Supplementary materials

A On the Definition of $\mathbf{L O T}_{r, c}$

Let $\left(\mathcal{X}, d_{\mathcal{X})}\right.$ and $\left(\mathcal{Y}, d_{\mathcal{Y}}\right)$ two nonempty compact Polish spaces, $\mu \in \mathcal{M}_{1}^{+}(\mathcal{X}), \nu \in \mathcal{M}_{1}^{+}(\mathcal{Y})$ two probability measures on these spaces and $c: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}_{+}$a nonnegative and continuous function. We define the generalized low-rank optimal transport between μ and ν as

$$
\operatorname{LOT}_{r, c}(\mu, \nu) \triangleq \inf _{\pi \in \Pi_{r}(\mu, \nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d \pi(x, y)
$$

where
$\Pi_{r}(\mu, \nu) \triangleq\left\{\pi \in \Pi(\mu, \nu): \exists\left(\mu_{i}\right)_{i=1}^{r} \in \mathcal{M}_{1}^{+}(\mathcal{X})^{r},\left(\nu_{i}\right)_{i=1}^{r} \in \mathcal{M}_{1}^{+}(\mathcal{Y})^{r}, \lambda \in \Delta_{r}^{*}\right.$ s.t. $\left.\pi=\sum_{i=1}^{r} \lambda_{i} \mu_{i} \otimes \nu_{i}\right\}$.
As \mathcal{X} and \mathcal{Y} are compact, $\Pi_{r}(\mu, \nu)$ is tight, then Prokhorov's theorem applies and the closure of $\Pi_{r}(\mu, \nu)$ is sequentially compact. Let us now show that $\Pi_{r}(\mu, \nu)$ is closed. Indeed, Let $\left(\pi_{n}\right)_{n \geq 0}$ a sequence of $\Pi_{r}(\mu, \nu)$ converging towards π_{*}. Then by definition there exists for all $k \in[|1, r|]$, $\left(\mu_{n}^{(k)}\right)_{n \geq 0},\left(\nu_{n}^{(k)}\right)_{n \geq 0}$ and $\left(\lambda_{n}^{(k)}\right)_{n \geq 0}$ such that for all $n \geq 0$

$$
\pi_{n}=\sum_{i=1}^{r} \lambda_{n}^{(k)} \mu_{n}^{(k)} \otimes \nu_{n}^{(k)}
$$

However, $\left(\mu_{n}^{(k)}\right)_{n \geq 0}$ and $\left(\nu_{n}^{(k)}\right)_{n \geq 0}$ are also tight, and Prokhorov's theorem applies, therefore we can extract a common subsequence such that for all k,

$$
\mu_{n}^{(k)} \rightarrow \mu_{*}^{(k)} \text { and } \nu_{n}^{(k)} \rightarrow \nu_{*}^{(k)}
$$

In addition as $\left(\lambda_{n}\right)_{n \geq 0}$ live in the simplex Δ_{r}, we can also extract a sub-sequence, such that $\lambda_{n} \rightarrow \lambda_{*} \in \Delta_{r}$. Finally by unicity of the limit we obtain that

$$
\pi_{*}=\sum_{k=1}^{r} \lambda_{*}^{(k)} \mu_{*}^{(k)} \otimes \nu_{*}^{(k)}
$$

Finally, by denoting $I \triangleq\left\{k: \lambda_{*}^{(k)}>0\right\}$, and by considering $i^{*} \in I$, we obtain that

$$
\pi_{*}=\sum_{i \in I \backslash\left\{i^{*}\right\}}^{r} \lambda_{*}^{(i)} \mu_{*}^{(i)} \otimes \nu_{*}^{(i)}+\sum_{j=1}^{r-|I|+1} \frac{\lambda_{*}^{\left(i^{*}\right)}}{r-|I|+1} \mu_{*}^{\left(i^{*}\right)} \otimes \nu_{*}^{\left(i^{*}\right)}
$$

from which follows that $\pi_{*} \in \Pi_{r}(\mu, \nu)$.

B Proofs

B. 1 Proof of Proposition 1

Proposition. Let $n, m \geq 2, \mathbf{X} \triangleq\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}, \mathbf{Y} \triangleq\left\{y_{1}, \ldots, y_{m}\right\} \subset \mathcal{Y}$ and $a \in \Delta_{n}^{*}$ and $b \in \Delta_{m}^{*}$. Then for $2 \leq r \leq \min (n, m)$, we have that

$$
\left|\operatorname{LOT}_{r, c}\left(\mu_{a, \mathbf{x}}, \nu_{b, \mathbf{Y}}\right)-\mathrm{OT}_{c}\left(\mu_{a, \mathbf{X}}, \nu_{b, \mathbf{Y}}\right)\right| \leq\|C\|_{\infty} \ln (\min (n, m) /(r-1))
$$

Proof. Let $P \in \operatorname{argmin}_{P \in \Pi_{a, b}}\langle C, P\rangle$. As P is a nonnegative matrix, its nonnegative rank cannot exceed $\min (n, m)$. Assume for simplicity, that $n=m$, then there exists $\left(R_{i}\right)_{i=1}^{n}$ nonnegative matrices of rank 1 such that

$$
P=\sum_{i=1}^{n} R_{i}
$$

As for all $i \in[|1, n|], R_{i}$ is a rank 1 matrix, there exist $\tilde{q}_{i}, \tilde{r}_{i} \in \mathbb{R}_{+}^{n}$ such that $R_{i}=\tilde{q}_{i} \tilde{r}_{i}^{T}$. Then by denoting $q_{i}=\tilde{q}_{i} /\left|\tilde{q}_{i}\right|, r_{i}=\tilde{r}_{i} /\left|\tilde{r}_{i}\right|$ and $\lambda_{i}=\left|\tilde{q}_{i}\right|\left|\tilde{r}_{i}\right|$ where for any $h \in \mathbb{R}^{n}|h| \triangleq \sum_{i=1}^{n} h_{i}$, we obtain that

$$
P=\sum_{i=1}^{n} \lambda_{i} q_{i} r_{i}^{T}
$$

Without loss of generality, we can consider the case where $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Let us now denote $\lambda:=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, and by using the fact the P is a coupling we obtain that $\lambda \in \Delta_{n}$. Also, by definition of λ, we have that for all $k \in[|1, n|], \lambda_{k} \leq 1 / k$. Let us now define

$$
\tilde{P} \triangleq \sum_{i=1}^{r-1} \lambda_{i} q_{i} r_{i}^{T}+\left(\sum_{i=r}^{n} \lambda_{i}\right) \alpha_{r} \beta_{r}^{T}
$$

where

$$
\begin{aligned}
& \alpha_{r} \triangleq \frac{\sum_{i=r}^{n} \lambda_{i} q_{i}}{\sum_{i=r}^{n} \lambda_{i}} \\
& \beta_{r} \triangleq \frac{\sum_{i=r}^{n} \lambda_{i} r_{i}}{\sum_{i=r}^{n} \lambda_{i}}
\end{aligned}
$$

Remark that $\tilde{P} \in \Pi_{a, b}(r)$, therefore we obtain that

$$
\begin{aligned}
\left|\operatorname{LOT}_{r, c}\left(\mu_{a, \mathbf{X}}, \nu_{b, \mathbf{Y}}\right)-\mathrm{OT}_{c}\left(\mu_{a, \mathbf{X}}, \nu_{b, \mathbf{Y}}\right)\right| & =\mathrm{LOT}_{r, c}\left(\mu_{a, \mathbf{X}}, \nu_{b, \mathbf{Y}}\right)-\mathrm{OT}_{x}\left(\mu_{a, \mathbf{X}}, \nu_{b, \mathbf{Y}}\right) \\
& \leq\langle C, \tilde{P}\rangle-\langle C, P\rangle \\
& \leq\left\langle C,\left(\sum_{i=r}^{n} \lambda_{i}\right) \alpha_{r} \beta_{r}^{T}\right\rangle-\left\langle C, \sum_{i=r}^{n} \lambda_{i} q_{i} r_{i}^{T}\right\rangle \\
& \leq\left\langle C,\left(\sum_{i=r}^{n} \lambda_{i}\right) \alpha_{r} \beta_{r}^{T}\right\rangle \\
& \leq\|C\|_{\infty} \sum_{i=r}^{n} \lambda_{i} \leq\|C\|_{\infty} \sum_{i=r}^{n} \frac{1}{i} \leq\|C\|_{\infty} \ln (n /(r-1))
\end{aligned}
$$

B. 2 Proof of Proposition 2

Proposition 10. Let $\mu \in \mathcal{M}_{1}^{+}(\mathcal{X}), \nu \in \mathcal{M}_{1}^{+}(\mathcal{Y})$ and let us assume that c is L-Lipschitz w.r.t. x and y. Then for any $r \geq 1$, we have

$$
\left|L O T_{r, c}(\mu, \nu)-O T_{c}(\mu, \nu)\right| \leq 2 L \max \left(\mathcal{N}_{\left\lfloor\log _{2}(\lfloor\sqrt{r}\rfloor)\right\rfloor}\left(\mathcal{X}, d_{\mathcal{X}}\right), \mathcal{N}_{\left\lfloor\log _{2}(\lfloor\sqrt{r}\rfloor)\right\rfloor}(\mathcal{Y}, d \mathcal{Y})\right)
$$

Proof. As \mathcal{X} and \mathcal{Y} are compact, $\mathcal{N}_{\left\lfloor\log _{2}(\lfloor\sqrt{r}\rfloor)\right\rfloor}(\mathcal{X}, d), \mathcal{N}_{\left\lfloor\log _{2}(\lfloor\sqrt{r}\rfloor)\right\rfloor}(\mathcal{Y}, d)<+\infty$ and then by denoting $\varepsilon_{\mathcal{X}} \triangleq \mathcal{N}_{\left\lfloor\log _{2}(\lfloor\sqrt{r}\rfloor)\right\rfloor}\left(\mathcal{X}, d_{\mathcal{X}}\right)$, there exists $x_{1}, \ldots, x_{\lfloor\sqrt{r}\rfloor} \in \mathcal{X}$, such that $\mathcal{X} \subset \bigcup_{i=1}^{r} \mathcal{B}_{\mathcal{X}}\left(x_{i}, \varepsilon\right)$ from which we can extract a partition $\left(S_{i, \mathcal{X}}\right)_{i=1}^{\lfloor\sqrt{r}\rfloor}$ of \mathcal{X} such that for all $i \in[|1,\lfloor\sqrt{r}\rfloor|]$, and $x, y \in S_{i, \mathcal{X}}, d_{\mathcal{X}}(x, y) \leq \varepsilon_{\mathcal{X}}$. Similarly we can build a partition $\left(S_{i, \mathcal{Y}}\right)_{i=1}^{\lfloor\sqrt{r}\rfloor}$ of \mathcal{Y}. Let us now define for all $k \in[|1,\lfloor\sqrt{r}\rfloor|]$,

$$
\mu_{k} \triangleq \frac{\left.\mu\right|_{S_{k, \mathcal{X}}}}{\mu\left(S_{k, \mathcal{X}}\right)} \text { and } \nu_{k} \triangleq \frac{\left.\nu\right|_{S_{k, \mathcal{Y}}}}{\nu\left(S_{k, \mathcal{Y}}\right)}
$$

with the convention that $\frac{0}{0}=0$, we can define

$$
\pi_{r} \triangleq \sum_{i, j=1}^{\lfloor\sqrt{r}\rfloor} \pi^{*}\left(S_{i, \mathcal{X}} \times S_{j, \mathcal{Y}}\right) \nu_{j} \otimes \mu_{i}
$$

