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Abstract

Neural sequence detection plays a vital role in neuroscience research. Recent
impressive works utilize convolutive nonnegative matrix factorization and Neyman-
Scott process to solve this problem. However, they still face two limitations. Firstly,
they accommodate the entire dataset into memory and perform iterative updates
of multiple passes, which can be inefficient when the dataset is large or grows
frequently. Secondly, they rely on the prior knowledge of the number of sequence
types, which can be impractical with data when the future situation is unknown. To
tackle these limitations, we propose a hierarchical Dirichlet point process model
for efficient neural sequence detection. Instead of computing the entire data, our
model can sequentially detect sequences in an online unsupervised manner with
Particle filters. Besides, the Dirichlet prior enables our model to automatically
introduce new sequence types on the fly as needed, thus avoiding specifying the
number of types in advance. We manifest these advantages on synthetic data and
neural recordings from songbird higher vocal center and rodent hippocampus.

1 Introduction

Neural sequences are a set of sequential firing neurons repeatedly occurring over time, and they play
crucial roles in understanding the brain activities of working memory [6, 10], motor production [9],
and memory replay [4]. However, in general, it’s hard to directly observe neural sequences from
high-dimensional neural recordings due to the unsorted neurons. Besides, methods that use linear
dimensionality reduction of neural populations may be inappropriate to handle such sequences since
they form a high-dimensional structure and cannot be efficiently summarized by a low-dimensional
representation [15, 23]. Finally, the relationship between neural sequences and behavior is not always
so regular and predictable [30]. Thus an unsupervised method to identify neural sequences is required.

While recent works [15, 20, 28] have made a great process in neural sequence detection, they
have two drawbacks when it comes to the contexts of online learning. Firstly, they are ill-suited
to accommodate new data or handle large datasets. Many real-world neural recordings involve
many hours’ or days’ signals that sometimes may be hard to accommodate entirely in the memory.
Furthermore, the inference algorithms of these works (e.g., coordinate descent, Gibbs sampling, etc.)
maintain the entire data and perform iterative updates of multiple passes, which may be a waste of
both computational and storage resources. Secondly, these works require the number of sequence
types to be specified in advance, which is inappropriate when a future situation is unknown.
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To address these problems, we propose a hierarchical Dirichlet point process (HDPP) with an efficient
online inference algorithm. Briefly, we use a two-level structure in our approach. At a lower level,
we model the set of neural sequences by a Dirichlet nonhomogeneous Poisson process: The observed
spikes are considered as a mixture of neural sequences, and those spikes belonging to different
sequences are modeled via different nonhomogeneous Poisson processes, for which the intensity of
each process varies across neurons and times. At a higher level, we model the types of sequences
by a Dirichlet Hawkes process[5]: The detected sequences are partitioned into an automatically
inferred number of types. The temporal dynamics of these sequences are captured by several Hawkes
processes [11], where each process’s distinctive temporal relation will help our model to disambiguate
different types of sequences with spatial overlapping neurons. Besides, the prior of each sequence
type is given by a Dirichlet distribution, so either the number of sequences or sequence types could
vary during inference. Note that our model has only one Dirichlet point process at the lower level,
which differs from the classical hierarchical Dirichlet process (HDP) [25].

We derive a Particle filter [2, 21, 22] to learn the HDPP in an online manner: (1) learn the model
with a single pass of the data; (2) make the decisions regularly without requiring future data [1]. In
particular, we use a collection of particles to sequentially approximate the posterior, taking in one
spike at a time to make the update. We also develop specific mechanisms to merge similar sequences
and prune inaccurate ones during inference, thus further improving the performance. We evaluate the
proposed model on synthetic data as well as real-world data from songbird higher vocal center [15]
and rodent hippocampus [3, 7, 8]. Results show the proposed model can properly identify the neural
sequences and be robust to noise in a single pass over the data.

