints, we have that for all  $i \in [|1, k|]$ ,

$$\sum_{q=0}^{n-1} x^*_{(i-1)\times n+1+q} = \sum_{q=0}^{n-1} y^*_{(i-1)\times n+1+q} = g_i$$

Therefore  $(\mathbf{x}_i^* - \mathbf{y}_i^*)^T \mathbf{1}_n = 0$  and thanks to the negativity of the cost function c we obtain that  $(\mathbf{x}_i^* - \mathbf{y}_i^*)^T C(\mathbf{x}_i^* - \mathbf{y}_i^*) \le 0$ 

Therefore we have that

$$(\mathbf{x}_i - \mathbf{y}_i)^T C(\mathbf{x}_i - \mathbf{y}_i) = 0$$

from which follows that

$$\sum_{i=1}^{k} \frac{(\mathbf{x}_{i}^{*})^{T} C \mathbf{x}_{i}^{*}}{g_{i}} = \sum_{i=1}^{k} \frac{(\mathbf{x}_{i}^{*})^{T} C \mathbf{y}_{i}^{*}}{g_{i}} = \sum_{i=1}^{k} \frac{(\mathbf{y}_{i}^{*})^{T} C \mathbf{y}_{i}^{*}}{g_{i}}$$

and the result follows.

As the above result holds for any  $g \in \Delta_k^*$ , we obtain that

$$\operatorname{LOT}_{k,c}(\mu,\mu) = \min_{g \in \Delta_k^*} \min_{\mathbf{x} \in K_{a,g}} \sum_{i=1}^k \frac{(\mathbf{x}_i^*)^T C \mathbf{x}_i^*}{g_i}$$

Then by formulating back this problem in term of matrices, we obtain that

$$\operatorname{LOT}_{k,c}(\mu,\mu) = \min_{g \in \Delta_k^*} \min_{Q \in \Pi_{a,g}} \langle C, Q \operatorname{diag}(1/g) Q^T \rangle$$

from which the result follows.

# **C** Additional Experiments



Figure 5: In this experiment, we compare two strategies for the choice of the step-size in the MD scheme proposed by Scetbon et al. [2021] on two different problems. More precisely, we compare the constant  $\gamma$  schedule with the proposed adaptive one and compare them when the distributions are sampled from either uniform distributions (*left*) or mixtures of anisotropic Gaussians (*right*). We show that the range of admissible  $\gamma$  when considering a constant schedule varies from one problem to another. Indeed, in the right plot, we observe that the algorithm converges only when  $\gamma \leq 1$ , while in the left plot, the algorithm manages to converge for  $\gamma \leq 100$ . We also observe that our adaptive strategy allows to have a consistent choice of admissible values for  $\gamma$  whatever the problem considered. It is worth noticing that whatever the  $\gamma$  chosen, the algorithm converges towards the same value, however the larger  $\gamma$  is chosen in its admissible range, the faster the algorithm converges.

### C.2 Gradient Flows between two Moons



Figure 6: We compare the gradient flows  $(\mu_t)_{t\geq 0}$  (in red) starting from a moon shape distribution,  $\mu_0$ , to another moon shape distribution (in blue),  $\nu$ , in 2D when minimizing either  $L(\mu) \triangleq \text{DLOT}_{r,c}(\mu,\nu)$  or  $L(\mu) \triangleq \text{LOT}_{r,c}(\mu,\nu)$ . The ground cost is the squared Euclidean distance and we fix r = 100. We consider 1000 samples from each distribution and and we plot the evolution of the probability measure obtained along the iterations of a gradient descent scheme. We also display in green the vector field in the descent direction. We show that the debiased version allows to recover the target distribution while  $\text{LOT}_{r,c}$  is learning a biased version with a low-rank structure.