First remarks that $\pi_{r} \in \Pi_{r}(\mu, \nu)$. Indeed we have for any measurable set B

$$
\begin{aligned}
\pi_{r}(\mathcal{X} \times B) & =\sum_{j=1}^{\lfloor\sqrt{r}\rfloor^{2}} \nu_{j}(B) \sum_{i=1}^{r} \pi^{*}\left(S_{i, \mathcal{X}} \times S_{j, \mathcal{Y}}\right) \\
& =\sum_{j=1}^{\lfloor\sqrt{r}\rfloor} \nu_{j}(B) \nu\left(S_{j, \mathcal{Y}}\right) \\
& =\left.\sum_{j=1}^{\lfloor\sqrt{r}\rfloor} \nu\right|_{S_{j, \mathcal{X}}}(B) \\
& =\nu(B)
\end{aligned}
$$

similarly $\pi_{r}(A \times \mathcal{Y})=\mu(A)$ and we have that $\lfloor\sqrt{r}\rfloor^{2} \leq r$. Therefore we obtain that

$$
\begin{aligned}
\left|\operatorname{LOT}_{r, c}(\mu, \nu)-\mathrm{OT}_{c}(\mu, \nu)\right| & =\mathrm{LOT}_{r, c}(\mu, \nu)-\mathrm{OT}_{c}(\mu, \nu) \\
& \leq \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d \pi_{r}(x, y)-\int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d \pi^{*}(x, y) \\
& \leq \sum_{i, j=1}^{\lfloor\sqrt{r}\rfloor} \int_{S_{i, \mathcal{X}} \times S_{j, \mathcal{Y}}} c(x, y) d\left[\pi_{r}(x, y)-\pi^{*}(x, y)\right] \\
& \leq \sum_{i, j=1}^{\lfloor\sqrt{r}\rfloor} \pi^{*}\left(S_{i, \mathcal{X}} \times S_{j, \mathcal{Y}}\right) \\
& \times\left[\sup _{(x, y) \in S_{i, \mathcal{X}} \times S_{j, \mathcal{Y}}} c(x, y)-\inf _{(x, y) \in S_{i, \mathcal{X}} \times S_{j, \mathcal{Y}}} c(x, y)\right] \\
& \leq L\left[\varepsilon_{\mathcal{X}}+\varepsilon_{\mathcal{Y}}\right]
\end{aligned}
$$

from which the result follows.

Corollary. Under the same assumptions of Proposition 2 and by assuming in addition that there exists a Monge map solving $O T_{c}(\mu, \nu)$, we obtain that for any $r \geq 1$,

$$
\left|\operatorname{LOT}_{r, c}(\mu, \nu)-\mathrm{OT}_{c}(\mu, \nu)\right| \leq L \mathcal{N}_{\left\lfloor\log _{2}(r)\right\rfloor}\left(\mathcal{Y}, d_{\mathcal{Y}}\right)
$$

Proof. Let us denote T a Monge map solution of $\mathrm{OT}_{c}(\mu, \nu)$ and as in the proof above, let us consider a partition of $\left(S_{i, \mathcal{Y}}\right)_{i=1}^{r}$ of \mathcal{Y} such that for all $i \in[|1, r|]$, and $x, y \in S_{i, \mathcal{Y}}, d_{\mathcal{Y}}(x, y) \leq \varepsilon_{\mathcal{Y}}$ with $\varepsilon_{\mathcal{Y}} \triangleq \mathcal{N}_{\left\lfloor\log _{2}(r)\right\rfloor}\left(\mathcal{Y}, d_{\mathcal{Y}}\right)$. Let us now define for all $k \in[|1,\lfloor\sqrt{r}\rfloor|]$,

$$
\mu_{k} \triangleq \frac{\left.\mu\right|_{T^{-1}\left(S_{k, y}\right)}}{\mu\left(T^{-1}\left(S_{k, \mathcal{Y}}\right)\right)} \text { and } \nu_{k} \triangleq \frac{\left.\nu\right|_{S_{k, y}}}{\nu\left(S_{k, \mathcal{Y}}\right)}
$$

with the convention that $\frac{0}{0}=0$, we can define

$$
\pi_{r} \triangleq \sum_{k=1}^{r} \pi^{*}\left(T^{-1}\left(S_{k, \mathcal{Y}}\right) \times S_{k, \mathcal{Y}}\right) \nu_{k} \otimes \mu_{k}
$$

Again we have that $\pi_{r} \in \Pi_{r}(\mu, \nu)$, and we obtain that

$$
\begin{aligned}
\left|\mathrm{LOT}_{r, c}(\mu, \nu)-\mathrm{OT}_{c}(\mu, \nu)\right| & =\mathrm{LOT}_{r, c}(\mu, \nu)-\mathrm{OT}_{c}(\mu, \nu) \\
& \leq \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d \pi_{r}(x, y)-\int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d \pi^{*}(x, y) \\
& \leq \sum_{k=1}^{r} \pi^{*}\left(T^{-1}\left(S_{k, \mathcal{Y}}\right) \times S_{k, \mathcal{Y})} \int_{T^{-1}\left(S_{k, \mathcal{Y}}\right) \times S_{k, \mathcal{Y}}} c(x, y) d \mu_{k}(y) \otimes \nu_{k}(y)\right. \\
& -\sum_{k=1}^{r} \int_{T^{-1}\left(S_{k, y}\right)} c(x, T(x)) d \mu(x) \\
& \leq \sum_{k=1}^{r} \pi^{*}\left(T^{-1}\left(S_{k, \mathcal{Y}}\right) \times S_{k, \mathcal{Y})} \int_{T^{-1}\left(S_{k, \mathcal{Y}}\right) \times S_{k, \mathcal{Y}}} c(x, y) d \mu_{k}(y) \otimes \nu_{k}(y)\right. \\
& -\sum_{k=1}^{r} \pi^{*}\left(T^{-1}\left(S_{k, \mathcal{Y}}\right) \times S_{k, \mathcal{Y})} \int_{T^{-1}\left(S_{k, \mathcal{Y}}\right) \times S_{k, \mathcal{Y}}} c(x, T(x)) d \mu_{k}(x) \otimes \nu_{k}(y)\right. \\
& \leq \sum_{k=1}^{r} \pi^{*}\left(T^{-1}\left(S_{k, \mathcal{Y}}\right) \times S_{k, \mathcal{Y})} \int_{T^{-1}\left(S_{k, \mathcal{Y}}\right) \times S_{k, \mathcal{Y}}}[c(x, y)-c(x, T(x))] d \mu_{k}(x) \otimes \nu_{k}(x)\right. \\
& \leq L \varepsilon_{\mathcal{Y}}
\end{aligned}
$$

from which the result follows. Note that to obtain the above inequalities, we use the fact that π^{*} is supported on the graph of T, and therefore we have have for all $k \in[|1, r|]$,

$$
\pi^{*}\left(T^{-1}\left(S_{k, \mathcal{Y}}\right) \times S_{k, \mathcal{Y}}\right)=\mu\left(T^{-1}\left(S_{k, \mathcal{Y}}\right)\right)=\nu\left(S_{k, \mathcal{Y}}\right)
$$

B. 3 Proof of Proposition 3

Proposition. Let $r \geq 1$ and $\mu, \nu \in \mathcal{M}_{1}^{+}(\mathcal{X})$, then $\operatorname{LOT}_{r, c}\left(\hat{\mu}_{n}, \hat{\nu}_{n}\right) \underset{n \rightarrow+\infty}{ } \operatorname{LOT}_{r, c}(\mu, \nu)$ a.s.
Proof. Let π^{*} solution of $\operatorname{LOT}_{r, c}(\mu, \nu)$. Then there exists $\lambda^{*} \in \Delta_{r}^{*},\left(\mu_{i}^{*}\right)_{i=1}^{r},\left(\nu_{i}^{*}\right)_{i=1}^{r} \in \mathcal{M}_{1}^{+}(\mathcal{X})^{r}$ such that

$$
\pi^{*}=\sum_{i=1}^{r} \lambda_{i}^{*} \mu_{i}^{*} \otimes \nu_{i}^{*}
$$

Note that by definition, we have that

$$
\mu=\sum_{i=1}^{r} \lambda_{i}^{*} \mu_{i}^{*} \text { and } \nu=\sum_{i=1}^{r} \lambda_{i}^{*} \nu_{i}^{*} .
$$

Let us now define π_{μ} and π_{μ} both elements of $\mathcal{M}_{1}^{+}(\mathcal{X} \times[|1, r|])$ as follows:
$\pi_{\mu}(A \times\{k\}) \triangleq \lambda_{k} \mu_{k}(A)$ and $\pi_{\nu}(A \times\{k\}) \triangleq \lambda_{k} \nu_{k}(A)$ for any measurable set A and $k \in[|1, r|]$.
Observe that the right marginals of π_{μ} and π_{ν} is the same and we will denote it ρ. We can now define for all $x, y \in \mathcal{X}$ the family of kernels $\left(k_{\mu}(\cdot, x)\right)_{x \in \mathcal{X}} \in \mathcal{M}_{1}^{+}([|1, r|])^{\mathcal{X}}$ and $\left(k_{\nu}(\cdot, y)\right)_{y \in \mathcal{X}} \in$ $\mathcal{M}_{1}^{+}([|1, r|])^{\mathcal{X}}$ corresponding to the disintegration with respect to the projection of respectively μ and ν. Let us now consider n independent samples $\left(Z_{i}^{\mu}\right)_{i=1}^{n}$ and $\left(Z_{i}^{\nu}\right)_{i=1}^{n}$ such that for all $i \in[|1, n|]$, $Z_{i}^{\mu} \sim k_{\mu}\left(\cdot, X_{i}\right)$ and $Z_{i}^{\nu} \sim k_{\nu}\left(\cdot, Y_{i}\right)$ and let us define for all $k \in[|1, r|]$

$$
\tilde{\mu}_{k} \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{Z_{i}^{\mu}=k} \delta_{X_{i}} \text { and } \tilde{\nu}_{k} \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{Z_{i}^{\nu}=k} \delta_{Y_{i}} .
$$