The contributions of our work include: (1) We propose a novel hierarchical Dirichlet Point Process
for neural sequence detection, and different from prior works [14, 15, 28], our model does not specify
the number of sequence type in advance, while determines adaptively during inference. (2) Our
model with an efficient online inference algorithm performs comparably to the state-of-the-art [28]
with a significantly lower time cost. (3) We use a group of Hawkes processes to capture the temporal
dynamics of different types of sequences, which enables our model to distinguish sequences with
spatial overlapping neurons.

2 Related works

Previous studies about neural sequence detection can be divided into three classes: supervised,
bottom-up unsupervised, and top-down unsupervised [32].

Supervised methods. Averaging spikes times over multiple trials is the simplest and most used
supervised method to identify neural sequences. This approach requires simultaneous sensory cues
or behavioral actions recording and uses a template matching procedure to discover exact timestamps
of each sequence [12, 18, 19]. However, as previously mentioned, the relationship between neural
activity and behavior is not always reliable [30]. Thus this approach may be useless under certain
circumstances.

Bottom-up unsupervised methods. Bottom-up unsupervised methods [23, 24, 26] usually identify
neural sequences via a variety of statistics between pairs of neurons (e.g., cross-correlations). These
methods may be beneficial when involving small numbers of neurons [32], but they have high
computational complexity and low statistical power when dealing with a large number of neurons.

Top-down unsupervised methods. Top-down unsupervised methods can be defined as a kind of
method that discovers a sequence from the perspective of the whole population and is robust to noise
at the level of individual neurons [32]. Maboudi et al. [14] identifies neural sequences by visualizing
the transition matrix of Hidden Markov Models. Peter et al. [20] and Mackevicius et al. [15] use
convolutive nonnegative matrix factorization (ConvNMF) with different regularizations to factorize
the neural data into a couple of neural factors and temporal factors, where each neural factor encodes
a type of neural sequence and each temporal factor indicates the times of sequences. Williams et al.
[28] models neural sequences as a Neyman-Scott process (PP-Seq), a spatial-temporal point process
originally designed to discover clusters in the galaxy. Each sequence in this model corresponds to a
latent cause that generates spikes as the offspring events.s
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3 Background

A basic probabilistic model of continuous-time event stream is temporal point process whose re-
alization can be represented as an event sequences {xi}N1 = {t1, t2, ...} with times of occurrence
ti ∈ [0, T ]. A way to characterize temporal point processes is via intensity function λ(t), for which
λ(t) equals the expected instantaneous rate of happening next event given the history. The functional
form of λ(t) varies among different phenomena of interest. In a homogeneous Poisson process (PP),
λ(t) is assumed to be a constant over time, while in a nonhomogeneous Poisson process, λ(t) is
time-varying and independent of the history.

Hawkes process. A Hawkes process (HP) [11] is a self-exciting nonhomogeneous Poisson process in
which past events in history have influenced the intensity of current and future events. Such influences
are positive but decay exponentially with time:

λ(t) = λ0 + α
∑
ti<t

exp(−δ(t− ti)), (1)

where λ0 is the base intensity independent of the history, α is the kernel parameter, and δ is the decay
rate of that influence. An important extension of the Hawkes process is to incorporate additional
information about each event, for example, an associated event "label" ki with each event xi = (ti, ki).
As a consequence, we can define a Hawkes process as a sum of independent Hawkes processes from
different types based on the superposition principle: λ(t) =

∑K
k=1 λk(t), where λk(t) is the intensity

function from k-th category.

Dirichlet Hawkes process. Dirichlet Hawkes process (DHP) [5, 16] is a method to naturally handle
infinite mixture clusters with temporal dependency. As opposed to traditional parametric models,
DHP allows the number of clusters to vary over time. It uses a Hawkes process to model the intensity
of events (e.g., the times of neural sequences), while the Dirichlet process captures the diversity of
event types (e.g., the clusters of neural sequences). Similar to the Dirichlet process, a DHP, typically
denoted by DHP(λ0, θ) is characterized by a concentration parameter λ0 and a base distribution
θ. It uses the samples θ1:K from base distribution θ and a collection of triggering kernel functions
ϕθi(t, ti) as the parameters for modeling K different event types. Then, the events (ti, θi) from
DHP(λ0, θ) can be simulated as follows:

1. Sample t1 from PP(λ0) and θ1 from θ.

2. For n > 1, sample tn from HP(λ0 +
∑K

k=1 λk(tn))

• Sample a new θK+1 from θ with probability: λ0/(λ0 +
∑K

k=1 λk(tn))

• Reuse previous θk with probability: λk(tn)/(λ0 +
∑K

k=1 λk(tn))

where λk(tn) =
∑n−1

i=1 ϕθi(tn, ti)I(θi = θk) is the intensity function of a Hawkes process for past
events with type k.

