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Abstract

The matching principles behind optimal transport (OT) play an increasingly impor-
tant role in machine learning, a trend which can be observed when OT is used to
disambiguate datasets in applications (e.g. single-cell genomics) or used to improve
more complex methods (e.g. balanced attention in transformers or self-supervised
learning). To scale to more challenging problems, there is a growing consensus that
OT requires solvers that can operate on millions, not thousands, of points. The low-
rank optimal transport (LOT) approach advocated in Scetbon et al. [2021] holds
several promises in that regard, and was shown to complement more established
entropic regularization approaches, being able to insert itself in more complex
pipelines, such as quadratic OT. LOT restricts the search for low-cost couplings to
those that have a low-nonnegative rank, yielding linear time algorithms in cases
of interest. However, these promises can only be fulfilled if the LOT approach
is seen as a legitimate contender to entropic regularization when compared on
properties of interest, where the scorecard typically includes theoretical properties
(statistical complexity and relation to other methods) or practical aspects (debiasing,
hyperparameter tuning, initialization). We target each of these areas in this paper
in order to cement the impact of low-rank approaches in computational OT.

1 Introduction

Optimal transport (OT) is used across data-science to put in correspondence different sets of observa-
tions. These observations may come directly from datasets, or, in more advanced applications, depict
intermediate layered representations of data. OT theory provides a single grammar to describe and
solve increasingly complex matching problems (linear, quadratic, regularized, unbalanced, etc...),
making it gain a stake in various areas of science such as as single-cell biology Schiebinger et al.
[2019], Yang et al. [2020], Demetci et al. [2020], imaging Schmitz et al. [2018], Heitz et al. [2020],
Zheng et al. [2020] or neuroscience Janati et al. [2020], Koundal et al. [2020].

Regularized approaches to OT. Solving OT problems at scale poses, however, formidable chal-
lenges. The most obvious among them is computational: the Kantorovich [1942] problem on discrete
measures of size n is a linear program that requires O(n3

log n) operations to be solved. A second
and equally important challenge lies in the estimation of OT in high-dimensional settings, since it
suffers from the curse-of-dimensionality Fournier and Guillin [2015]. The advent of regularized
approaches, such as entropic regularization [Cuturi, 2013], has pushed these boundaries thanks for
faster algorithms [Scetbon and Cuturi, 2020, Chizat et al., 2020, Clason et al., 2021] and improved
statistical aspects [Genevay et al., 2018a]. Despite these clear strengths, regularized OT solvers
remain, however, costly as they typically scale quadratically in the number of observations.

Scaling up OT using low-rank couplings. While it is always intuitively possible to reduce the
size of measures (e.g. using k-means) prior to solving an OT between them, a promising line of
work proposes to combine both [Forrow et al., 2019, Scetbon et al., 2021, 2022]. Conceptually, these
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low-rank approaches solve simultaneously both an optimal clustering/aggregation strategy with the
computation of an effective transport. This intuition rests on an explicit factorization of couplings into
two sub-couplings. This has several computational benefits, since its computational cost becomes
linear in n if the ground cost matrix seeded to the OT problem has itself a low-rank. While these
computational improvements, mostly demonstrated empirically, hold several promises, the theoretical
properties of these methods are not yet well established. This stands in stark contrast to the Sinkhorn
approach, which is comparatively much better understood.

Our Contributions. The goal of this paper is to advance our knowledge, understanding and practical
ability to leverage low-rank factorizations in OT. This paper provides five contributions, targeting
theoretical and practical properties of LOT: (i) We derive the rate of convergence of the low-rank OT to
the true OT with respect to the non-nnegative rank parameter. (ii) We make a first step towards a better
understanding of the statistical complexity of LOT by providing an upper-bound of the statistical
error, made when estimating LOT using the plug-in estimator; that upper-bound has a parametric rate
O(

p
1/n) that is independent of the dimension. (iii) We introduce a debiased version of LOT: as

the Sinkhorn divergence [Feydy et al., 2018], we show that debiased LOT is nonnegative, metrizes
the weak convergence, and that it interpolates between the maximum mean discrepancy [Gretton
et al., 2012] and OT. (iv) We exhibit links between the bias induced by the low-rank factorization and
clustering methods. (v) We propose practical strategies to tune the step-length and the initialization
of the algorithm in [Scetbon et al., 2021].