Let us now define

$$
\begin{aligned}
\tilde{\pi} & \triangleq \sum_{k=1}^{r-1} \frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|\left|\tilde{\nu}_{k}\right|} \tilde{\mu}_{k} \otimes \tilde{\nu}_{k} \\
& +\frac{1}{1-\sum_{k=1}^{r-1} \min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}\left[\hat{\mu}-\sum_{k=1}^{r-1} \frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|} \tilde{\mu}_{k}\right] \otimes\left[\hat{\nu}-\sum_{k=1}^{r-1} \frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\nu}_{k}\right|} \tilde{\nu}_{k}\right]
\end{aligned}
$$

with the convention that $\frac{0}{0}=0$. Now it is easy to check that $\tilde{\pi} \in \Pi_{r}(\hat{\mu}, \hat{\nu})$, indeed we have that

$$
\begin{aligned}
\tilde{\pi}(A \times \mathcal{X}) & =\sum_{k=1}^{r-1} \frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|} \tilde{\mu}_{k}(A) \\
& +\frac{1}{1-\sum_{k=1}^{r-1} \min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}\left[\hat{\mu}(A)-\sum_{k=1}^{r-1} \frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|} \tilde{\mu}_{k}(A)\right]\left[1-\sum_{k=1}^{r-1} \min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)\right] \\
& =\hat{\mu}(A)
\end{aligned}
$$

in addition by construction we have that

$$
\left|\hat{\mu}-\sum_{k=1}^{r-1} \frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|} \tilde{\mu}_{k}\right|=\left|\hat{\nu}-\sum_{k=1}^{r-1} \frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\nu}_{k}\right|} \tilde{\nu}_{k}\right|=1-\sum_{k=1}^{r-1} \min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)
$$

and both $\hat{\mu}-\sum_{k=1}^{r-1} \frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|} \tilde{\mu}_{k}$ and $\hat{\nu}-\sum_{k=1}^{r-1} \frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\nu}_{k}\right|} \tilde{\nu}_{k}$ are positive measures. Therefore we obtain that

$$
\operatorname{LOT}_{r, c}(\hat{\mu}, \hat{\nu}) \leq \int_{\mathcal{X}^{2}} c(x, y) d \tilde{\pi}(x, y)
$$

Now we aim at showing at $\int_{\mathcal{X}^{2}} c(x, y) d \tilde{\pi}(x, y) \rightarrow \operatorname{LOT}_{r, c}(\mu, \nu)$ a.s.. Indeed first observe that from the law of large numbers we have that for all $k \in[|1, r|],\left|\tilde{\mu}_{k}\right| \rightarrow \lambda_{k}^{*}$ and similarly $\left|\tilde{\nu}_{k}\right| \rightarrow \lambda_{k}^{*}$. In addition, for all k, q we have that almost surely, $\tilde{\mu}_{k} \otimes \tilde{\nu}_{q}$ converges weakly towards $\lambda_{k}^{*} \lambda_{q}^{*} \mu_{k} \otimes \nu_{q}$. Indeed one can consider the following algebra $\mathcal{F} \triangleq\left\{(x, y) \in \mathcal{X}^{2} \rightarrow f(x) g(y) f, g \in \mathcal{C}(\mathcal{X})\right\}$, and then by Stone-Weierstrass, one obtains by density the desired result. Now remark that

$$
\begin{aligned}
\int_{\mathcal{X}^{2}} c(x, y) d \tilde{\pi}(x, y) & =\sum_{k=1}^{r-1} \frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|\left|\tilde{\nu}_{k}\right|} \int_{\mathcal{X}^{2}} c(x, y) d \tilde{\mu}_{k} \otimes \tilde{\nu}_{k} \\
& +\frac{1}{\tilde{\lambda}_{r}} \int_{\mathcal{Z}^{2}} c(x, y) d \tilde{\mu}_{r} \otimes \tilde{\nu}_{r} \\
& +\frac{1}{\tilde{\lambda}_{r}} \sum_{k=1}^{r-1}\left(1-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\nu}_{k}\right|}\right) \int_{\mathcal{X}^{2}} c(x, y) d \tilde{\mu}_{r} \otimes \tilde{\nu}_{k} \\
& +\frac{1}{\tilde{\lambda}_{r}} \sum_{k=1}^{r-1}\left(1-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|}\right) \int_{\mathcal{X}^{2}} c(x, y) d \tilde{\mu}_{k} \otimes \tilde{\nu}_{r} \\
& +\frac{1}{\tilde{\lambda}_{r}} \sum_{k, q=1}^{r-1} \int_{\mathcal{X}^{2}}\left(1-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|}\right)\left(1-\frac{\min \left(\left|\tilde{\mu}_{q}\right|,\left|\tilde{\nu}_{q}\right|\right)}{\left|\tilde{\nu}_{q}\right|}\right) c(x, y) d \tilde{\mu}_{k}(x) d \tilde{\nu}_{q}(y)
\end{aligned}
$$

from which follows directly that $\int_{\mathcal{X}^{2}} c(x, y) d \tilde{\pi}(x, y) \rightarrow \operatorname{LOT}_{r, c}(\mu, \nu)$ a.s. Let us now denote for all $n \geq 1, \pi_{n}$ a solution of $\operatorname{LOT}_{r, c}(\hat{\mu}, \hat{\nu})$. Let $\omega \in \Omega$ an element of the probability space where live the random variables $\left(X_{i}\right)_{i \geq 0}$ and $\left(Y_{i}\right)_{i \geq 0}$ such that $\int_{\mathcal{X}^{2}} c(x, y) d \tilde{\pi}^{(\omega)}(x, y) \rightarrow \operatorname{LOT}_{r, c}(\mu, \nu)$. As \mathcal{X} is compact Thanks to Prokhorov's Theorem, we can extract a sequence such that $\left(\pi_{n}^{(\omega)}\right)_{n \geq 0}$ converge weakly towards $\pi^{(\omega)} \in \Pi_{r}(\mu, \nu)$. In addition we have that for all $n \geq 1$

$$
\int_{\mathcal{X}^{2}} c(x, y) d \pi_{n}^{(\omega)}(x, y) \leq \int_{\mathcal{X}^{2}} c(x, y) d \tilde{\pi}^{(\omega)}(x, y)
$$

And by considering the limit we obtain that

$$
\int c(x, y) d \pi^{(\omega)}(x, y) \leq \operatorname{LOT}_{r, c}(\mu, \nu)
$$

However $\pi^{(\omega)} \in \Pi_{r}(\mu, \nu)$ and by optimality we obtain that

$$
\int c(x, y) d \pi^{(\omega)}(x, y)=\operatorname{LOT}_{r, c}(\mu, \nu)
$$

This holds for an arbitrary subsequence of $\left(\pi_{n}^{(\omega)}\right)_{n \geq 0}$, from which follows that $\int c(x, y) d \pi_{n}^{(\omega)}(x, y) \rightarrow \operatorname{LOT}_{r, c}(\mu, \nu)$. Finally this holds almost surely and the result follows.

B. 4 Proof of Proposition 4

Proposition. Let $r \geq 1$ and $\mu, \nu \in \mathcal{M}_{1}^{+}(\mathcal{X})$. Then, there exists a constant K_{r} such that for any $\delta>0$ and $n \geq 1$, we have, with a probability of at least $1-2 \delta$, that

$$
\operatorname{LOT}_{r, c}\left(\hat{\mu}_{n}, \hat{\nu}_{n}\right)-\operatorname{LOT}_{r, c}(\mu, \nu) \leq 11\|c\|_{\infty} \sqrt{\frac{r}{n}}+K_{r}\|c\|_{\infty}\left[\sqrt{\frac{\log (40 / \delta)}{n}}+\frac{\sqrt{r} \log (40 / \delta)}{n}\right]
$$

Proof. We reintroduce the same notation as in the proof of Proposition 3 Let π^{*} solution of $\operatorname{LOT}_{r, c}(\mu, \nu)$. Then there exists $\lambda^{*} \in \Delta_{r}^{*},\left(\mu_{i}^{*}\right)_{i=1}^{r},\left(\nu_{i}^{*}\right)_{i=1}^{r} \in \mathcal{M}_{1}^{+}(\mathcal{Z})^{r}$ such that

$$
\pi^{*}=\sum_{i=1}^{r} \lambda_{i}^{*} \mu_{i}^{*} \otimes \nu_{i}^{*}
$$

As before let us also consider π_{μ} and π_{μ} defined as $\pi_{\mu}(A \times\{k\}) \triangleq \lambda_{k} \mu_{k}(A)$ and $\pi_{\nu}(A \times\{k\}) \triangleq$ $\lambda_{k} \nu_{k}(A)$ for any measurable set A and $k \in[|1, r|]$ and denote ρ their common right marginal. We also consider n independent samples $\left(Z_{i}^{\mu}\right)_{i=1}^{n}$ and $\left(Z_{i}^{\nu}\right)_{i=1}^{n}$ such that for all $i \in[|1, n|], Z_{i}^{\mu} \sim$ $k_{\mu}\left(\cdot, X_{i}\right)$ and $Z_{i}^{\nu} \sim k_{\nu}\left(\cdot, Y_{i}\right)$ and we denote for all $k \in[|1, r|]$

$$
\tilde{\mu}_{k} \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{Z_{i}^{\mu}=k} \delta_{X_{i}} \text { and } \tilde{\nu}_{k} \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{Z_{i}^{\nu}=k} \delta_{Y_{i}}
$$

Let us now define

$$
\hat{\pi} \triangleq \sum_{i=1}^{r} \frac{1}{\lambda_{k}^{*}} \tilde{\mu}_{k} \otimes \tilde{\nu}_{k}
$$

Our goal is to control the following quantity:

$$
\left|\operatorname{LOT}_{r, c}(\mu, \nu)-\int_{\mathcal{Z}^{2}} c(x, y) d \hat{\pi}(x, y)\right|
$$

First observe that

$$
\begin{aligned}
\mathbb{E}\left[\int_{\mathcal{Z}^{2}} c(x, y) d \hat{\pi}(x, y)\right] & =\sum_{i=1}^{r} \frac{1}{\lambda_{k}^{*}} \mathbb{E}\left[\int_{\mathcal{Z}^{2}} c(x, y) d \tilde{\mu}_{k}(x) d \tilde{\nu}_{k}(y)\right] \\
& =\sum_{i=1}^{r} \frac{1}{\lambda_{k}^{*} n^{2}} \times \sum_{i, j} \mathbb{E}\left[c\left(X_{i}, Y_{j}\right) \mathbf{1}_{Z_{i}^{\mu}=k} \mathbf{1}_{Z_{j}^{\nu}=k}\right]
\end{aligned}
$$

Moreover, we have that

$$
\begin{aligned}
\mathbb{E}\left[c\left(X_{i}, Y_{j}\right) \mathbf{1}_{Z_{i}^{\mu}=k} \mathbf{1}_{Z_{j}^{\nu}=k}\right] & =\int_{(\mathcal{Z} \times[|1, r|])^{2}} c(x, y) \mathbf{1}_{z=k} \mathbf{1}_{z^{\prime}=k} d \pi_{\mu}(x, z) d \pi_{\nu}\left(y, z^{\prime}\right) \\
& =\int_{(\mathcal{Z} \times[|1, r|])^{2}} c(x, y) \mathbf{1}_{z=k} \mathbf{1}_{z^{\prime}=k} d \mu_{z}(x) d \nu_{z^{\prime}}(y) d \rho(z) d \rho\left(z^{\prime}\right) \\
& =\lambda_{k}^{2} \int_{\mathcal{Z}^{2}} c(x, y) d \mu_{k}(x) d \nu_{k}(y)
\end{aligned}
$$

from which follows that

$$
\mathbb{E}\left[\int_{\mathcal{Z}^{2}} c(x, y) d \hat{\pi}(x, y)\right]=\sum_{i=1}^{r} \lambda_{k}^{*} \int_{\mathcal{Z}^{2}} c(x, y) d \mu_{k}(x) d \nu_{k}(y)=\mathrm{LOT}_{r, c}(\mu, \nu)
$$