4 Hierarchical Dirichlet Point Process of Neural Sequences

We model the neural sequences as a hierarchical Dirichlet point process (HDPP). We use a Dirichlet
nonhomogeneous Poisson process as the prior for observed spikes while using a Dirichlet Hawkes
process as the prior for neural sequences. As in Figure 1, the goal of HDPP is to sequentially identify
sequences from observed spikes, then partition these sequences into different types based on both
temporal dynamics and included neurons.

Consider a continuous-time spike train data with N neurons, its observed spikes can be denoted
by a set of S labeled events xs = (ts, ns, ks) referring to the spike time, ts ∈ [0, T ], neuron,
ns ∈ {1, ..., N} and indicator to the sequence that xs belongs to, ks ∈ {1, ...,K}. Note that the
indicator ks remains unknown until we infer the sequences from the data. Similarly, the inferred
neural sequences can also be represented as a collection of tuples qk = (τk,mk) referring to the time
τk ∈ [0, T ] and indicator for sequence type mk ∈ {1, ..,M}.
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Figure 1: A case with K = 3 sequences and M = 2 types of sequences is shown. The proposed
model considers observed spikes as a mixture of neural sequences, where the spikes of different
neurons within a sequence can be modeled via a nonhomogeneous Poisson process that catches their
firing rates. Likewise, the detected sequences are also a mixture of certain types of sequences, where
their temporal dynamics are captured by several Hawkes processes.

According to the definition of the Dirichlet Hawkes process, for a spike xs occurring at time ts its
probability of belonging to the k-th neural sequence is:

P (ks = k|ts) =
gk(ts)

g0 + gnoise +
∑K

k=1 gk(ts)
, (2)

where g0 is the concentration parameter, gnoise is the firing rate for background spikes, and gk(t) is
the intensity function of sequence qk, controlling the temporal dynamics of related spikes. Likewise,
the probability of assigning spike xs to either background noise or a new sequence is given by:

P (ks = k|ts) =

{
gnoise

g0+gnoise+
∑K

k=1 gk(ts)
for k = 0,

g0
g0+gnoise+

∑K
k=1 gk(ts)

for k = K + 1.
(3)

After a neural sequence qk>0 is chosen, we assign it to an existing type mk or create a new type on
the fly as needed with probability:

P (mk = m|τk) =

{
λm(τk)

λ0+
∑M

m=1 λm(τk)
for m ∈ {1, ...,M},

λ0

λ0+
∑M

m=1 λm(τk)
m = M + 1.

(4)

where λm(τ) is the intensity function that captures temporal dynamics of sequences in type m. Note
that we assume gk(t) and λm(τ) take different functional forms, and gkn(t) can be viewed as the
firing rate of neuron n caused by sequence qk. Following the work in [28], we represent gkn(t) via a
Gaussian form as:

gkn(t) = θmkn · βk · N (t|τk + µmkn, σmkn). (5)
Here θmkn, µmkn and σmkn are parameters of each sequence type mk, indicating the weight, offset,
and width of neuron n’s firing rate. βk is the amplitude of sequence qk, denoting the expected number
of spikes induced by qk [28]. For λm(τ), we opt the similar form as (1), with parameter αm > 0
controlling the self-excitation of previous sequences, hyperparameter δ > 0 controls the decay and
hyperparameter η denotes the expected time interval of sequences:

λm(τ) = αm

∑
τk

exp(−δ(τ − τk − η))I(θk = θm). (6)