Notations. We consider (X , dX ) and (Y, dY) two nonempty compact Polish spaces and we denote
M

+
1 (X ) (resp. M

+
1 (Y)) the space of positive Radon probability measures on X (resp. Y). For

all n � 1, we denote �n the probability simplex of size n and �
⇤
n the subset of �n of positive

histograms. We write 1n , (1, . . . , 1)T 2 Rn and we denote similarly k · k2 the Euclidean norm and
the Euclidean distance induced by this norm depending on the context.

2 Background on Low-rank Optimal Transport

Let µ 2 M
+
1 (X ), ⌫ 2 M

+
1 (Y) and c : X ⇥ Y ! R+ a nonnegative and continuous function. The

Kantorovitch formulation of optimal transport between µ and ⌫ is defined by

OTc(µ, ⌫) , min
⇡2⇧(µ,⌫)

Z

X⇥Y
c(x, y)d⇡(x, y) , (1)

where the feasible set is the set of distributions over the product space X ⇥Y with marginals µ and ⌫:
⇧(µ, ⌫) ,

�
⇡ 2 M

+
1 (X ⇥ Y) s.t. P1#⇡ = µ, P2#⇡ = ⌫

 
,

with P1#⇡ (resp. P2#⇡), the pushforward probability measure of ⇡ using the projection maps
P1(x, y) = x (resp. P2(x, y) = y). When there exists an optimal coupling solution of (1) supported
on a graph of a function, we call such function a Monge map. In the discrete setting, one can
reformulate the optimal transport problem as a linear program over the space of nonnegative matrices
satisfying the marginal constraints. More precisely, let a and b be respectively elements of �⇤

n and
�

⇤
m and let also X , {x1, . . . , xn} and Y , {y1, . . . , ym} be respectively two subsets of X and Y .

By denoting µa,X , Pn
i=1 ai�xi and ⌫b,Y , Pm

j=1 bj�yj the two discrete distributions associated
and writing C , [c(xi, yj)]i,j , the discrete optimal transport problem can be formulated as

OTc(µa,X, ⌫b,Y) = min
P2⇧a,b

hC,P i where ⇧a,b , {P 2 Rn⇥m
+ s.t. P1m = a, PT1n = b} . (2)

Scetbon et al. [2021] propose to constrain the discrete optimal transport problem to couplings that
have a low-nonnegative rank:
Definition 1. Given M 2 Rn⇥m

+ , the nonnegative rank of M is defined by: rk+(M) ,
min{q|M =

Pq
i=1 Ri, 8i, rk(Ri) = 1, Ri � 0} .

Note that for any M 2 Rn⇥m
+ , we always have that rk+(M)  min(n,m). For r � 1, we

consider the set of couplings satisfying marginal constaints with nonnegative-rank of at most r as
⇧a,b(r) , {P 2 ⇧a,b, rk+(P )  r}. The discrete Low-rank Optimal Transport (LOT) problem is
defined by:

LOTr,c(µa,X, ⌫b,Y) , min
P2⇧a,b(r)

hC,P i . (3)
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To solve this problem, Scetbon et al. [2021] show that Problem (3) is equivalent to

min
(Q,R,g)2C1(a,b,r)\C2(r)

hC,Q diag(1/g)RT
i , (4)

where C1(a, b, r) ,
n
(Q,R, g) 2 Rn⇥r

+ ⇥ Rm⇥r
+ ⇥ (R⇤

+)
r s.t. Q1r = a,R1r = b

o
and C2(r) ,n

(Q,R, g) 2 Rn⇥r
+ ⇥ Rm⇥r

+ ⇥ Rr
+ s.t. QT1n = RT1m = g

o
. They propose to solve it using

a mirror descent scheme and prove the non-asymptotic stationary convergence of their algorithm.
While Scetbon et al. [2021] only focus on the discrete setting, we consider here its extension for
arbitrary probability measures. Following [Forrow et al., 2019], we define the set of rank-r couplings
satisfying marginal constraints by:

⇧r(µ, ⌫) , {⇡ 2 ⇧(µ, ⌫) : 9(µi)
r
i=1 2 M

+
1 (X )

r, (⌫i)
r
i=1 2 M

+
1 (Y)

r, � 2 �
⇤
r s.t. ⇡ =

rX

i=1

�iµi⌦⌫i} .

This more general definition of LOT between µ 2 M
+
1 (X ) and ⌫ 2 M

+
1 (Y) reads:

LOTr,c(µ, ⌫) , inf
⇡2⇧r(µ,⌫)

Z

X⇥Y
c(x, y)d⇡(x, y) . (5)

Note that this definition of LOTr,c is consistent as it coincides with the one defined in (3) on discrete
probability measures. Observe also that ⇧r(µ, ⌫) is compact for the weak topology and therefore the
infimum in (5) is attained. See Appendix A for more details.