Now let us define for all $\left(x_{i}, z_{i}\right)_{i=1}^{n},\left(y_{i}, z_{i}^{\prime}\right) \in(\mathcal{Z} \times[|1, r|])^{n}$,

$$
g\left(\left(x_{1}, z_{1}\right), \ldots,\left(x_{n}, z_{n}\right),\left(y_{1}, z_{1}^{\prime}\right), \ldots,\left(y_{n}, z_{n}^{\prime}\right)\right) \triangleq \sum_{q=1}^{r} \frac{1}{\lambda_{q}^{*} n^{2}} \sum_{i, j} c\left(x_{i}, y_{j}\right) \mathbf{1}_{z_{i}=q} \mathbf{1}_{z_{j}^{\prime}=q}
$$

since \mathcal{Z} is compact and c is continuous, we have that

$$
\begin{aligned}
\left|g\left(\ldots,\left(x_{k}, z_{k}\right), \ldots\right)-g\left(\ldots,\left(\tilde{x}_{k}, \tilde{z}_{k}\right), \ldots\right)\right| & =\left|\sum_{q=1}^{r} \frac{1}{\lambda_{q}^{*} n^{2}} \sum_{j}\left[c\left(x_{k}, y_{j}\right) \mathbf{1}_{z_{k}=q}-c\left(\tilde{x}_{k}, y_{j}\right) \mathbf{1}_{\tilde{z}_{k}=q}\right] \mathbf{1}_{z_{j}^{\prime}=q}\right| \\
& =\left|\frac{1}{\lambda_{z_{k}}^{*} n^{2}} \sum_{j=1}^{n} c\left(x_{k}, y_{j}\right) \mathbf{1}_{z_{j}^{\prime}=z_{k}}-\frac{1}{\lambda_{\tilde{z}_{k}}^{*} n^{2}} \sum_{j=1}^{n} c\left(\tilde{x}_{k}, y_{j}\right) \mathbf{1}_{z_{j}^{\prime}=\tilde{z}_{k}}\right| \\
& \leq \frac{\|c\|_{\infty}}{n^{2}}\left[\frac{\sum_{j=1}^{n} \mathbf{1}_{z_{j}^{\prime}=z_{k}}}{\lambda_{z_{k}}^{*}}+\frac{\sum_{j=1}^{n} \mathbf{1}_{z_{j}^{\prime}=\tilde{z}_{k}}}{\lambda_{\tilde{z}_{k}}^{*}}\right] \\
& \leq \frac{2\|c\|_{\infty}}{\min _{1 \leq q \leq r} \lambda_{q}^{*}} \frac{1}{n}
\end{aligned}
$$

Then by applying the McDiarmid's inequality we obtain that for $\delta>0$, with a probability at least of $1-\delta$, we have

$$
\left|\operatorname{LOT}_{r, c}(\mu, \nu)-\int_{\mathcal{Z}^{2}} c(x, y) d \hat{\pi}(x, y)\right| \leq \frac{2\|c\|_{\infty}}{\min _{1 \leq q \leq r} \lambda_{q}^{*}} \sqrt{\frac{\log (2 / \delta)}{n}}
$$

Now we aim at building a coupling $\tilde{\pi} \in \Pi_{r}(\hat{\mu}, \hat{\nu})$ from $\hat{\pi}$. Let us consider the same as the one introduce in the proof of Proposition B.3, that is

$$
\begin{aligned}
\tilde{\pi} & \triangleq \sum_{k=1}^{r-1} \frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|\left|\tilde{\nu}_{k}\right|} \tilde{\mu}_{k} \otimes \tilde{\nu}_{k} \\
& +\frac{1}{1-\sum_{k=1}^{r-1} \min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}\left[\hat{\mu}-\sum_{k=1}^{r-1} \frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|} \tilde{\mu}_{k}\right] \otimes\left[\hat{\nu}-\sum_{k=1}^{r-1} \frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\nu}_{k}\right|} \tilde{\nu}_{k}\right]
\end{aligned}
$$

with the convention that $\frac{0}{0}=0$. Let us now expand the above expression, and by denoting $\tilde{\lambda}_{r}=$ $1-\sum_{k=1}^{r-1} \min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)$ we obtain that

$$
\begin{aligned}
\tilde{\pi} & =\sum_{k=1}^{r-1} \frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|\left|\tilde{\nu}_{k}\right|} \tilde{\mu}_{k} \otimes \tilde{\nu}_{k} \\
& +\frac{1}{\tilde{\lambda}_{r}} \tilde{\mu}_{r} \otimes \tilde{\nu}_{r} \\
& +\frac{1}{\tilde{\lambda}_{r}} \tilde{\mu}_{r} \otimes\left[\sum_{k=1}^{r-1}\left(1-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\nu}_{k}\right|}\right) \tilde{\nu}_{k}\right] \\
& +\frac{1}{\tilde{\lambda}_{r}}\left[\sum_{k=1}^{r-1}\left(1-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|}\right) \tilde{\mu}_{k}\right] \otimes \tilde{\nu}_{r} \\
& +\frac{1}{\tilde{\lambda}_{r}}\left[\sum_{k=1}^{r-1}\left(1-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|}\right) \tilde{\mu}_{k}\right] \otimes\left[\sum_{k=1}^{r-1}\left(1-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\nu}_{k}\right|}\right) \tilde{\nu}_{k}\right]
\end{aligned}
$$

Now we aim at controlling the following quantity $\left|\int_{\mathcal{Z}^{2}} c(x, y) d \hat{\pi}(x, y)-\int_{\mathcal{Z}^{2}} c(x, y) d \tilde{\pi}(x, y)\right|$ and we observe that

$$
\begin{align*}
& \int_{\mathcal{Z}^{2}} c(x, y) d[\hat{\pi}(x, y)-\tilde{\pi}(x, y)]=\sum_{k=1}^{r-1} \int_{\mathcal{Z}^{2}} c(x, y)\left[\frac{1}{\lambda_{k}^{*}}-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|\left|\tilde{\nu}_{k}\right|}\right] d \tilde{\mu}_{k}(x) \tilde{\nu}_{k}(y) \tag{11}\\
& +\int_{\mathcal{Z}^{2}} c(x, y)\left[\frac{1}{\lambda_{r}^{*}}-\frac{1}{\tilde{\lambda}_{r}}\right] d \tilde{\mu}_{r}(x) \tilde{\nu}_{r}(y) \tag{12}\\
& +\frac{1}{\tilde{\lambda}_{r}} \sum_{k=1}^{r-1} \int_{\mathcal{Z}^{2}}\left(1-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\nu}_{k}\right|}\right) c(x, y) d \tilde{\mu}_{r}(x) d \tilde{\nu}_{k}(y) \tag{13}\\
& +\frac{1}{\tilde{\lambda}_{r}} \sum_{k=1}^{r-1} \int_{\mathcal{Z}^{2}}\left(1-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|}\right) c(x, y) d \tilde{\mu}_{k}(x) d \tilde{\nu}_{r}(y) \tag{14}\\
& +\frac{1}{\tilde{\lambda}_{r}} \sum_{k, q=1}^{r-1} \int_{\mathcal{Z}^{2}}\left(1-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|}\right)\left(1-\frac{\min \left(\left|\tilde{\mu}_{q}\right|,\left|\tilde{\nu}_{q}\right|\right)}{\left|\tilde{\nu}_{q}\right|}\right) c(x, y) d \tilde{\mu}_{k}(x) d \tilde{\nu}_{q}(y) \tag{15}
\end{align*}
$$

Let us now control each term of the RHS of the above equality. Let us first consider the term in Eq. 11. remark that we have

$$
\begin{aligned}
& \left|\int_{\mathcal{Z}^{2}} c(x, y)\left[\frac{1}{\lambda_{k}^{*}}-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|\left|\tilde{\nu}_{k}\right|}\right] d \tilde{\mu}_{k}(x) \tilde{\nu}_{k}(y)\right| \\
& \leq\left|\left[\frac{1}{\lambda_{k}^{*}}-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|\left|\tilde{\nu}_{k}\right|}\right]\right|\|c\|_{\infty}\left|\tilde{\mu}_{k}\right|\left|\tilde{\nu}_{k}\right| \\
& \leq\left|\left[\frac{\left|\tilde{\mu}_{k}\right|\left|\tilde{\nu}_{k}\right|}{\lambda_{k}^{*}}-\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)\right]\right|\|c\|_{\infty} \\
& \leq \min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)\left|\frac{\max \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\lambda_{k}^{*}}-1\right|\|c\|_{\infty} \\
& \leq \frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\lambda_{k}^{*}}\left|\max \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)-\lambda_{k}^{*}\right|\|c\|_{\infty} \\
& \leq \frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\lambda_{k}^{*}} \max \left(\left\|\tilde{\lambda}_{\mu}-\lambda^{*}\right\|_{\infty},\left\|\tilde{\lambda}_{\nu}-\lambda^{*}\right\|_{\infty}\right)\|c\|_{\infty} \\
& \leq\|c\|_{\infty} \max \left(\left\|\frac{\tilde{\lambda}_{\mu}}{\lambda^{*}}\right\|_{\infty},\left\|\frac{\tilde{\lambda}_{\nu}}{\lambda^{*}}\right\|_{\infty}\right) \max \left(\left\|\tilde{\lambda}_{\mu}-\lambda^{*}\right\|_{\infty},\left\|\tilde{\lambda}_{\nu}-\lambda^{*}\right\|_{\infty}\right)
\end{aligned}
$$

where we have denoted $\tilde{\lambda}_{\mu} \triangleq\left(\left|\tilde{\mu}_{k}\right|\right)_{k=1}^{r}$ and $\tilde{\lambda}_{\nu} \triangleq\left(\left|\tilde{\nu}_{k}\right|\right)_{k=1}^{r}$. Now observe that

$$
\begin{aligned}
\mathbb{P}\left(\max \left(\left\|\tilde{\lambda}_{\mu}-\lambda^{*}\right\|_{\infty},\left\|\tilde{\lambda}_{\nu}-\lambda^{*}\right\|_{\infty}\right) \geq t\right) & \leq 2 \mathbb{P}\left(\left\|\tilde{\lambda}_{\mu}-\lambda^{*}\right\|_{\infty} \geq t\right) \\
& \leq \mathbb{P}\left(d_{K}\left(\lambda^{*}, \tilde{\lambda}_{\mu}\right) \geq \frac{t}{2}\right) \\
& \leq 4 \exp \left(-n t^{2} / 2\right)
\end{aligned}
$$

where d_{K} is the Kolmogorov distance. In addition we have

$$
\max \left(\left\|\frac{\tilde{\lambda}_{\mu}}{\lambda^{*}}\right\|_{\infty},\left\|\frac{\tilde{\lambda}_{\nu}}{\lambda^{*}}\right\|_{\infty}\right) \leq 1+\frac{1}{\min _{1 \leq i \leq r} \lambda_{i}^{*}} \max \left(\left\|\tilde{\lambda}_{\mu}-\lambda^{*}\right\|_{\infty},\left\|\tilde{\lambda}_{\nu}-\lambda^{*}\right\|_{\infty}\right)
$$