Based on the definition of gk(t) and λm(τ), we regard that the temporal dynamics of spikes and
neural sequences are captured by a nonhomogeneous Poisson process and a self-exciting Hawkes
process, respectively. For sequence type parameters αm, {θmn}Nn=1 and {(µmn, σmn)}Nn=1, we
assume they follow a Gamma distribution, a Dirichlet distribution, and a normal-inverse-chi-squared
distribution [17, 28] for every neuron and type. For amplitude βk and background spike rate gnoise, we
assume they obey a Gamma distribution. Then, we can describe the proposed hierarchical Dirichlet
point process in a generative way as:

4



1. For neural sequence qk, τk ∼ HP(λ0 +
∑M

m=1 λm(τk−1)), βk ∼ Gamma(a1, b1).
2. Sample sequence type mk using (4).

• If mk = M + 1: θM+1 ∼ Dir(θ0), (µM+1, σM+1) ∼ NIχ2(µ0, κ0, υ0, σ0), αM+1 ∼
Gamma(a2, b2) and M = M + 1.

3. Sample spikes induced by sequence qk: sk = Poisson(βk), {ns}sks=1 ∼ Categorical(θmk
)

and {ts}sks=1 ∼ N (τk + µmkns , σmkns)

4. Sample background spikes during time interval ∆t = τk − τk−1: gnoise ∼ Gamma(a0, b0),
s0 = Poisson(gnoise ·∆t), {n}s0s=1 ∼ Categorical(θnoise) and {ts}s0s=1 ∼ Uniform([τk−1,τk]).

where θ0 is a hyperparameter parameter for Dirichlet prior, a0, b0, a1, b1, a2, b2 are hyperparameter
parameters for Gamma prior, and µ0, κ0, υ0, σ0 are hyperparameter parameters for normal-inverse-
chi-squared prior.

5 Inference

Given spikes {xs = (ts, ns)}Ss=1, as previously discussed, the model aims to sample neural sequences
indicator ks for each spike. Using this insight, we can use a set of particles to sequentially approximate
posterior P (k1:s|t1:s, n1:s), while sampling indicator mk for each sequence.

We derive a Particle filter approach for our proposed model. This inference algorithm exploits
the temporal dependencies in the observed spikes to sequentially sample the latent variables. To
efficiently sample from the posterior distribution, a Particle filter keeps track of an approximation
of P (k1:s−1|t1:s−1, n1:s−1), and updates it to have an approximation for P (k1:s|t1:s, n1:s) when
receiving a newly observed spike. The approximation is evaluated by a set of weighted particles
{p}P , where the weight of each particle reflects how well the observed spikes are explained.

For each particle p, its weight is defined as the ratio between true posterior and importance distribution:
wp

s = P (k1:s|t1:s,n1:s)
Q(k1:s|t1:s,n1:s)

. As the work in [1, 5] did, we choose P (ks|k1:s−1, t1:s, n1:s) to be the
importance distribution. Next, the unnormalized weight wp

s can be updated as:

wp
s ∝ wp

s−1 · P (ns|k1:s, n1:s−1). (7)

Here, let Cmks\xs , Cmks\xs
ns denote the spike counts of sequence type mks and spike counts of

neuron ns in sequence type mks , both excluding xs. The likelihood P (ns|k1:s, n1:s−1) is given by a
Dirichlet-Categorical conjugate relation [16]:

C
mks\xs
ns + θ0ns

Cmks\xs +
∑N

n=1 θ0n
. (8)

After sampling indicator ks from posterior P (ks|ts, ns, rest) for each spike, we then sample the type
indicators mk from posterior P (mk|τk, Xk, rest). The posteriors of both indicators are determined by
the likelihood of the spike/sequence assigned to a given sequence/sequence type and by the temporal
prior under Dirichlet nonhomogeneous Poisson process (2)(3) or Dirichlet Hawkes process (4):

P (ks|ts, ns, rest) ∝ P (ns|ks, rest) · P (ks|ts, rest), (9)

P (mk|τk, Xk, rest) ∝ P (Xk|mk, rest) · P (mk|τk, rest), (10)
where rest represents all other latent variables with x1:s−1, Xk = {ns : ks = k} is the neurons in
k-th sequence. The exact form of the two posteriors is given in Supplement A.