3 Approximation Error of LOT to original OT as a function of rank

Our goal in this section is to obtain a control of the error induced by the low-rank constraint when
trying to approximate the true OT cost. We provide first a control of the approximation error in the
discrete setting. The proof is given in Appendix B.1.

Proposition 1. Let n,m � 2, X , {x1, . . . , xn} ⇢ X , Y , {y1, . . . , ym} ⇢ Y and a 2 �
⇤
n and

b 2 �
⇤
m. Then for 2  r  min(n,m), we have that

|LOTr,c(µa,X, ⌫b,Y)�OTc(µa,X, ⌫b,Y)|  kCk1 ln(min(n,m)/(r � 1))

Remark 1. Note that this result improves the control obtained in [Liu et al., 2021], where they obtain

that |LOTr,c(µa,X, ⌫b,Y)�OTc(µa,X, ⌫b,Y)| . kCk1
p
nm(min(n,m)� r) as we have for any

z, z0 � 1, | ln(z)� ln(z0)|  |z � z0|.

It is in fact possible to obtain another control of the approximation error by partitioning the space
where the measures are supported. For that purpose let us introduce the notion of entropy numbers.

Definition 2. Let (Z, d) a metric space, W ⇢ Z and k � 1 an integer. Then by denoting BZ(z, ") ,
{y 2 Z : d(z, y)  "}, we define the k-th (dyadic) entropy number of W as

Nk(W , d) , inf{" s.t. 9 z1, . . . , z2k 2 Z : W ⇢ [
2k

i=1BZ(zi, ")} .

For example, any compact set W of Rd admits finite entropy numbers, and by denoting R ,
supw2W kwk2, we have Nk(W, k · k2)  4R/2k/d. We obtain next a control of the approximation
error of LOTr,c to the true OT cost using entropy numbers (see proof in Appendix B.2).

Proposition 2. Let µ 2 M
+
1 (X ), ⌫ 2 M

+
1 (Y) and assume that c is L-Lipschitz w.r.t. x and y. Then

for any r � 1, we have

|LOTr,c(µ, ⌫)�OTc(µ, ⌫)|  2Lmax(Nblog2(b
p
rc)c(X , dX ),Nblog2(b

p
rc)c(Y, dY))

This results in the following bound for the p-Wasserstein distance for any p � 1 on Rd.
Corollary 1. Let d � 1, p � 1, X a compact subspace of Rd

and µ, ⌫ 2 M
+
1 (X ). By denoting

R , supx2X kxk2, we obtain that for any r � 1,

|LOTr,k·kp
2
(µ, ⌫)�OTk·kp

2
(µ, ⌫)|  4dp

(8R2
)
p

rp/2d
.
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As per the Proof of Proposition 2 we can provide a tighter control, assuming a Monge map exists.
Corollary 2. Under the same assumptions of Proposition 2 and by assuming in addition that there

exists a Monge map solving OTc(µ, ⌫), we obtain that for any r � 1,

|LOTr,c(µ, ⌫)�OTc(µ, ⌫)|  LNblog2(r)c(Y, dY) .

When X = Y are a subspaces of Rd, a sufficient condition for a Monge map to exists is that either µ
or ⌫ is absolutely continuous with respect to the Lebesgue measure and that c is of the form h(x� y)
where h : X ! R+ is a strictly convex function [Santambrogio, 2015, Theorem 1.17]. Therefore if
µ is absolutely continuous with respect to the Lebesgue measure, we obtain for any r � 1 and p > 1

|LOTr,k·kp
2
(µ, ⌫)� OTk·kp

2
(µ, ⌫)|  2dp

(8R2
)
p

rp/d
.

4 Sample Complexity of LOT

We now focus on the statistical performance of the plug-in estimator for LOT. In the following
we assume that X = Y for simplicity. Given µ, ⌫ 2 M

+
1 (X ), we denote the empirical measures

associated µ̂n , 1
n

Pn
i=1 �Xi and ⌫̂n , 1

n

Pn
i=1 �Yi , where (Xi, Yi)

n
i=1 are sampled independently

from µ⌦ ⌫. We consider the plug-in estimator defined as LOTr,c(µ̂n, ⌫̂n), and we aim at quantifying
the rate at which it converges towards the true low-rank optimal transport cost LOTr,c(µ, ⌫). Before
doing so, in the next Proposition we show that this estimator is consistent on compact spaces. The
proof is given in Appendix B.3.
Proposition 3. Let r � 1 and µ, ⌫ 2 M

+
1 (X ), then LOTr,c(µ̂n, ⌫̂n) �����!

n!+1
LOTr,c(µ, ⌫) a.s.