Combining the two above controls, we obtain that for all $\delta>0$, with a probability of at least $1-\delta$,

$$
\left|\int_{\mathcal{Z}^{2}} c(x, y)\left[\frac{1}{\lambda_{k}^{*}}-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|\left|\tilde{\nu}_{k}\right|}\right] d \tilde{\mu}_{k}(x) \tilde{\nu}_{k}(y)\right| \leq\|c\|_{\infty} \sqrt{\frac{2 \ln 8 / \delta}{n}}+\frac{\|c\|_{\infty}}{n} \frac{2 \ln 8 / \delta}{\min _{1 \leq i \leq r} \lambda_{i}^{*}}
$$

Let us now consider the term in Eq. [12, we have that

$$
\begin{aligned}
\left|\int_{\mathcal{Z}^{2}} c(x, y)\left[\frac{1}{\lambda_{r}^{*}}-\frac{1}{\tilde{\lambda}_{r}}\right] d \tilde{\mu}_{r}(x) \tilde{\nu}_{r}(y)\right| & \leq \frac{\left|\tilde{\mu}_{r} \| \tilde{\nu}_{r}\right|}{\lambda_{r}^{*} \tilde{\lambda}_{r}}\left|1-\sum_{i=1}^{r} \min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)-\lambda_{r}\right|\|c\|_{\infty} \\
& \leq \max \left(\left\|\frac{\tilde{\lambda}_{\mu}}{\lambda^{*}}\right\|_{\infty},\left\|\frac{\tilde{\lambda}_{\nu}}{\lambda^{*}}\right\|_{\infty}\right) \sum_{k=1}^{r-1}\left|\lambda_{k}^{*}-\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)\right|\|c\|_{\infty} \\
& \leq \max \left(\left\|\frac{\tilde{\lambda}_{\mu}}{\lambda^{*}}\right\|_{\infty},\left\|\frac{\tilde{\lambda}_{\nu}}{\lambda^{*}}\right\|_{\infty}\right)\|c\|_{\infty}\left(\left\|\lambda^{*}-\tilde{\lambda}_{\mu}\right\|_{1}+\left\|\lambda^{*}-\tilde{\lambda}_{\nu}\right\|_{1}\right) \\
& \leq 2\|c\|_{\infty} \max \left(\left\|\frac{\tilde{\lambda}_{\mu}}{\lambda^{*}}\right\|_{\infty},\left\|\frac{\tilde{\lambda}_{\nu}}{\lambda^{*}}\right\|_{\infty}\right) \max \left(\left\|\lambda^{*}-\tilde{\lambda}_{\mu}\right\|_{1},\left\|\lambda^{*}-\tilde{\lambda}_{\nu}\right\|_{1}\right)
\end{aligned}
$$

However we have that

$$
\mathbb{P}\left(\max \left(\left\|\lambda^{*}-\tilde{\lambda}_{\mu}\right\|_{1},\left\|\lambda^{*}-\tilde{\lambda}_{\nu}\right\|_{1}\right) \geq t\right) \leq 2 \mathbb{P}\left(\left\|\lambda^{*}-\tilde{\lambda}_{\mu}\right\|_{1} \geq t\right)
$$

In addition we have that $\mathbb{E}\left(\left\|\lambda^{*}-\tilde{\lambda}_{\mu}\right\|_{1}\right) \leq \sqrt{\frac{r}{n}}$ and by applying the McDiarmid's Inequality, we obtain that for all $\delta>0$, with a probability of $1-\delta$

$$
\left\|\lambda^{*}-\tilde{\lambda}_{\mu}\right\|_{1} \leq \sqrt{\frac{r}{n}}+\sqrt{\frac{2 \ln (2 / \delta)}{n}}
$$

Therefore we obtain that with a probability of at least $1-\delta$,

$$
\left|\int_{\mathcal{Z}^{2}} c(x, y)\left[\frac{1}{\lambda_{r}^{*}}-\frac{1}{\tilde{\lambda}_{r}}\right] d \tilde{\mu}_{r}(x) \tilde{\nu}_{r}(y)\right| \leq 2\|c\|_{\infty}\left[\sqrt{\frac{r}{n}}+\sqrt{\frac{2 \ln (8 / \delta)}{n}}+\frac{2 \ln (8 / \delta)+\sqrt{2 r \ln (8 / \delta)}}{n \times \min _{1 \leq i \leq r} \lambda_{i}^{*}}\right]
$$

For the term in Eq. 13 and 14, we obtain that

$$
\begin{aligned}
& \left|\frac{1}{\tilde{\lambda}_{r}} \sum_{k=1}^{r-1} \int_{\mathcal{Z}^{2}}\left(1-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\nu}_{k}\right|}\right) c(x, y) d \tilde{\mu}_{r}(x) d \tilde{\nu}_{k}(y)\right| \\
& \leq \frac{\left|\tilde{\mu}_{r}\right|}{\tilde{\lambda}_{r}} \sum_{k=1}^{r-1}\left(\left|\tilde{\nu}_{k}\right|-\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)\right)\|c\|_{\infty} \\
& \leq \frac{\left|\tilde{\mu}_{r}\right|}{\tilde{\lambda}_{r}}\left[\tilde{\lambda}_{r}-\left|\tilde{\nu}_{r}\right|\right]\|c\|_{\infty} \\
& \leq\left[\left|\tilde{\lambda}_{r}-\lambda_{r}^{*}\right|+\left|\lambda_{r}^{*}-\tilde{\nu}_{r}\right|\right]\|c\|_{\infty} \\
& \leq 3\|c\|_{\infty} \max \left(\left\|\lambda^{*}-\tilde{\lambda}_{\mu}\right\|_{1},\left\|\lambda^{*}-\tilde{\lambda}_{\nu}\right\|_{1}\right)
\end{aligned}
$$

Therefore we obtain that with a probability of at least $1-\delta$,

$$
\left|\frac{1}{\tilde{\lambda}_{r}} \sum_{k=1}^{r-1} \int_{\mathcal{Z}^{2}}\left(1-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\nu}_{k}\right|}\right) c(x, y) d \tilde{\mu}_{r}(x) d \tilde{\nu}_{k}(y)\right| \leq 3\|c\|_{\infty}\left[\sqrt{\frac{r}{n}}+\sqrt{\frac{2 \ln (2 / \delta)}{n}}\right]
$$

Finally the last term in Eq. 15 can be controlled as the following:

$$
\begin{aligned}
& \left|\frac{1}{\tilde{\lambda}_{r}} \sum_{k, q=1}^{r-1} \int_{\mathcal{Z}^{2}}\left(1-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|}\right)\left(1-\frac{\min \left(\left|\tilde{\mu}_{q}\right|,\left|\tilde{\nu}_{q}\right|\right)}{\left|\tilde{\nu}_{q}\right|}\right) c(x, y) d \tilde{\mu}_{k}(x) d \tilde{\nu}_{q}(y)\right| \\
& \leq \frac{\|c\|_{\infty}}{\tilde{\lambda}_{r}} \sum_{k, q=1}^{r-1}\left(1-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|}\right)\left(1-\frac{\min \left(\left|\tilde{\mu}_{q}\right|,\left|\tilde{\nu}_{q}\right|\right)}{\left|\tilde{\nu}_{q}\right|}\right)\left|\tilde{\mu}_{k}\right|\left|\tilde{\nu}_{q}\right| \\
& \leq \frac{\|c\|_{\infty}}{\tilde{\lambda}_{r}} \sum_{k=1}^{r-1}\left(\left|\tilde{\mu}_{k}\right|-\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)\right) \sum_{k=1}^{r-1}\left(\left|\tilde{\nu}_{k}\right|-\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)\right) \\
& \leq 3\|c\|_{\infty} \max \left(\left\|\lambda^{*}-\tilde{\lambda}_{\mu}\right\|_{1},\left\|\lambda^{*}-\tilde{\lambda}_{\nu}\right\|_{1}\right)
\end{aligned}
$$

and we obtain that with a probability of at least $1-\delta$,

$$
\begin{aligned}
& \left|\frac{1}{\tilde{\lambda}_{r}} \sum_{k, q=1}^{r-1} \int_{\mathcal{Z}^{2}}\left(1-\frac{\min \left(\left|\tilde{\mu}_{k}\right|,\left|\tilde{\nu}_{k}\right|\right)}{\left|\tilde{\mu}_{k}\right|}\right)\left(1-\frac{\min \left(\left|\tilde{\mu}_{q}\right|,\left|\tilde{\nu}_{q}\right|\right)}{\left|\tilde{\nu}_{q}\right|}\right) c(x, y) d \tilde{\mu}_{k}(x) d \tilde{\nu}_{q}(y)\right| \\
& \leq 3\|c\|_{\infty}\left[\sqrt{\frac{r}{n}}+\sqrt{\frac{2 \ln (2 / \delta)}{n}}\right]
\end{aligned}
$$

Then by applying a union bound we obtain that with a probability of at least $1-\delta$

$$
\left|\int_{\mathcal{Z}^{2}} c(x, y) d[\hat{\pi}(x, y)-\tilde{\pi}(x, y)]\right| \leq\|c\|_{\infty}\left[11 \sqrt{\frac{r}{n}}+12 \sqrt{\frac{2 \ln 40 / \delta}{n}}+\frac{6 \ln (40 / \delta)+2 \sqrt{2 r \ln (40 / \delta)}}{n \times \min _{1 \leq i \leq r} \lambda_{i}^{*}}\right]
$$

Now observe that

$$
\begin{aligned}
\operatorname{LOT}_{r, c}(\hat{\mu}, \hat{\nu})-\mathbf{L O T}_{r, c}(\mu, \nu) & \leq \int_{\mathcal{Z}^{2}} c(x, y) d \tilde{\pi}(x, y)-\int_{\mathcal{Z}^{2}} c(x, y) d \pi^{*}(x, y) \\
& \leq \int_{\mathcal{Z}^{2}} c(x, y) d[\tilde{\pi}-\hat{\pi}](x, y)+\int_{\mathcal{Z}^{2}} c(x, y) d\left[\hat{\pi}-\pi^{*}\right](x, y)
\end{aligned}
$$

and by combining the two control we obtain that with a probability of at least $1-2 \delta$,

$$
\begin{aligned}
\operatorname{LOT}_{r, c}(\hat{\mu}, \hat{\nu})-\operatorname{LOT}_{r, c}(\mu, \nu) & \leq\|c\|_{\infty}\left[11 \sqrt{\frac{r}{n}}+12 \sqrt{\frac{2 \ln 40 / \delta}{n}}+\frac{1}{\alpha}\left(2 \sqrt{\frac{\log (2 / \delta)}{n}}+\frac{6 \ln (40 / \delta)+2 \sqrt{2 r \ln (40 / \delta)}}{n}\right)\right] \\
& \leq 11\|c\|_{\infty} \sqrt{\frac{r}{n}}+\frac{14\|c\|_{\infty}}{\alpha} \sqrt{\frac{\log (40 / \delta)}{n}}+\frac{2\|c\|_{\infty} \max (6, \sqrt{2 r}) \log (40 / \delta)}{n \alpha}
\end{aligned}
$$

where $\alpha \triangleq \min _{1 \leq i \leq r} \lambda_{i}^{*}$ and the result follows.