Updating parameters. There are three groups of parameters that need to be updated after attributing
each spike to a neural sequence: sequence type parameters Θm = (θm, αm, {µmn}Nn=1, {σmn}Nn=1),
sequence parameters Θk = {τk, βk} and background parameters Θ∅ = gnoise. Following the literature
in Particle filter devoted to the estimation of an online parameter [2], for most parameters, we perform
a single Gibbs sampling step to sample from their closed-form posterior under conjugate relation.
Details about derivations are in Supplement B.

Merge and Prune. Generally speaking, neural sequences created during this sequential inferring
procedure are often truly needed, as the decisions to add new sequences are based on the accumulated
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knowledge from the past. However, there is still a chance that some sequences generated at early
samples would become incorrect and that multiple sequences may be close in time. Thus, we
introduce a mechanism to merge similar sequences and prune incorrect ones.

The similarity of two sequences qk and qk′ can be defined in terms of the time difference between
τk and τk′ , as d(k, k

′
) = |τk − τk′ |. We will merge sequences qk, qk′ and their associated sufficient

statistics when d(k, k
′
) < ∆d. We also check the variance of firing times for each neuron in

every sequence. That is, we reserve the spikes which fire consecutively in the same neuron n:
Var({ts}sns=1) < ϵ, while removing those that appear to be sparsely distributed. Besides, we will
remove an entire sequence if it has too few spikes after pruning. Note that there is no need to perform
a such merge or prune at every iteration. Since the operation of merge sequences takes O(K) and
computing variance for each sequence takes O(sn ·N), we propose to examine similarity and variance
at a fixed interval O(i · T ) and only for the current sampled sequence.

The overall pseudocode for inference is presented in Algorithm 1, and its time complexity is
O(SP (K +M)), where S is the number of spikes, P is the number of particles, K is the number
of sequences, and M is the number of types. Our code is available at https://github.com/
WeihanLikk/Hierarchical-Dirichlet-Point-Process.

Algorithm 1: Particle filter for HDPP

Input: Spikes {xs = (ts, ns)}Ss=1, hyperparameters and threshold ϵ.
Initialize particle weight wp to 1

P for all p ∈ {1, .., P};
for each spike (ts, ns), s = 1, ..., S do

for p ∈ {1, ..., P} do
Sample sequence indicator ks from (9);
Sample sequence type indicator mk from (10);
Update the parameters Θm, Θk, and Θ∅;
Update the particle weight by (7);

end
Normalize particle weight;
if ∥wp∥−2

2 < ϵ then
Resample particles

end
end

6 Experiments

6.1 Synthetic Data

We created three kinds of synthetic data to investigate the robustness to noise, the effectiveness of
temporal dynamics, and the ability to infer the number of types of sequences, respectively, of HDPP:
(1) Two types of sequences with background noise. (2) Two types of sequences occur side-by-side
with spatial overlapping neurons. (3) A large set of sequence types with spatial overlapping neurons,
where they are much uncertainty in sequence types.

Robustness to background noise. Figure 2(a) presents the first case of synthetic data, which
demonstrates the robustness of HDPP. This data has N = 60 neurons and T = 30 seconds. The raw
spikes (Figure 2(a) left panel) show no visible neural sequences. However, sequences are revealed by
sorting the neurons with the learned weight, type, and offset of this sequence. Besides, background
spikes can also be correctly identified as noise.