Next we aim at obtaining the convergence rates of our plug-in estimator. In the following Proposition,
we obtain a non-asymptotic upper-bound of the statistical error. See Appendix B.4 for the proof.
Proposition 4. Let r � 1 and µ, ⌫ 2 M

+
1 (X ). Then, there exists a constant Kr such that for any

� > 0 and n � 1, we have, with a probability of at least 1� 2�, that

LOTr,c(µ̂n, ⌫̂n)  LOTr,c(µ, ⌫) + 11kck1

r
r

n
+Krkck1

"r
log(40/�)

n
+

p
r log(40/�)

n

#
.

This result is, to the best of our knowledge, the first attempt at providing a statistical control of
low-rank optimal transport. We provide an upper-bound of the plug-in estimator which converges
towards LOTr,c at a parametric rate and which is independent of the dimension on general compact
metric spaces. While we fall short of providing a lower bound that could match that upper bound,
and therefore provide a complete statistical complexity result, we believe this result might provide a
first explanation on why, in practice, LOTr,c displays better statistical properties than unregularized
OT and its curse of dimensionality [Dudley, 1969]. In addition, that upper bound compares favorably
to known results on entropic optimal transport. The rate of entropy regularized OT does not depend
on the ambient dimension with respect to n, but carries an exponential dependence in dimension
with respect to the regularization parameter " [Mena and Niles-Weed, 2019]. By contrast, the term
associated with the nonnegative rank r in our bound has no direct dependence on dimension.

Our next aim is to obtain an explicit rate with respect to r and n. In Proposition 4, we cannot control
explicitly Kr in the general setting. Indeed, in our proof, we obtain that Kr , 14/mini �⇤

i where
(�⇤

i )
r
i=1 2 �

⇤
r are the weights involved in the decomposition of one optimal solution of the true

LOTr,c(µ, ⌫). Therefore the control of Kr requires additional assumptions on the optimal solutions
of LOTr,c(µ, ⌫). In the following Proposition, we obtain an explicit upper-bound of the plug-in
estimator with respect to r and n in the asymptotic regime.
Proposition 5. Let r � 1, � > 0 and µ, ⌫ 2 M

+
1 (X ). Then there exists a constant Nr,� such that if

n � Nr,� then with a probability of at least 1� 2�, we have

LOTr,c(µ̂n, ⌫̂n)  LOTr,c(µ, ⌫) + 11kck1

r
r

n
+ 77kck1

r
log(40/�)

n
.
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Note that one cannot recover the result obtained in Proposition 5 from the one obtained in Proposition 4
as we have that Kr � 14r �����!

r!+1
+1. In order to prove the above result, we use an extension of

the McDiarmid’s inequality when differences are bounded with high probability [Kutin, 2002]. See
proof in Appendix B.5 for more details.

5 Debiased Formulation of LOT

We introduce here the debiased formulation of LOTr,c and show that it is able to distinguish two
distributions, metrize the convergence in law and can be used as a new objective in order to learn
distributions. We focus next on the debiasing terms involving measures with themselves LOTr,c(µ, µ)
in this new divergence, and show that they can be interpreted as defining a new clustering method
generalizing k-means for any geometry.

5.1 On the Proprieties of the Debiased Low-rank Optimal Transport

When it comes to learn (or generate) a distribution in ML applications given samples, it is crucial to
consider a divergence that is able to distinguish between two distributions and metrize the convergence
in law. In general, LOTr,c(µ, µ) 6= 0 and the minimum of LOTr,c(⌫, µ) with respect to ⌫ will not
necessarily recover µ. In order to alleviate this issue we propose a debiased version of LOTr,c

defined for any µ, ⌫ 2 M
+
1 (X ) as

DLOTr,c(µ, ⌫) , LOTr,c(µ, ⌫)�
1

2
[LOTr,c(µ, µ) + LOTr,c(⌫, ⌫)] .

Note that DLOTr,c(⌫, ⌫) = 0. In the next Proposition, we show that, as the Sinkhorn diver-
gence [Genevay et al., 2018b, Feydy et al., 2018], DLOTr,c interpolates between the Maximum
Mean Discrepancy (MMD) and OT. See proof in Appendix B.6.
Proposition 6. Let µ, ⌫ 2 M

+
1 (X ). Let us assume that c is symmetric, then we have

DLOT1,c(µ, ⌫) =
1

2

Z

X 2

�c(x, y)d[µ� ⌫]⌦ d[µ� ⌫](x, y) .