B. 5 Proof Proposition 5

Proposition. Let $r \geq 1, \delta>0$ and $\mu, \nu \in \mathcal{M}_{1}^{+}(\mathcal{X})$. Then there exists a constant $N_{r, \delta}$ such that if $n \geq N_{r, \delta}$ then with a probability of at least $1-2 \delta$, we have

$$
\operatorname{LOT}_{r, c}\left(\hat{\mu}_{n}, \hat{\nu}_{n}\right)-\operatorname{LOT}_{r, c}(\mu, \nu) \leq 11\|c\|_{\infty} \sqrt{\frac{r}{n}}+77\|c\|_{\infty} \sqrt{\frac{\log (40 / \delta)}{n}}
$$

Proof. We consider the same notations as in the proof of Proposition4. In particular let us define for all $\left(x_{i}, z_{i}\right)_{i=1}^{n},\left(y_{i}, z_{i}^{\prime}\right) \in(\mathcal{Z} \times[|1, r|])^{n}$,

$$
g\left(\left(x_{1}, z_{1}\right), \ldots,\left(x_{n}, z_{n}\right),\left(y_{1}, z_{1}^{\prime}\right), \ldots,\left(y_{n}, z_{n}^{\prime}\right)\right) \triangleq \sum_{q=1}^{r} \frac{1}{\lambda_{q}^{*} n^{2}} \sum_{i, j} c\left(x_{i}, y_{j}\right) \mathbf{1}_{z_{i}=q} \mathbf{1}_{z_{j}^{\prime}=q}
$$

Recall that we have

$$
\begin{aligned}
\left|g\left(\ldots,\left(x_{k}, z_{k}\right), \ldots\right)-g\left(\ldots,\left(\tilde{x}_{k}, \tilde{z}_{k}\right), \ldots\right)\right| & \leq \frac{\|c\|_{\infty}}{n^{2}}\left[\frac{\sum_{j=1}^{n} \mathbf{1}_{z_{j}^{\prime}=z_{k}}}{\lambda_{z_{k}}^{*}}+\frac{\sum_{j=1}^{n} \mathbf{1}_{z_{j}^{\prime}=\tilde{z}_{k}}^{\lambda_{\tilde{z}_{k}}^{*}}}{}\right] \\
& \leq \frac{2\|c\|_{\infty}}{n} \max \left(\left\|\frac{\tilde{\lambda}_{\mu}}{\lambda^{*}}\right\|_{\infty},\left\|\frac{\tilde{\lambda}_{\nu}}{\lambda^{*}}\right\|_{\infty}\right) \\
& \leq \frac{2\|c\|_{\infty}}{n}+\frac{2\|c\|_{\infty}}{n \times \min _{1 \leq i \leq r} \lambda_{i}^{*}} \max \left(\left\|\tilde{\lambda}_{\mu}-\lambda^{*}\right\|_{\infty},\left\|\tilde{\lambda}_{\nu}-\lambda^{*}\right\|_{\infty}\right)
\end{aligned}
$$

In fact if we have a control in probability of the bounded difference we can use an extension of the McDiarmid 's Inequality. For that purpose let us first introduce the following definition.

Definition 4. Let $\left(X_{i}\right)_{i=1}^{m}$, m independent random variables and g a measurable function. We say that g is weakly difference-bounded with respect to $\left(X_{i}\right)_{i=1}^{m}$ by (b, β, δ) if

$$
\mathbb{P}\left(\left|g\left(X_{1}, \ldots, X_{m}\right)-g\left(X_{1}^{\prime}, \ldots, X_{m}^{\prime}\right)\right| \leq \beta\right) \geq 1-\delta
$$

with $X_{i}^{\prime}=X_{i}$ except for one coordinate k where X_{k}^{\prime} is an independent copy of X_{k}. Furthermore for any $\left(x_{i}\right)_{i=1}^{m}$ and $\left(x_{i}^{\prime}\right)_{i=1}^{m}$ where for all coordinate except on $x_{j}=x_{j}^{\prime}$

$$
\left|g\left(x_{1}, \ldots, x_{m}\right)-g\left(x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right)\right| \leq b
$$

Let us now introduce an extension of McDiarmid's Inequality [Kutin, 2002].
Theorem 1. Let $\left(X_{i}\right)_{i=1}^{m}, m$ independent random variables and g a measurable function which is weakly difference-bounded with respect to $\left(X_{i}\right)_{i=1}^{m}$ by $(b, \beta / m, \exp (-K m))$, then if $0<\tau \leq$ $T(b, \beta, K)$ and $m \geq M(b, \beta, K, \tau)$, then

$$
\mathbb{P}\left(\left|g\left(X_{1}, \ldots, X_{m}\right)-\mathbb{E}\left(g\left(X_{1}, \ldots, X_{m}\right)\right)\right| \geq \tau\right) \leq 4 \exp \left(\frac{-\tau^{2} m}{8 \beta^{2}}\right)
$$

where

$$
\begin{gathered}
T(b, \beta, K) \triangleq \min \left(\frac{14 c}{2}, 4 \beta \sqrt{K}, \frac{\beta^{2} K}{b}\right) \\
M(b, \beta, K, \tau) \triangleq \max \left(\frac{b}{\beta}, \beta \sqrt{40}, 3\left(\frac{24}{K}+3\right) \log \left(\frac{24}{K}+3\right), \frac{1}{\tau}\right)
\end{gathered}
$$

Given the above Theroem we can obtain an asymptotic control of the deviation of g from its mean. Let $\delta^{\prime}>0$ and let us denote

$$
\begin{aligned}
& m \triangleq 2 n \\
& b \triangleq \frac{2\|c\|_{\infty}}{n \times \min _{1 \leq i \leq r} \lambda_{i}^{*}} \\
& K \triangleq \frac{\log \left(1 / \delta^{\prime}\right)}{2 n} \\
& \beta \triangleq 4\|c\|_{\infty}\left[1+\frac{1}{\min _{1 \leq i \leq r} \lambda_{i}^{*}} \sqrt{\frac{2 \log \left(4 / \delta^{\prime}\right)}{n}}\right]
\end{aligned}
$$

Observe now that with a probability of at least $1-\exp (-K m)$

$$
\left|g\left(\ldots,\left(x_{k}, z_{k}\right), \ldots\right)-g\left(\ldots,\left(\tilde{x}_{k}, \tilde{z}_{k}\right), \ldots\right)\right| \leq \frac{2\|c\|_{\infty}}{n}\left[1+\frac{1}{\min _{1 \leq i \leq r} \lambda_{i}^{*}} \sqrt{\frac{2 \log \left(4 / \delta^{\prime}\right)}{n}}\right]
$$

Let us now fix $\delta>0$ and let us choose δ^{\prime} such that $\delta^{\prime} \triangleq 4 / n$ and $\tau \triangleq \beta \sqrt{\frac{4 \log (4 / \delta)}{n}}$, then we obtain that for n sufficiently large (such that $n \geq M(b, \beta, K, \tau) / 2$ and $\tau \leq T(b, \beta, K)$), we have that with a probability of at least $1-\delta$

$$
\begin{aligned}
\left|\operatorname{LOT}_{r, c}(\mu, \nu)-\int_{\mathcal{Z}^{2}} c(x, y) d \hat{\pi}(x, y)\right| & \leq 4\|c\|_{\infty}\left[1+\frac{1}{\min _{1 \leq i \leq r} \lambda_{i}^{*}} \sqrt{\frac{2 \log (n)}{n}}\right] \sqrt{\frac{4 \log (4 / \delta)}{n}} \\
& \leq 4\|c\|_{\infty} \sqrt{\frac{4 \log (4 / \delta)}{n}}+\frac{16 \sqrt{5}\|c\|_{\infty} \sqrt{\log (n) \log (4 / \delta)}}{n \times \min _{1 \leq i \leq r} \lambda_{i}^{*}}
\end{aligned}
$$

Recall also from the proof of Proposition4 that we have with a probability of at least $1-\delta$

$$
\left|\int_{\mathcal{Z}^{2}} c(x, y) d[\hat{\pi}(x, y)-\tilde{\pi}(x, y)]\right| \leq\|c\|_{\infty}\left[11 \sqrt{\frac{r}{n}}+12 \sqrt{\frac{2 \ln 40 / \delta}{n}}+\frac{6 \ln (40 / \delta)+2 \sqrt{2 r \ln (40 / \delta)}}{n \times \min _{1 \leq i \leq r} \lambda_{i}^{*}}\right]
$$

Finally by imposing in addition that

$$
\sqrt{\frac{n}{\log (n)}} \geq \frac{1}{\min _{1 \leq i \leq r} \lambda_{i}^{*}}, \sqrt{n} \geq \frac{\sqrt{\log (40 / \delta)}}{\min _{1 \leq i \leq r} \lambda_{i}^{*}} \text { and } \sqrt{n} \geq \frac{\sqrt{r}}{\min _{1 \leq i \leq r}}
$$

we obtain that for n is large enough (such that (such that $n \geq M(b, \beta, K, \tau) / 2$ and $\tau \leq T(b, \beta, K)$) and satysfing the above inequalities, we have with a probability of at least $1-2 \delta$ that

$$
\operatorname{LOT}_{r, c}(\hat{\mu}, \hat{\nu})-\operatorname{LOT}_{r, c}(\mu, \nu) \leq 11\|c\|_{\infty} \sqrt{\frac{r}{n}}+77\|c\|_{\infty} \sqrt{\frac{\log (40 / \delta)}{n}}
$$

B. 6 Proof Proposition 6

Proposition. Let $\mu, \nu \in \mathcal{M}_{1}^{+}(\mathcal{X})$. Let us assume that c is symmetric, then we have

$$
\operatorname{DLOT}_{1, c}(\mu, \nu)=\frac{1}{2} \int_{\mathcal{X}^{2}}-c(x, y) d[\mu-\nu] \otimes d[\mu-\nu](x, y)
$$

If in addition we assume the c is Lipschitz w.r.t to x and y, then we have

$$
\operatorname{DLOT}_{r, c}(\mu, \nu) \xrightarrow[r \rightarrow+\infty]{ } \mathrm{OT}_{c}(\mu, \nu)
$$

Proof. When $r=1$, it is clear that for any $\mu, \nu \in \mathcal{M}_{1}^{+}(\mathcal{X}), \Pi_{r}(\mu, \nu)=\{\mu \otimes \nu\}$ and thanks to the symmetry of c, we have directly that

$$
\operatorname{DLOT}_{1, c}(\mu, \nu)=\frac{1}{2} \int_{\mathcal{X}^{2}}-c(x, y) d[\mu-\nu] \otimes d[\mu-\nu](x, y)=\frac{1}{2} \operatorname{MMD}_{-c}(\mu, \nu)
$$

The limit is a direct consequence of Proposition 2 .

