
Revisiting Active Sets for Gaussian Process Decoders
Supplementary Material

Pablo Moreno-Muñoz∗ Cilie W. Feldager∗ Søren Hauberg
Section for Cognitive Systems

Technical University of Denmark (DTU)
{pabmo,cife,sohau}@dtu.dk

In this appendix, we provide additional details about stochastic active sets (SAS) as an approximation
of the log-marginal likelihood for GP decoders, widely known as the Gaussian process latent variable
model (GP-LVM). We remark that SAS revisits active sets, a sparse approximation predominantly
used before the seminal work of Snelson and Ghahramani (2006), in combination with stochastic
optimization. The code for experiments is also included, and details on the data and initial setup
of hyperparameters are included at the end of this appendix.

A Detailed derivation of Stochastic Active Sets

The construction of SAS approximations for the log-marginal likelihood log p(x|z), builds on
the connection between the evidence and cross-validation (CV) (Fong and Holmes, 2020). The
equivalence between leave-R-out CV and the log-marginal likelihood is established by the use of
predictive posterior scores, such that

SCV(x|R) =
1

C

C∑
p=1

1

R

∑
n∈Rp

log p(xn|xAp , z) =
1

R
EAp

 ∑
n∈Rp

log p(xn|xAp , z)

 , (1)

where Ap denotes the active set indices of the training data, such that Ap ⊂ {1, 2, . . . , N} and
Rp = {1, 2, . . . , N} \ Ap are the remaining hold-out samples. The subscript p ∈ C denotes the
permutation and we average over all C =

(
N
R

)
possible hold-out sets. We use use R to indicate

the size of the hold-out set Rp and let A = |Ap| = N − R. In particular, one might obtain the
log-marginal likelihood in a cumulative manner by summing the scores SCV(x|R) in Eq. (1) over all
possible lengths of R,

log p(x|z) =
N∑
r=1

SCV(x|r), (2)

which is the main result presented in Fong and Holmes (2020). Notice that Eq. (2) has a similar
computational cost as the exact calculus of log p(x|z) for GP decoders, since for small values of r,
i.e. r = 1, 2, 3 . . . , we need to invert large covariance matrices KAA, where A → N . Here, we drop
the permutation subscript p in A to avoid cluttered notation. Alternatively, we use the property that
Eq. (2) can be factorised as

log p(x|z) = SCCV(x|R) + SPCV(x|R), (3)
where SCCV(x|R) is the cumulative CV score and SPCV(x|R) is defined as the preparatory CV.
Additionally, Eq. (3) holds for every size of the hold-out data R ∈ [1, 2, · · · , N]. This factorisation is
of interest for us due to

SPCV(x|R) =

N∑
r=R+1

SCV(x|r) =
1

C

C∑
p=1

log p(xAp
|zAp

), (4)

∗Equal contribution.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

where the r.h.s. term is equivalent to SPCV(x|R) = EAp [log p(xAp |zAp)]. We remark that the
computational cost of Eq. (4) is cheaper than SCCV(x|R) when the choice of R is sufficiently large.
Additionally, the cumulative CV is defined as

SCCV(x|R) =

R∑
r=1

SCV(x|r) =
R∑

r=1

1

Cr

Cr∑
p=1

1

r

∑
n∈Rp

log p(xn|xAp
, z), (5)

where Cr =
(
N
r

)
are all the possible hold-out set for every value of r considered. We remark the

convenience of Eq. (5) for stochastic optimization as it includes predictive posterior probabilities
p(xn|xAp

, z) which emerge from the factorization of hold-R-out CV. This expression can be also
rewritten as

SCCV(x|R) =

R∑
r=1

1

r
EAp

 ∑
n∈Rp

log p(xn|xAp
, z)

 . (6)

The SAS approximation stochastically estimates both SCCV(x|R) and SPCV(x|R), with particular
attention to the CCV score, which for large values of R induces the largest computational cost.

B Experiments, Algorithms and Metrics

The code for the experiments is written in Python 3.7 and uses the Pytorch syntax for the au-
tomatic differentiation of the GP models. It can be found in the repository https://github.
com/pmorenoz/SASGP, where we also use the library Pyro for some baselines. In this section,
we provide a detailed description of the experiments and the data used, the initialization of both
latent variables z, the parameters of the amortization network and hyperparameters θ. The training
algorithms are provided in the main manuscript for both the deterministic and Bayesian approaches
to the GP decoder. The performance metrics included in the main manuscript, e.g. the negative
log-predictive density (NLPD), the root mean square error (RMSE) and the mean absolute error
(MAE).