If in addition we assume the c is Lipschitz w.r.t to x and y, then we have

DLOTr,c(µ, ⌫) �����!
r!+1

OTc(µ, ⌫) .

Next, we aim at showing some useful properties of the debiased low-rank OT for machine learning
applications. For that purpose, let us first recall some definitions.
Definition 3. We say that the cost c : X ⇥ X ! R+ is a semimetric on X if for all x, x0

2 X ,

c(x, x0
) = c(x0, x) and c(x, x0

) = 0 if and only if x = x0
. In addition we say that c has a negative type

if 8n � 2, x1, . . . , xn 2 X and ↵1, . . . ,↵n 2 R such that
Pn

i=1 ↵i = 0,
Pn

i,j=1 ↵i↵jc(xi, xj)  0.

We say also that c has a strong negative type if for all µ, ⌫ 2 M
+
1 (X ), µ 6= ⌫ =)

R
X 2 c(x, y)d[µ�

⌫]⌦ [µ� ⌫] < 0.

Note that if c has a strong negative type, then c has a negative type too. For example, all Euclidean
spaces and even separable Hilbert spaces endowed with the metric induced by their inner products
have strong negative type. Also, on Rd, the squared Euclidean distance has a negative type [Sejdinovic
et al., 2013].

We can now provide stronger geometric guarantees for DLOTr,c. In the next Proposition, we show
that for a large class of cost functions, DLOTr,c is nonnegative, able to distinguish two distributions,
and metrizes the convergence in law. The proof is given in Appendix B.8.
Proposition 7. Let r � 1, and let us assume that c is a semimetric of negative type. Then for all

µ, ⌫ 2 M
+
1 (X ), we have that

DLOTr(µ, ⌫) � 0 .

In addition, if c has strong negative type then we have also that

DLOTr,c(µ, ⌫) = 0 () µ = ⌫ and

µn ! µ () DLOTr,c(µn, µ) ! 0 .

where the convergence of the sequence of probability measures considered is the convergence in law.
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Observe that when c has strong negative type, ⌫ ! DLOTr,c(⌫, µ) � 0 and it admits a unique global
minimizer at ⌫ = µ. Therefore, DLOTr,c has desirable properties to be used as a loss. It is also
worth noting that, in order to obtain the metrization of the convergence in law, we show the following
Proposition. See proof in Appendix B.7.
Proposition 8. Let r � 1 and (µn)n�0 and (⌫n)n�0 two sequences of probability measures such

that µn ! µ and ⌫n ! ⌫ with respect to the convergence in law. Then we have that

LOTr,c(µn, ⌫n) ! LOTr,c(µ, ⌫) .

5.2 Low-Rank Transport Bias and Clustering

We turn next to the debiasing terms appearing in DLOT and exhibit links between LOT and clustering
methods. Indeed, in the discrete setting, the low-rank bias of a probability measure µ defined as
LOTk,c(µ, µ) can be seen as a generalized version of the k-means method for any geometry. In the
next Proposition we obtain a new formulation of LOTk,c(µ, µ) viewed as a general clustering method
on arbitrary metric space. See proof in Appendix B.9.

Proposition 9. Let n � k � 1, X , {x1, . . . , xn} ⇢ X and a 2 �
⇤
n. If c is a semimetric of negative

type, then by denoting C = (c(xi, xj))i,j , we have that

LOTk,c(µa,X, µa,X) = min
Q

hC,Qdiag(1/QT1n)Q
T
i s.t. Q 2 Rn⇥k

+ , Q1k = a . (6)

Let us now explain in more details the link between (6) and k-means. When X is a subspace of Rd, c
is the squared Euclidean distance and a = 1n, we recover exactly the k-means algorithm.

Corollary 3. Let n � k � 1 and X , {x1, . . . , xn} ⇢ Rd
. We have that

LOTk,k·k2
2
(µ1n,X, µa,X) = 2 min

Q,z1,...,zk

nX

i=1

kX

q=1

Qi,qkxi � zqk
2
2 s.t. Q 2 {0, 1}n⇥k, Q1k = 1n .

In the general setting, solving LOTk,c(µa,X, µa,X) for a given geometry c, and a prescribed histro-
gram a offers a new clustering method where the assignment of the points to the clusters is determined
by the matrix Q⇤ solution of (6).