B. 7 Proof of Proposition 8

Proposition. Let $r \geq 1$ and $\left(\mu_{n}\right)_{n \geq 0}$ and $\left(\nu_{n}\right)_{n \geq 0}$ two sequences of probability measures such that $\mu_{n} \rightarrow \mu$ and $\nu_{n} \rightarrow \nu$ with respect to the convergence in law. Then we have that

$$
L O T_{r, c}\left(\mu_{n}, \nu_{n}\right) \rightarrow L O T_{r, c}(\mu, \nu)
$$

Proof. Let us denote π an optimal solution of $\mathrm{LOT}_{r, c}(\mu, \nu)$ and let us denote $\left(\mu^{(i)}\right)_{i=1}^{r},\left(\nu^{(i)}\right)_{i=1}^{r}$ and $\left(\lambda^{(i)}\right)_{i=1}^{r}$ the decomposition associated. In the following Lemma, we aim at building specific decompositions of the sequences $\left(\mu_{n}\right)_{n \geq 0}$ and $\left(\nu_{n}\right)_{n \geq 0}$.

Lemma 1. Let $r \geq 1, \mu \in \mathcal{M}_{1}^{+}(\mathcal{X})$ and $\left(\mu^{(i)}\right)_{i=1}^{r} \in \mathcal{M}_{1}^{+}(\mathcal{X})$ and $\left(\lambda^{(i)}\right)_{i=1}^{r} \in \Delta_{r}^{*}$ such that $\mu=\sum_{i=1}^{r} \lambda_{i} \mu^{(i)}$. Then for any sequence of probability measures $\left(\mu_{n}\right)_{\geq 0}$ such that $\mu_{n} \rightarrow \mu$, there exist for all $i \in[|1, r|]$ a sequence of nonnegative measures $\left(\mu_{n}^{(i)}\right)_{n \geq 0}$ such that

$$
\begin{aligned}
& \mu_{n}^{(i)} \rightarrow \lambda_{i} \mu^{(i)} \text { for all } i \in[|1, r|] \text { and } \\
& \sum_{i=1}^{r} \mu_{n}^{(i)}=\mu_{n} \text { for all } n \geq 0
\end{aligned}
$$

Proof. For $r=1$ the result is clear. Let us now show the result for $r=2$. Let us denote $\left(\tilde{\mu}_{n}^{(1)}\right)$ a sequence converging weakly towards $\lambda_{1} \mu^{(1)}$. Then by denoting $\mu_{n}^{(1)} \triangleq \mu_{n}-\left(\mu_{n}-\tilde{\mu}_{n}^{(1)}\right)+$ where $(\cdot)_{+}$correspond to the non-negative part of the measure, we have that

$$
\begin{aligned}
\mu_{n}^{(1)} & \geq 0, \quad \mu_{n}^{(1)} \rightarrow \lambda_{1} \mu^{(1)} \\
\mu_{n}^{(2)} & \triangleq \mu_{n}-\mu_{n}^{(1)} \geq 0, \quad \mu_{n}^{(2)} \rightarrow \lambda_{2} \mu^{(2)} \text { and } \\
\mu_{n} & =\mu_{n}^{(1)}+\mu_{n}^{(2)} \text { for all } n \geq 0
\end{aligned}
$$

which is the result. Let $r \geq 2$ and let us assume that the result holds for all $1 \leq k \leq r$. Let us now consider a decomposition of μ such that $\mu=\sum_{i=1}^{r+1} \lambda_{i} \mu^{(i)}$. By denoting $\tilde{\mu}^{(1)} \triangleq \frac{\sum_{i=1}^{r} \lambda_{i} \mu^{(i)}}{\sum_{i=1}^{r} \lambda_{i}}$, we obtain that

$$
\mu=\left(\sum_{i=1}^{r} \lambda_{i}\right) \tilde{\mu}^{(1)}+\lambda_{r+1} \mu^{(r+1)} .
$$

Then by recursion we have that there exists sequences of nonnegative measures $\left(\tilde{\mu}_{n}^{(1)}\right)$ and $\left(\mu_{n}^{(r+1)}\right)$ such that

$$
\tilde{\mu}_{n}^{(1)} \rightarrow\left(\sum_{i=1}^{r} \lambda_{i}\right) \tilde{\mu}^{(1)}, \mu_{n}^{(r+1)} \rightarrow \lambda_{r+1} \mu^{(r+1)} \text { and } \mu_{n}=\tilde{\mu}_{n}^{(1)}+\mu_{n}^{(r+1)} \text { for all } n \geq 0
$$

Now observe that $\frac{\tilde{\mu}_{n}^{(1)}}{\left|\tilde{\mu}_{n}^{(1)}\right|} \rightarrow \tilde{\mu}^{(1)}=\sum_{i=1}^{r} \frac{\lambda_{i}}{\sum_{i=1}^{r} \lambda_{i}} \mu^{(i)}$. Therefore applying the recursion on this problem allows us to obtain a decomposition of $\tilde{\mu}_{n}^{(1)}$ of the form

$$
\begin{aligned}
\frac{\tilde{\mu}_{n}^{(1)}}{\left|\tilde{\mu}_{n}^{(1)}\right|} & =\sum_{i=1}^{r} \mu_{n}^{(i)} \text { where } \\
\mu_{n}^{(i)} & \geq 0 \text { and } \mu_{n}^{(i)} \rightarrow \frac{\lambda_{i}}{\sum_{i=1}^{r} \lambda_{i}} \mu^{(i)}
\end{aligned}
$$

Therefore we obtain that

$$
\begin{aligned}
\mu_{n} & =\sum_{i=1}^{r}\left|\tilde{\mu}_{n}^{(1)}\right| \mu_{n}^{(i)}+\mu_{n}^{(r+1)} \text { where } \\
\mu_{n}^{(i)} & \geq 0,\left|\tilde{\mu}_{n}^{(1)}\right| \mu_{n}^{(i)} \rightarrow \lambda_{i} \mu^{(i)} \text { for all } i \in[|1, r|] \text { and } \\
\mu_{n}^{(r+1)} & \geq 0, \quad \mu_{n}^{(r+1)} \rightarrow \lambda_{r+1} \mu^{(r+1)}
\end{aligned}
$$

from which follows the result.
Let us now consider such decompositions of $\left(\mu_{n}\right)_{n \geq 0}$ and $\left(\nu_{n}\right)_{n \geq 0}$ such that each factor converges toward the target decomposition of μ. Now let us build the following coupling:

$$
\begin{aligned}
\tilde{\pi}_{n} & \triangleq \sum_{k=1}^{r-1} \frac{\min \left(\left|\mu_{n}^{(k)}\right|,\left|\nu_{n}^{(k)}\right|\right)}{\left|\mu_{n}^{(k)}\right|\left|\nu_{n}^{(k)}\right|} \mu_{n}^{(k)} \otimes \mu_{n}^{(k)} \\
& +\frac{1}{1-\sum_{k=1}^{r-1} \min \left(\left|\mu_{n}^{(k)}\right|,\left|\nu_{n}^{(k}\right|\right)}\left[\left|\mu_{n}\right|-\sum_{k=1}^{r-1} \frac{\min \left(\left|\mu_{n}^{(k)}\right|,\left|\nu_{n}^{(k)}\right|\right)}{\left|\mu_{n}^{(k)}\right|} \mu_{n}^{(k)}\right] \otimes\left[\nu_{n}-\sum_{k=1}^{r-1} \frac{\min \left(\left|\mu_{n}^{(k)}\right|,\left|\nu_{n}^{(k)}\right|\right)}{\left|\nu_{n}^{(k)}\right|} \nu_{n}^{(k)}\right]
\end{aligned}
$$

with the convention that $\frac{0}{0}=0$. Now it is easy to check that $\tilde{\pi}_{n} \in \Pi_{r}\left(\mu_{n}, \nu_{n}\right)$, and we have that

$$
\operatorname{LOT}_{r, c}\left(\mu_{n}, \nu_{n}\right) \leq \int_{\mathcal{X}^{2}} d(x, y) d \tilde{\pi}_{n}(x, y) \rightarrow \operatorname{LOT}_{r, c}(\mu, \nu)
$$

and by Prokhorov's theorem and the optimality of the limit of $\left(\tilde{\pi}_{n}\right)_{n \geq 0}$ (up to an extraction) we obtain that $\operatorname{LOT}_{r, c}\left(\mu_{n}, \nu_{n}\right) \rightarrow \mathbf{L O T}_{r, c}(\mu, \nu)$.

B. 8 Proof Proposition 7

Proposition. Let $r \geq 1$, and let us assume that c is a semimetric of negative type. Then for all $\mu, \nu \in \mathcal{M}_{1}^{+}(\mathcal{X})$, we have that

$$
D L O T_{r}(\mu, \nu) \geq 0
$$

In addition, if c has strong negative type then we have also that

$$
\begin{aligned}
\operatorname{DLOT}_{r, c}(\mu, \nu)=0 & \Longleftrightarrow \mu=\nu \text { and } \\
\mu_{n} \rightarrow \mu & \Longleftrightarrow \operatorname{DLOT}_{r, c}\left(\mu_{n}, \mu\right) \rightarrow 0
\end{aligned}
$$

where the convergence of the sequence of probability measures considered is the convergence in law.

Proof. Let π^{*} solution of $\operatorname{LOT}_{r, c}(\mu, \nu)$. Then there exists $\lambda^{*} \in \Delta_{r}^{*},\left(\mu_{i}^{*}\right)_{i=1}^{r},\left(\nu_{i}^{*}\right)_{i=1}^{r} \in \mathcal{M}_{1}^{+}(\mathcal{X})^{r}$ such that

$$
\pi^{*}=\sum_{i=1}^{r} \lambda_{i}^{*} \mu_{i}^{*} \otimes \nu_{i}^{*}
$$

Note that by definition, we have that

$$
\mu=\sum_{i=1}^{r} \lambda_{i}^{*} \mu_{i}^{*} \text { and } \nu=\sum_{i=1}^{r} \lambda_{i}^{*} \nu_{i}^{*},
$$

By definition we have also that

$$
\operatorname{LOT}_{r, c}(\mu, \mu) \leq \sum_{k=1}^{r} \lambda_{k}^{*} \int_{\mathcal{X}^{2}} c(x, y) d \mu_{k}^{*} \otimes \mu_{k}^{*}
$$

similarly for $\mathrm{LOT}_{r, c}(\nu, \nu)$ we have

$$
\operatorname{LOT}_{r, c}(\nu, \nu) \leq \sum_{k=1}^{r} \lambda_{k}^{*} \int_{\mathcal{X}^{2}} c(x, y) d \nu_{k}^{*} \otimes \nu_{k}^{*}
$$