Distinguishing overlapping sequences. Figure 2(b) shows a much more complex case where two
sequences with overlap populations of neurons occur side-by-side. This data has N = 60 neurons and
T = 20 seconds. Usually, it’s hard to distinguish these sequences from the perspective of neurons.
But with the help of temporal dynamics, HDPP could be able to capture sequences’ distinctive
intensity functions (Figure 2(b) top panel), and disambiguate them to different types. Note that the
intensities at the very beginning are missing since HDPP resamples a type indicator for the first
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Figure 2: Synthetic data. (a) Two types of sequences with background noise. Raw spikes (left),
neurons re-sorted by HDPP (middle), sequences annotated by HDPP (right), and corresponding
intensities captured by Hawkes processes (top). (b) Two types of highly overlapping sequences
occur side-by-side with background noise. (c) Comparison of HDPP and PP-Seq on a large set of
sequence types with spatial overlapping neurons. HDPP can infer the types of sequences from data
(d) Comparison of HDPP, PP-Seq, and convNMF to identify sequences under different levels of
background noise. HDPP is robust to background noise.

sequence whenever it receives a spike and those empty types are dropped as well as their recorded
intensities.

Inferring the types of sequences from data. Figure 2(c) shows the comparison of HDPP and
PP-Seq, demonstrating that HDPP can infer the number of types from data. This data has N = 60
neurons and T = 400 seconds, where there are 11 different types of sequences: 6 types of smaller
sequences involving 10 neurons, while other 5 types of larger sequences involving 20 neurons. Note
that the larger sequences and smaller sequences have spatial overlapping neurons. HDPP could be
able to distinguish the sequences with overlapping neurons without prior information on the number
of types (Figure 2(c), left panel), while PP-Seq identifies the larger sequences as a new type when
setting the prior of types to a Dirichlet prior with 11 categories (Figure 2(c), right panel).

Further, we also tested the robustness of HDPP quantitatively with the area under receiver operating
characteristic (ROC) curves as a metric. To keep in line with previous work[28], we simulated a
dataset with M = 1 sequence type and N = 100 neurons, where we varied the background spikes
gnoise to quantitatively measure the robustness. From the results of the area under ROC in Figure 2(d),
HDPP achieves promising results as we increase the noise levels.

6.2 Performance with Neural Recordings

6.2.1 Songbird Higher Vocal Center Recording

For real-world data, we first applied our model to the deconvolved spike train from functional imaging
data recorded in songbird HVC during singing [15]2. One of the core features of this data is the high
variability of the song, thus making it difficult to identify neural sequences by a template-matching
procedure.

Identifying neural sequences from Songbird Recording. Figure 3(a) visualizes the results from
HDPP and PP-Seq3, where we chose the neurons whose weight {θmn}Nn=1 was above a threshold,
and sorted them based on each sequence’s type mk and offset {µmn}Nn=1. Figure 3(b)-(c) visualize

2http://github.com/FeeLab/seqNMF
3https://github.com/lindermanlab/PPSeq.jl
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Figure 3: Songbird Higher Vocal Center data. (a) Raw spike train (left) and comparison of detected
sequences by HDPP (bottom) and PP-Seq (top). (b)(c) Visualization of learned offsets and weights
for sequence type 1 (blue) and sequence type 2 (red). (d) The number of detected sequences over five
independent runs. (e) The log-likelihoods comparison of HDPP and PP-Seq.

the learned offset and weight from HDPP. For offset {µmn}Nn=1, there is a clear time-shift among
different neurons (± 0.25s for type 1 and ± 0.3s for type 2), and for weight {θmn}Nn=1, the two
sequence types have their own preference for neurons (neuron 27~62 for type 1 and neuron 1~26
for type 2). Figure 3(d) indicates HDPP converges to similar parameter ranges: The total number
of detected sequences over five independent runs (different random seeds for initiation) are close to
each other. Finally, Figure 3(e) shows the log-likelihood comparison of HDPP and PP-Seq averaging
over different runs.

6.2.2 Rodent Hippocampal Recording

We then tested our model on a more complex spike train data from a rat’s hippocampal recording
when it performs repeating runs down a wooden 1.6m linear track [3, 8, 7]4. The session we used is
"Achilles 10252013", which has N = 120 neurons and T = 2068 seconds. As in [8], we expect to
observe two sequences encoding the two opposite running directions on this liner track. To have a
good knowledge of hyperparameter settings, we performed cross-validation via a "speckled holdout
pattern" strategy, which was previously used in PCA [33], and has recently been applied to neural
data [28, 29]. We then evaluated the performance of HDPP by calculating log-likelihood on the
held-out set.