B.1 Detailed description and initialization

All the models have matching encoding network architecture: three linear, fully connected layers
with ReLU activation functions. The first two layers have sizes of 512 and 256 hidden units and
the network encodes to two dimensions. The variances of the latent variables z were encoded in
a different way. In the VAE model, the variance was obtained by inputting the latent means to a
soft-plus layer and the Bayesian SAS-GP and the Bayesian GP-LVM had separate network (with
similar architecture) encoding the variance. The decoder in the VAE was built by a linear, fully
connected layer with 400 hidden units, a softplus function and a sigmoid mapping. The GP-LVM
baselines are implemented in Pyro (Bingham et al., 2019). Our implementation of the variational
autoencoder is based on the official Pyro tutorial for VAEs. Importantly, the VAE and the SAS-GP
implementations use standard data loaders whereas the Pyro code must keep all the data in memory.
This has limited the scaling possibilities of experiments with baselines.

In most of our experiments, we use the vanilla RBF kernel, where we initially set the amplitude
hyperparameter to σ2

a = 0.5, the lengthscale to ℓ = 0.1 and the likelihood noise variance to σ2
n = 0.5.

The initial location of latent variables z is subject to the initialization of the amortization networks,
which is set up in a standard manner using the Pytorch nn module. Learning rates are set in the range
[10−4, 10−2] and the maximum number of epochs considered is 300.

B.2 Datasets

Our experiments make use of three well-known datasets: MNIST (LeCun et al., 1998), FMNIST (Xiao
et al., 2017) and CIFAR10 (Krizhevsky, 2009). All of them are downloaded from the torchvision
repository included in the Pytorch library (https://pytorch.org/vision/stable/datasets.
html). These particular datasets are not subject to use constraints or they include licenses which
allow their use for research purposes.

2

https://pytorch.org/vision/stable/datasets.html
https://pytorch.org/vision/stable/datasets.html

B.3 Error metrics

Having defined the test dataset as x∗ = {xn}N∗
n=1, we use the following error metrics to test the

performance of the SAS approximation for GP decoders

RMSE(x∗) =

√√√√ 1

N∗

N∗∑
n=1

(xn − µ∗
n)

2, (7)

MAE(x∗) =
1

N∗

N∗∑
n=1

|xn − µ∗
n| , (8)

NLPD(x∗) =
1

2
log(2π) +

1

2N∗

N∗∑
n=1

[
log v∗

n +
(xn − µ∗

n)
2

v∗
n

]
, (9)

where µ∗
n and v∗

n are the predictive mean and variance per nth test sample, respectively.

B.4 Additional experiment with latent spaces of dimension larger than two

We re-computed the experiments used for Table 2 using latent spaces of dimension three and four.
The main outcome from these experiments is that training is as stable as in the former cases with
two dimensions in the latent space. In general, we observed a similar performance as in the rest
of experiments included in the main manuscript. So we remark that there is no limitation in our
framework to accept dim(Z) > 2.

Figure 1: Training curves for different active set sizes A and dimensionalities of the latent spaces.
Each row contains the results for MNIST and FMNIST, respectively.

B.5 Ablation study

We did additional experiments as an ablation study based on Eq. 6. In particular, we ran the SAS
model for A = {100, 200, 400} using the MNIST and FMNIST datasets. The first ablation experiment
shown in Figure 2 corresponds to using only the second term log p(xA|zA) in Eq. 6. We can observe
that the performance is not as good as in the results illustrated in the main manuscript. Alternatively,
we also included another ablation experiment using the first term of Eq. 6, which is shown in Figure
3. In this last case, the performance is not good and the structure in the latent space is only provided
by the amortization net.

3

Figure 2: Ablation study for Eq. 6. The approximation of the log-marginal likelihood is only
computed with the second term (full covariance). Curves are computed for A = {100, 200, 400} and
rows indicate the dataset MNIST or FMNIST.

Figure 3: Ablation study for Eq. 6. The approximation of the log-marginal likelihood is only
computed with the firm term (factorisation). Curves are computed for A = {100, 200, 400} and rows
indicate the dataset MNIST or FMNIST.

References
E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh, P. A. Szerlip,

P. Horsfall, and N. D. Goodman. Pyro: Deep universal probabilistic programming. Journal of Machine
Learning Research (JMLR), 20:28:1–28:6, 2019.

E. Fong and C. C. Holmes. On the marginal likelihood and cross-validation. Biometrika, 107(2):489–496, 2020.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of Toronto,
2009.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

4

E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Advances in Neural
Information Processing Systems (NIPS), pages 1257–1264, 2006.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: A novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

5

	Detailed derivation of Stochastic Active Sets
	Experiments, Algorithms and Metrics
	Detailed description and initialization
	Datasets
	Error metrics
	Additional experiment with latent spaces of dimension larger than two
	Ablation study