Therefore we have

$$
\begin{aligned}
\operatorname{DLOT}_{r, c}(\mu, \nu) & \geq \sum_{k=1}^{r} \lambda_{k}^{*}\left(\int_{\mathcal{X}^{2}} c(x, y) d \mu_{k}^{*} \otimes \nu_{k}^{*}-\frac{1}{2}\left[\int_{\mathcal{X}^{2}} c(x, y) d \mu_{k}^{*} \otimes \mu_{k}^{*}+\int_{\mathcal{X}^{2}} c(x, y) d \nu_{k}^{*} \otimes \nu_{k}^{*}\right]\right) \\
& \geq \sum_{k=1}^{r} \lambda_{k}^{*} \int_{\mathcal{X}^{2}}-c(x, y) d\left[\mu_{k}^{*}-\nu_{k}^{*}\right] \otimes\left[\mu_{k}^{*}-\nu_{k}^{*}\right] \\
& \geq \sum_{k=1}^{r} \frac{\lambda_{k}^{*}}{2} D_{c}\left(\mu_{k}^{*}, \nu_{k}^{*}\right)
\end{aligned}
$$

where for any any probability measures α, β on \mathcal{X} we define

$$
D_{c}(\alpha, \beta) \triangleq 2 \int_{\mathcal{X}^{2}} c(x, y) d \alpha \otimes \beta-\int_{\mathcal{X}^{2}} c(x, y) d \alpha \otimes \alpha-\int_{\mathcal{X}^{2}} c(x, y) d \beta \otimes \beta
$$

However, as c is assumed to have a negative type, we have that

$$
D_{c}\left(\mu_{k}^{*}, \nu_{k}^{*}\right) \geq 0 \quad \forall k
$$

In addition if we assume that c has a strong negative type, then we obtain directly that

$$
\operatorname{DLOT}_{r, c}(\mu, \nu)=0 \Longrightarrow \mu_{k}^{*}=\nu_{k}^{*} \forall k .
$$

Let us now show that $\mathrm{DLOT}_{r, c}$ metrize the convergence in law. The direct implication is a direct consequence of the Proposition 8 Conversely, if $\operatorname{DLOT}_{r, c}\left(\mu_{n}, \mu\right) \rightarrow 0$, then by compacity of \mathcal{X} and thanks to the Prokhorov's theorem we can extract a subsequence of $\mu_{n} \rightarrow \mu^{*}$, and thanks to Proposition 8, we also obtain that $\operatorname{DLOT}_{r, c}\left(\mu_{n}, \mu\right) \rightarrow \operatorname{DLOT}_{r, c}\left(\mu^{*}, \mu\right)$. Finally we deduce that $\operatorname{DLOT}_{r, c}\left(\mu^{*}, \mu\right)=0$ and $\mu^{*}=\mu$.

B. 9 Proof Proposition 9

Proposition. Let $n \geq k \geq 1, \mathbf{X} \triangleq\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$ and $a \in \Delta_{n}^{*}$. If c is a semimetric of negative type, then by denoting $C=\left(c\left(x_{i}, x_{j}\right)\right)_{i, j}$, we have that

$$
\begin{equation*}
\operatorname{LOT}_{k, c}\left(\mu_{a, \mathbf{x}}, \mu_{a, \mathbf{x}}\right)=\min _{Q}\left\langle C, Q \operatorname{diag}\left(1 / Q^{T} \mathbf{1}_{n}\right) Q^{T}\right\rangle \text { s.t. } Q \in \mathbb{R}_{+}^{n \times k}, Q \mathbf{1}_{k}=a \tag{16}
\end{equation*}
$$

Proof. First remarks that one can reformulate the $\mathrm{LOT}_{k, c}$ problem as

$$
\operatorname{LOT}_{k, c}(\mu, \mu) \triangleq \min _{g \in \Delta_{k}^{*}} \min _{(\mathbf{x}, \mathbf{y}) \in K_{a, g}^{2}} \sum_{i=1}^{k} \frac{\mathbf{x}_{i}^{T} C \mathbf{y}_{i}}{g_{i}}
$$

where

$$
\begin{aligned}
K_{a, g} & \triangleq\left\{\mathbf{x} \in \mathbb{R}^{n k} \text { s.t. } A \mathbf{x}=[a, g]^{T}, \mathbf{x} \geq 0\right\} \\
A & \triangleq\binom{\mathbf{1}_{n}^{T} \otimes \mathbb{I}_{k}}{\mathbb{I}_{n}^{T} \otimes \mathbf{1}_{k}} \text { and } \\
\mathbf{x}_{i} & \triangleq\left[x_{(i-1) \times n+1}, \ldots, x_{i \times n}\right]^{T}, \mathbf{y}_{i} \triangleq\left[y_{(i-1) \times n+1}, \ldots, y_{i \times n}\right]^{T} \text { for all } i \in[|1, k|]
\end{aligned}
$$

Indeed the above optimization problem is just a reformulation of $\operatorname{LOT}_{k, c}(\mu, \mu)$ where we have vectorized the couplings in a column-wise order. Let us now show the following lemma from which the result will follow.
Lemma 2. Under the same assumption of Proposition 9 we have that for all $g \in \Delta_{k}^{*}$

$$
\min _{(\mathbf{x}, \mathbf{y}) \in K_{a, g}^{2}} \sum_{i=1}^{k} \frac{\mathbf{x}_{i}^{T} C \mathbf{y}_{i}}{g_{i}}=\min _{\mathbf{x} \in K_{a, g}} \sum_{i=1}^{k} \frac{\mathbf{x}_{i}^{T} C \mathbf{x}_{i}}{g_{i}}
$$

Proof. Let $\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right)$ solution of the LHS optimization problem. Then we have that

$$
\begin{aligned}
& \sum_{i=1}^{k} \frac{\left(\mathbf{x}_{i}^{*}\right)^{T} C \mathbf{x}_{i}^{*}}{g_{i}} \geq \sum_{i=1}^{k} \frac{\left(\mathbf{x}_{i}^{*}\right)^{T} C \mathbf{y}_{i}^{*}}{g_{i}} \\
& \sum_{i=1}^{k} \frac{\left(\mathbf{y}_{i}^{*}\right)^{T} C \mathbf{y}_{i}^{*}}{g_{i}} \geq \sum_{i=1}^{k} \frac{\left(\mathbf{x}_{i}^{*}\right)^{T} C \mathbf{y}_{i}^{*}}{g_{i}}
\end{aligned}
$$

Therefore we obtain that

$$
\begin{aligned}
& 0 \leq \sum_{i=1}^{k} \frac{\left(\mathbf{x}_{i}^{*}\right)^{T} C \mathbf{x}_{i}^{*}}{g_{i}}-\sum_{i=1}^{k} \frac{\left(\mathbf{x}_{i}^{*}\right)^{T} C \mathbf{y}_{i}^{*}}{g_{i}}=\sum_{i=1}^{k} \frac{\left(\mathbf{x}_{i}^{*}\right)^{T} C\left(\mathbf{x}_{i}^{*}-\mathbf{y}_{i}^{*}\right)}{g_{i}} \\
& 0 \leq \sum_{i=1}^{k} \frac{\left(\mathbf{y}_{i}^{*}\right)^{T} C \mathbf{y}_{i}^{*}}{g_{i}}-\sum_{i=1}^{k} \frac{\left(\mathbf{x}_{i}^{*}\right)^{T} C \mathbf{y}_{i}^{*}}{g_{i}}=\sum_{i=1}^{k} \frac{\left(\mathbf{y}_{i}^{*}-\mathbf{x}_{i}^{*}\right)^{T} C \mathbf{y}_{i}^{*}}{g_{i}}
\end{aligned}
$$

Then by symmetry of C, we obtain by adding the two terms that

$$
\sum_{i=1}^{k} \frac{\left(\mathbf{x}_{i}^{*}-\mathbf{y}_{i}^{*}\right)^{T} C\left(\mathbf{x}_{i}^{*}-\mathbf{y}_{i}^{*}\right)}{g_{i}} \geq 0
$$

However, thanks to the linear constraints, we have that for all $i \in[|1, k|]$,

$$
\sum_{q=0}^{n-1} x_{(i-1) \times n+1+q}^{*}=\sum_{q=0}^{n-1} y_{(i-1) \times n+1+q}^{*}=g_{i}
$$

Therefore $\left(\mathbf{x}_{i}^{*}-\mathbf{y}_{i}^{*}\right)^{T} \mathbf{1}_{n}=0$ and thanks to the negativity of the cost function c we obtain that

$$
\left(\mathbf{x}_{i}^{*}-\mathbf{y}_{i}^{*}\right)^{T} C\left(\mathbf{x}_{i}^{*}-\mathbf{y}_{i}^{*}\right) \leq 0
$$

Therefore we have that

$$
\left(\mathbf{x}_{i}-\mathbf{y}_{i}\right)^{T} C\left(\mathbf{x}_{i}-\mathbf{y}_{i}\right)=0
$$

from which follows that

$$
\sum_{i=1}^{k} \frac{\left(\mathbf{x}_{i}^{*}\right)^{T} C \mathbf{x}_{i}^{*}}{g_{i}}=\sum_{i=1}^{k} \frac{\left(\mathbf{x}_{i}^{*}\right)^{T} C \mathbf{y}_{i}^{*}}{g_{i}}=\sum_{i=1}^{k} \frac{\left(\mathbf{y}_{i}^{*}\right)^{T} C \mathbf{y}_{i}^{*}}{g_{i}}
$$

and the result follows.
As the above result holds for any $g \in \Delta_{k}^{*}$, we obtain that

$$
\operatorname{LOT}_{k, c}(\mu, \mu)=\min _{g \in \Delta_{k}^{*}} \min _{\mathbf{x} \in K_{a, g}} \sum_{i=1}^{k} \frac{\left(\mathbf{x}_{i}^{*}\right)^{T} C \mathbf{x}_{i}^{*}}{g_{i}}
$$

Then by formulating back this problem in term of matrices, we obtain that

$$
\operatorname{LOT}_{k, c}(\mu, \mu)=\min _{g \in \Delta_{k}^{*}} \min _{Q \in \Pi_{a, g}}\left\langle C, Q \operatorname{diag}(1 / g) Q^{T}\right\rangle
$$

from which the result follows.

C Additional Experiments

C. 1 Comparison of the γ schedules

Figure 5: In this experiment, we compare two strategies for the choice of the step-size in the MD scheme proposed by Scetbon et al. [2021] on two different problems. More precisely, we compare the constant γ schedule with the proposed adaptive one and compare them when the distributions are sampled from either uniform distributions (left) or mixtures of anisotropic Gaussians (right). We show that the range of admissible γ when considering a constant schedule varies from one problem to another. Indeed, in the right plot, we observe that the algorithm converges only when $\gamma \leq 1$, while in the left plot, the algorithm manages to converge for $\gamma \leq 100$. We also observe that our adaptive strategy allows to have a consistent choice of admissible values for γ whatever the problem considered. It is worth noticing that whatever the γ chosen, the algorithm converges towards the same value, however the larger γ is chosen in its admissible range, the faster the algorithm converges.

C. 2 Gradient Flows between two Moons

Figure 6: We compare the gradient flows $\left(\mu_{t}\right)_{t \geq 0}$ (in red) starting from a moon shape distribution, μ_{0}, to another moon shape distribution (in blue), ν, in 2D when minimizing either $L(\mu) \triangleq \mathrm{DLOT}_{r, c}(\mu, \nu)$ or $L(\mu) \triangleq \operatorname{LOT}_{r, c}(\mu, \nu)$. The ground cost is the squared Euclidean distance and we fix $r=100$. We consider 1000 samples from each distribution and and we plot the evolution of the probability measure obtained along the iterations of a gradient descent scheme. We also display in green the vector field in the descent direction. We show that the debiased version allows to recover the target distribution while $\mathrm{LOT}_{r, c}$ is learning a biased version with a low-rank structure.