Identifying neural sequences from Hippocampal Recording. Figure 4(a)-(c) shows the raw spikes,
sorted results, and two types of sequences annotated by HDPP, where we can clearly observe two
groups of place coding neurons revealed by the sequences. Figure 4(d) presents the validation
log-likelihoods of four key hyperparameters in HDPP, while other parameters have less impact on
performance or are easy to locate in the optimal range. For the sequence amplitude βk, we randomized
the mean sequence amplitude a1

b1
and set the variance of sequence amplitude a1

b21
equals to the mean.

For the background noise amplitude, we randomized the prior rate b0 in gamma distribution and
set the prior shape a0 to 100. According to the results, HDPP on this data prefers larger sequence
amplitude βk (higher mean sequence amplitude a1

b1
), higher width σ0 in the NIχ2 distribution, lower

noise firing rate gnoise (lower mean noise firing rate a0

b0
), and higher concentration parameter g0 in the

Dirichlet nonhomogeneous Poisson process.

6.3 Scalability to Large Dataset

To scale with large recordings, HDPP is supposed to process each spike in an expected constant time.
In other words, the time cost of either calculating intensity functions or updating parameters should
not grow with the number of sequences detected. In HDPP, we can note that the influences of past
sequences decay exponentially. Using this insight, we can reduce the computational load by ignoring
those past sequences far away from the current time. More specifically, given a time window ∆t, we

4http://crcns.org/data-sets/hc/hc-11
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Figure 4: Rodent hippocampal recording. (a) Raw spike train (T ≈ 4.6 minutes is shown). (b)
Neurons sorted by HDPP. (c) Two types of sequences identified by HDPP. (d) The validation
log-likelihoods on four key hyperparameters. Each boxplot involves five different values of a
hyperparameter, while other hyperparameters are set to fixed values. (e) Performance comparison
between HDPP and parallel PP-Seq on rodent hippocampal recording. (f) HDPP’s time cost as a
function of detected sequences.

maintain an active list of sequences {qk}Kk=1 where t− τk ≤ ∆t. Similarly, using temporal windows
is also acceptable for PP-Seq by limiting the max length of each sequence, which is supposed to
reduce its loop operations. The test of performance was carried by a desktop with AMD Ryzen 7
5800X 8-Core Processor and 32 GB RAM. Figure 4(e) shows the performance comparison between
HDPP and PP-Seq on rodent hippocampal recording. For HDPP, we set the particle number to 20, and
for PP-Seq, we adopt parallel MCMC to parallelize the computation as well as setting the number of
Gibbs sweeps to 2100 [28]. The results indicate that HDPP is still faster than parallel PP-Seq though
it benefits from the temporal window. Figure 4(f) presents the time cost as a function of detected
sequences, which empirically verifies that HDPP has a constant time cost per spike after settling in.

7 Discussion

We present a hierarchical Dirichlet point process (HDPP) for neural sequence detection with an
efficient online inference algorithm. The proposed model follows the framework of the Dirichlet
process, where the spike firing rates of a sequence are modeled as a nonhomogeneous Poisson
process, and the temporal dynamic of this sequence is captured via a Hawkes process. Unlike
previous works, HDPP learns the number of sequence types adaptively during inference and takes
in data in a streaming fashion, thus can be easily adapted to new data or large neural recordings. In
the experiments, favorable results from both synthetic data and real-world spike recordings have
demonstrated that HDPP can reliably and efficiently identify neural sequences in a single pass.

However, our model may fail in some conditions: (1) Time warping noise. Our model does not model
the variability in sequence, which is a common phenomenon in neural data [28, 31]. (2) A Low firing
rate of neurons. Generally speaking, a high firing rate makes identifying sequences from background

9



noise easier. As the firing rate becomes lower, our model’s and existing methods’ performance
decreases (supplement material Figure 1). Furthermore, it is an exciting future direction to investigate
how we can learn HDPP via online variational inference without truncated approximation of the
stick-breaking construction [13, 27].
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