6 Computing LOT: Adaptive Stepsizes and Better Initializations

We target in this section practical issues that arises when using [Scetbon et al., 2021, Algo.3] to
solve (4). Scetbon et al. [2021] propose to apply a mirror descent scheme with respect to the Kullback-
Leibler divergence which boils down to solve at each iteration k � 0 the following convex problem
using the Dykstra’s Algorithm [Dykstra, 1983]:

(Qk+1, Rk+1, gk+1) , argmin

⇣2C1(a,b,r)\C2(r)
KL(⇣, ⇠k) . (7)

where (Q0, R0, g0) 2 C1(a, b, r) \ C2(r), ⇠k , (⇠(1)k , ⇠(2)k , ⇠(3)k ), ⇠(1)k , Qk �

exp(��kCRk diag(1/gk)), ⇠
(2)
k , Rk � exp(��kCTQk diag(1/gk)), ⇠

(3)
k , gk � exp(�k!k/g2k)

with [!k]i , [QT
kCRk]i,i for all i 2 {1, . . . , r}, KL(w, r) , P

i wi log(wi/ri) and (�k)k�0 is a
sequence of positive step sizes. In the general setting, each iteration of their algorithm requires
O(nmr) operations and when the ground cost matrix C admits a low-rank factorization of the form
C = ABT where A 2 Rn⇥q and B 2 Rm⇥q with q ⌧ min(n,m), then the total complexity per
iteration becomes linear O((n+m)rq). Note that for the squared Euclidean cost on Rd, we have
that q = d+ 2. In the following we investigate two practical aspects of the algorithm: the choice of
the step sizes and the initialization.

Adaptive choice of �k. Scetbon et al. [2021] show experimentally that the choice of (�k)k�0 does
not impact the solution obtained upon convergence, but rather the speed at which it is attained. Indeed
the larger �k is, the faster the algorithm will converge. As a result, their algorithm simply relies on a
fixed � schedule. However, the range of admissible � depends on the problem considered and it may
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vary from one problem to another. Indeed, the algorithm might fail to converge as one needs to ensure
at each iteration k of the mirror descent scheme that the kernels ⇠k do not admit 0 entries in order to
solve (7) using the Dykstra’s Algorithm. Such a situation can occur when the terms involved in the
exponentials become too large which may depend on the problem considered. Therefore, it may be of
particular interest for practitioners to have a generic range of admissible values for � independently of
the considered problem, in order to alleviate parameter tuning issues. We propose to consider instead
an adaptive choice of (�k)k�0 along iterations. D’Orazio et al. [2021], Bayandina et al. [2018] have
proposed adaptive mirror descent schemes where, at each iteration, the step-size is normalized by the
squared dual-norm of the gradient. Applying such a strategy in our case amounts to consider at each
iteration

�k =
�

k (CR diag(1/g), CTQ diag(1/g),�D(QTRC)/g2) k21
, (8)

where the initial � > 0 is fixed. By doing so, we are able to guarantee a lower-bound of the
exponential terms involved in the expression of the kernels ⇠k at each iteration and prevent them
from having 0 entries. We recommend to set such as global � 2 [1, 10], and observe that this range
works whatever the problem considered.

On the choice of the initialization. As LOTr,c (4) is a non-convex optimization problem, the ques-
tion of choosing an efficient initialization arises in practice. Scetbon et al. [2021] show experimentally
that the convergence of the algorithm does not depend on the initalization chosen if no stopping
criterion is used. Indeed, their experimental findings support that only well behaved local minimas
are attractive. However, in practice one needs to use a stopping criterion in order to terminate the
algorithm. We do observe in many instances that using trivial initializers may result in spurious
local minima, which trigger the stopping criterion early on and prevent the algorithm to reach a good
solution. Based on various experimentations, we propose to consider a novel initialization of the
algorithm. Our initialization aims at being close to a well-behaved local minimum by clustering
the input measures. When the measures are supported on Euclidean space, we propose to find r
centroids (zi)ri=1 of one of the two input discrete probability measures using k-means and to solve
the following convex barycenter problem:

min
Q,R

hCX,Z , Qi+ hCY,Z , Ri � "H(Q)� "H(R) s.t. Q1n = a, R1n = b, QT1r = RT1r ,

(9)

where CX,Z = (c(xi, zj))i,j , CY,Z = (c(yi, zj))i,j , and H(P ) = �
P

i,j Pi,j(log(Pi,j � 1). In
practice we fix " = 1/10 and we then initialize LOTr,c using (Q,R) solution of (9) and g ,
QT1r(= RT1r). Note that (Q,R, g) is an admissible initialization and finding the centroids as well
as solving (9) requires O((n + m)r) algebraic operations. Therefore such initialization does not
change the total complexity of the algorithm.

