
A Posterior

The posterior of indicator ks is:

P (ks|t1:s, n1:s, k1:s−1) ∝ P (ns|k1:s, n1:s−1) · P (ks|t1:s, k1:s−1)

∝ C
mks\xs
ns + θ0ns

Cmks\xs +
∑N

n=1 θ0n
· P (ks|ts, k1:s−1),

(1)

where P (ks|t1:s, k1:s−1) is the prior given by Dirichlet nonhomogeneous Poisson process:

P (ks = k|t1:s, k1:s−1) =
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(2)

The posterior of indicator mk is:

P (mk|τ1:k, X1:k,m1:k−1) ∝ P (Xk|m1:k, X1:k−1) · P (mk|τ1:k,m1:k−1)

∝
∏

xs∈Xk

C
mk\xs
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· P (mk|τk,m1:k−1),

(3)

where P (mk|τ1:k,m1:k−1) is the prior given by Dirichlet Hawkes process:

P (mk = m|τ1:k,m1:k−1) =

{
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λ0+
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m=1 λm(τk)
for m ∈ {1, ...,M},

λ0
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(4)

B Parameter Updates

B.1 Sequence type parameters Θm

For weight θm, its posterior is given by the Dirichlet-Categorical relation:

P (θm|X1:K) ∝ Dir(θm|θ0) ·
K∏

k=1

∏
xs∈Xk

Categorical(ns|θmk
)

∝ Dir(θ
′

m),

(5)

where θ
′

mn = θ0n +
∑K

k=1

∑
xs∈Xk

I(ns = n,mk = m).

For kernel parameter αm, its posterior is given by the Gamma-Exponential relation:

P (αm|X1:K , {Θk}Kk=1) ∝ Gamma(a2, b2) · αk
′

m exp(−αm

δ

k
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′
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1
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k
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(exp(δη)− exp(−δ(τk′ − τk − η)))),

(6)

where k
′
=

∑K
k=1 I(mk = m).

For offset and bias parameter µmn, σmn, their posterior are given by the normal inverse chi squared-
Univariate Normal relation [1, 2]:

P (µmn, σmn|X1:K , {Θk}Kk=1) ∝ N (µmn|µ0,
σmn

κ0
) · χ−2(σmn|υ0, σ0)·

K∏
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∏
xs∈Xk

(N (ts|τk + µmn, σmn))
I(ns=n,mk=m)

∝ NIχ2(µmn, σmn|µ
′

mn, κmn, υmn, σ
′

mn)

(7)
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where let Z = {ts − τk : xs ∈ Xk, ns = n,mk = m}, Z be the mean of Z, and we have

Smn =

K∑
k=1

∑
xs∈Xk

I(ns = n,mk = m)

κmn = κ0 + Smn
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µ
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Smnκ0
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(Z)2

(8)

B.2 Sequence parameters Θk

For sequence amplitude βk, its posterior is given by the Gamma-Poisson relation:
P (βk|Xk) ∝ Gamma(a1, b1) · Poisson(sk|βk)

∝ Gamma(a1 + sk, b1 + 1)
(9)

where sk is the current number of spikes in sequence k.

For sequence time τk, there is no conjugate relation between the prior of τk and likelihood of
{ts : xs ∈ Xk}, and Metropolis-within-Gibbs sampling steps are usually required to sample from
its posterior. However, this sampling is inefficient and we choose to update its value by taking the
average of related spike times {ts : xs ∈ Xk}, which is a rough approximation but is useful in
practice.

B.3 Background parameters Θ∅

For background noise rate gnoise, its posterior is given by the Gamma-Exponential relation:
P (gnoise|X0) ∝ Gamma(a0, b0) · gs0noise exp(−gnoise ·∆t)

∝ Gamma(a0 + s0, b0 +∆t)
(10)

where s0 is the current number of background spikes and ∆t is the time duration from the very
beginning.

C Additional Figures for Experiment

C.1 Synthetic data with Low Firing Rate

In addition to the background noise, we also test the performance of HDPP, PP-Seq and ConVNMF
when the firing rates of neurons are low. In general, a low firing rate makes it harder to identify neural
sequences from background noise. According to the results in Figure 1, as the firing rate becomes
lower, the performance of our model and existing methods decreased.

For the computation of ROC curves, we follow the steps in the Section F.1 of PP-Seq’s supplementary
material [2] to compute ROC curves.

C.2 Synthetic data with Spatial Overlapping Neurons

In addition to the overlapping experiment in Sec 6.1 of the main text, we also test the performance of
our method under higher spatial overlapping neurons (75% overlapping). From the result in Figure 2,
we note that our method still detects the two different types of sequences.

C.3 Memory Comparison on Rodent Hippocampal Recording

Compared with parallel PP-Seq, our method has a much fewer time cost, but higher memory
allocations, which is believed to be one of the causes to increase the time cost of our method (Figure
3). We think the cause of such high memory allocation comes from particle resampling, which
involves many copy operations to transfer sufficient statistics among particles.
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Figure 1: Performance of HDPP, PP-Seq and ConVNMF when the firing rates of sequences are low
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Figure 2: Synthetic data with 75% spatial overlapping neurons
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Figure 3: The memory cost of HDPP and PP-Seq on rodent hippocampal recording.

3



0 10 20 30
0.00

0.05

0.10

0.15

Neurons

G
ro

un
d-

tru
th

Ra
te

0 10 20 30
0.00

0.05

0.10

0.15

Neurons

Le
ar

ne
d

Ra
te

Neurons Neurons

10 20 30

-5

0

5

G
ro

un
d-

tr
ut

h
O

ff
se

t

10 20 30

-5

0

5

Le
ar

ne
d

O
ff

se
t

Figure 4: Analysing the convergence by recovering ground-truth parameters.

C.4 Analysing the convergence by recovering ground-truth parameters

We create a synthetic data (N = 30, K = 5, M = 1) via the generating process described in section
4. The left two panels in Figure 4 show the visualization of ground truth parameters and the right
two panels show the rate and offset for each neuron with 95% credible intervals (calculate over five
runs), which further demonstrates that our method could stably recover ground-truth parameters over
different runs.

D Broader Impact

Understanding human brain has wide implications and is a longstanding challenge in neuroscience
research. Neural sequences have been observed in many neuroscience experiments and the detection
of them plays an important role in discovering neural circuits and studying neural computation.
Therefore, establishing useful analytical tools for neuroscientists is of vital importance for a better
understanding of the human brain. We expect our model could serve to this challenge by providing
an online, unsupervised approach to identify neural sequences.
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