In the general (non-Euclidean) case, we propose to initialize the algorithm by applying our generalized
k-means approach defined in (6) on each input measure where we fix the common marginal to be
g = 1r/r. More precisely, by denoting CX,X = (c(xi, xj))i,j and CY,Y = (c(yi, yj))i,j , we
initialize the algorithm by solving:

Q 2 argmin
Q

hCX,X , Qdiag(1/QT1n)Q
T
i s.t. Q 2 Rn⇥k

+ , Q1k = a, QT1n = 1r/r .

R 2 argmin
R

hCY,Y , Rdiag(1/RT1m)RT
i s.t. R 2 Rm⇥k

+ , R1k = b, RT1n = 1r/r .
(10)

Note that again the (Q,R, g) obtained is an admissible initialization and the complexity of solving (10)
is of the same order as solving (4), thus the total complexity of the algorithm remains the same.

7 Experiments

In this section, we illustrate experimentally our theoretical findings and show how our initialization
provide practical improvements. For that purpose we consider 3 synthetic problems and one real
world dataset to: (i) provide illustrations on the statistical rates of LOTr,c, (ii) exhibit the gradient
flow of the debiased formulation DLOTr,c, (iii) use the clustering method induced by LOTr,c, and
(iv) show the effect of the initialization. All experiments were run on a MacBook Pro 2019 laptop.
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Figure 1: In this experiment, we consider a mixture of 10 anisotropic Gaussians supported on Rd

and we plot the value of DLOTr,c between two independent empirical measures associated to this
mixture when varying the number of samples n and the dimension d for multiple ranks r. The ground
cost considered is the squared Euclidean distance. Note that LOTr(µ, µ) 6= 0 and therefore we use
DLOTr,c(µ, µ) instead to evaluate the rates. Each point has been obtained by repeating 10 times the
experiment. We compare the empirical rates obtained with the theoretical one derived in Proposition 4
for r = 1. We observe that our theoretical results match the empirical ones and, as expected, the rates
do not depend on d.

Figure 2: We compare the gradient flows (µt)t�0 (in red) starting from a Gaussian distribution, µ0,
to a moon shape distribution (in blue), ⌫, in 2D when minimizing either L(µ) , DLOTr,c(µ, ⌫)
or L(µ) , LOTr,c(µ, ⌫). The ground cost is the squared Euclidean distance and we fix r = 100.
We consider 1000 samples from each distribution and and we plot the evolution of the probability
measure obtained along the iterations of a gradient descent scheme. We also display in green the
vector field in the descent direction. We show that the debiased version allows to recover the target
distribution while LOTr,c is learning a biased version with a low-rank structure.

Statistical rates. We aim at showing the statistical rates of the plug-in estimator of LOTr,c. As
LOTr,c(µ, µ) 6= 0 and as we do not have access to this value given samples from µ, we consider
instead the debiased version of the low-rank optimal transport, DLOTr,c. In figure 1, we show that
the empiricial rates match the theoretical bound obtained in Proposition 4. In particular, we show that
that these rates does not depend on the dimension of the ground space. Note also that we recover our
theoretical dependence with respect to the rank r: the higher the rank, the slower the convergence.

Gradient Flows using DLOT. We illustrate here a practical use of DLOT for ML application. In
figure 6, we consider Y1, . . . , Yn independent samples from a moon shape distribution in 2D, and by
denoting ⌫̂n the empirical measure associated, we show the iterations obtained by a gradient descent
scheme on the following optimization problem:

min
X2Rn⇥2

DLOTr,c(µ1n/n,X, ⌫̂n) .

We initialize the algorithm using n = 1000 samples drawn from a Gaussian distribution. We show
that the gradient flow of our debiased version is able to recover the target distribution. We also
compare it with the gradient flow of the biased version (LOT) and show that it fails to reproduce the
target distribution as it is learning a biased one with a low-rank structure.

Application to Clustering. In this experiment we show some applications of the clustering method
induced by LOTr,c. In figure 3, we consider 6 datasets with different structure and we aim at
recovering the clusters using (6) for some well chosen costs. We compare the clusters obtained when
considering either the squared Euclidean cost (which amounts at applying the k-means) and the
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Figure 3: In this experiment, we draw 1000 samples from multiple distributions from the python
package scikit-learn [Pedregosa et al., 2011] and we apply the method proposed in (6) for two
different costs: in the top row we consider the squared Euclidean distance while in the bottom row, we
consider the shortest path distance on the graph associated with the ground cost c(x, y) = 1� k(x, y)
where k is a Gaussian kernel. In the two first problem (starting from the left), we fix r = 2, in the
next three problem we fix r = 3 and in the last one we fix r = 4. We observe that the flexibility of
our method allows to recover the clustering for a well chosen ground cost.

Figure 4: In this experiment, we consider the Newsgroup20 dataset [Pedregosa et al., 2011] constituted
of texts and we embed them into distributions in 50D using the same pre-processing steps as
in [Cuturi et al., 2022]. We compare different initialization when applying the algorithm of [Scetbon
et al., 2021] to compare random texts viewed as distributions for multiple choices of rank r. The
ground cost considered in the squared Euclidean distance. We repeat the experiments 50 times
by sampling randomly multiple problems of similar size (' 250 samples). We normalize the cost
matrix by its maximum value in order to have comparable LOT cost. We consider 4 different
initialization: the one using k-means algorithm (9), the one using the generalized k-means (10), the
rank-2 initialization [Scetbon et al., 2021] and a random initialization where Q,R and g are drawn
from Gaussians. We compare both the cost value and the criterion value (�k) along the iterations
of the MD scheme. Note that the curves obtained do not start at the same point in time as we
start plotting the curves after obtaining the initial point which in some case requires more algebraic
operations (e.g. kmeans methods). First we observe that whatever the initialization considered, the
algorithm converges toward the same value. In addition, we observe that both k-means and general
k-means are able to initialize well the algorithm by avoiding bad local minima at initialization while
the two other initialization are close to spurious local minima at initialization.

shortest-path distance on the data viewed as a graph. We show that our method is able to recover the
clusters on these settings for well chosen costs and therefore the proposed algorithm in Scetbon et al.
[2021] can be seen as a new alternative in order to clusterize data.

Effect of the Initialization. Our goal here is to show the effect of the initialization. In figure 4, we
display the evolution of the cost as well as the value of the stopping criterion along the iterations of
the MD scheme solving (4) when considering different initialization. The x-axis corresponds to the
total number of algebraic operations. This number is computed at each iteration of the outer loop
of the algorithm proposed in Scetbon et al. [2021] and is obtained by computing the complexity of
all the operations involved in their algorithm to reach it. We consider this notion of time instead of
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CPU/GPU time as we do not want to be architecture/machine dependent. Recall also that the stopping
criterion introduced in [Scetbon et al., 2021] is defined for all k � 1 by

�k , 1

�2
k

(KL((Qk, Rk, gk), (Qk�1, Rk�1, gk�1)) + KL((Qk�1, Rk�1, gk�1), (Qk, Rk, gk))),

where ((Qk, Rk, gk))k�0 is the sequence solution of (7). First, we show that whatever the initializa-
tion chosen, the algorithm manages to converge to an efficient solution if no stopping criterion is
used. However, the choice of the initialization may impact the termination of the algorithm as some
initialization might be too close to some spurious local minima. Indeed, the initial points obtained
using a “rank 2” or random initialization can be close to spurious and non-attractive local minima,
which may trigger the stopping criterion too early and prevent the algorithm from continuing to run
in order to converge towards an attractive and well behaved local minimum. We show also that the
initialization we propose in (9) and (10) are sufficiently far away from bad local minima and allow
the algorithm to converge directly toward the desired solution.

The right figure of Fig.4 shows two main observations: (i) that the initial point obtained using a “rank
2” or random initialization can be close to spurious and non-attractive local minima, which may
trigger the stopping criterion too early and prevent the algorithm from continuing to run in order to
converge towards an attractive and well behaved local minimum. (ii) When initialiazing the algorithm
using kmeans methods, we show that our stopping criterion is a decreasing function of time meaning
that the algorithm converges directly towards the desired solution.

Conclusion. We assembled in this work theoretical and practical arguments to support low-rank
factorizations for OT. We have presented two controls: one concerning the approximation error to the
true optimal transport and another concerning the statistical rates of the plug-in estimator. The latter
is showed to be independent of the dimension, which is of particular interest when studying OT in
ML settings. We have motivated further the use of LOT as a loss by introducing its debiased version
and showed that it possesses desirable properties: positivity and metrization of the convergence in
law. We have also presented the links between the bias induced by such regularization and clustering
methods, and studied empirically the effects of hyperparameters involved in the practical estimation
of LOT. The strong theoretical foundations provided in this paper motivate further studies of the
empirical behaviour of LOT estimator, notably on finding suitable local minima and on improvements
on the convergence of the MD scheme using other adaptive choices for step sizes.
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