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Abstract

Constrained reinforcement learning (RL) is an area of RL whose objective is to
find an optimal policy that maximizes expected cumulative return while satisfying
a given constraint. Most of the previous constrained RL works consider expected
cumulative sum cost as the constraint. However, optimization with this constraint
cannot guarantee a target probability of outage event that the cumulative sum cost
exceeds a given threshold. This paper proposes a framework, named Quantile Con-
strained RL (QCRL), to constrain the quantile of the distribution of the cumulative
sum cost that is a necessary and sufficient condition to satisfy the outage constraint.
This is the first work that tackles the issue of applying the policy gradient theorem
to the quantile and provides theoretical results for approximating the gradient of the
quantile. Based on the derived theoretical results and the technique of the Lagrange
multiplier, we construct a constrained RL algorithm named Quantile Constrained
Policy Optimization (QCPO). We use distributional RL with the Large Deviation
Principle (LDP) to estimate quantiles and tail probability of the cumulative sum
cost for the implementation of QCPO. The implemented algorithm satisfies the
outage probability constraint after the training period.

1 Introduction

Reinforcement learning (RL) has been developed in the direction of finding an optimal policy that
maximizes expected cumulative return for a given environment. Thus, most of the works in RL
consider only rewards given by the environment to optimize the policy. However, many real-world
control problems impose constraints on the behavior of a policy. Constrained RL is an area of
RL whose objective is to find an optimal policy that maximizes expected cumulative return while
satisfying a certain constraint on the cumulative cost. A conventional constrained RL problem
(ExpCP) can be written as

Maximize V π(s0) := Eπ [
∑∞
t=0 γ

tr(st, at)]
subject to Cπ(s0) := Eπ [

∑∞
t=0 γ

tc(st, at)] ≤ dth, (ExpCP)

where the cost constraint is that the expectation of the sum of costs is less than or equal to a threshold
parameter dth. Note that the threshold dth is set on the average (i.e., expectation) of the cumulative
sum cost to avoid undesired high-cost events in this formulation. If we do not want any event causing
a positive cost, dth should be set as a sufficiently small value, i.e., dth ≈ 0. On the other hand, if
we can afford events with low costs, we can set dth properly as we desire. Most of the previous
constrained RL works solved the problem (ExpCP) [1, 12, 14, 24, 25, 28, 29] partly because the
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constraint on the expectation of the cumulative sum cost in (ExpCP) is well fit with the objective
given by the expectation of the sum reward, and this makes the problem amenable. However, solving
the problem (ExpCP) may have an undesirable outcome for real environments that typically need
a constrained behavior on the event that the cost exceeds the threshold dth. For example, in the
case of an autonomous driving car, what we want for our sure safety is to control and limit the
probability of accident itself. In the case of a telecommunication system, what we want to control
is the probability of packet loss through the communication system. These probabilities are called
‘outage probability’ in general. Thus, in many real-world systems, the system requires a constraint on
the outage probability, i.e., the probability of critical or unsafe events. In this case, a constraint on
the expectation of critical events, as in (ExpCP), cannot guarantee the desired target probability of
critical events. To illustrate this, let us consider the following example.
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Figure 1: A simple example of environment.

Consider a simple two-path environment, as
shown in Fig. 1a. The objective of the environ-
ment is for an agent to reach the goal by driving
a car. The environment gives a reward when the
agent reaches the goal, and gives costs until the
agent reaches the goal. There exist two paths
to reach the goal, and each path has a different
cost distribution. Fig. 1b shows the distribution
of the cumulative sum cost (curve) and its mean
(vertical line) for each path: blue for path 1 and red for path 2. As we can see in Fig. 1b, the distribu-
tion for path 1 has a lower average than that for path 2, but has a longer right tail than that for path 2.
If we use the expectation of cost as a constraint, then following path 1 is a better choice, but in this
case, the probability of a high cumulative sum cost (e.g. > 10.0 in Fig. 1b) is higher than following
path 2. If the threshold of 10 represents a catastrophic event, we should constrain the probability
of events exceeding 10 to a small value. Thus, solving the problem with the expectation constraint
(ExpCP) does not necessarily have precise control over the target outage probability. When the event
that the cumulative sum cost exceeds dth is a critical unsafe event, this means that such critical event
can occur in high probability even if we solve the constrained problem (ExpCP). Therefore, in this
paper, we aim to solve the following constrained RL problem with an outage probability constraint:

Maximize V π(s0) = Eπ [
∑∞
t=0 γ

tr(st, at)]
Subject to Pr [

∑∞
t=0 γ

tc(St, At) > dth] ≤ ϵ0
for S0 = s0, At ∼ π(·|St), St+1 ∼M(·|St, At).

(ProbCP)

Our approach to this problem is first to convert the outage probability constraint in (ProbCP) into
a quantile constraint qπ1−ϵ0(s0) := inf {x | Pr (

∑∞
t=0 γ

tc(St, At) ≤ x) ≥ 1− ϵ0} ≤ dth which is
equivalent to the outage probability constraint (See Fig. 2), and then to solve the optimization:

min
λ≥0

max
π
{V π(s0)− λ

(
qπ1−ϵ0(s0)− dth

)
}, (1)

qπ1−ε0

Area = ε0

Area = 1− ε0

dth

Figure 2: Equivalence between the outage proba-
bility constraint and the quantile constraint

where λ is the Lagrange multiplier, based on pol-
icy gradient with the parameterized policy. How-
ever, we note that the policy gradient theorem,
which is the most basic theorem for on-policy
RL, cannot be applied directly to compute the
gradient of (1) with respect to (w.r.t.) the policy
parameter due to the quantile term qπ1−ϵ0(s0).
Therefore, we derive theoretical results for ap-
proximating the gradient of the quantile (in Sec-
tion 3). Then, based on the derived theoretical
results and the technique of the Lagrange multi-
plier, we construct our algorithm named Quantile Constrained Policy Optimization (QCPO) to solve
the outage probability constrained RL problem (in Section 4). Here, we use distributional RL with
the Large Deviations Principle (LDP) to estimate quantiles and tail probability of the cumulative
sum cost for implementation of QCPO. The implemented algorithm satisfies the outage probability
constraint after the training period. To the best of our knowledge, this is the first work that tackles the
issue of applying the policy gradient theorem to the quantile and obtains an (approximate) policy
gradient for the quantile, and this is one of the main contributions of this paper, together with the
QCPO algorithm.
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2 Background and Related Works

Constrained RL A constrained Markov decision process (CMDP) is defined as a tuple
⟨S,A, r, c,M, γ⟩, where S is the state space, A is the action space, r : S × A → R is the re-
ward function, c : S ×A → R≥0 is the cost function, M : S ×A× S → [0, 1] is the state transition
probability, and γ is the discount factor.

Constrained RL or Safe RL is an area of RL whose objective is to find an optimal policy for a given
CMDP that maximizes the expected return Eπ [

∑∞
t=0 γ

tr(st, at)] while satisfying a constraint on
the cumulative sum cost

∑∞
t=0 γ

tc(st, at). If one wants to constrain the average cumulative sum
cost of the policy π, then constraint Cπ(s0) := Eπ [

∑∞
t=0 γ

tc(st, at)] ≤ dth can be considered.
On the other hand, if one wants to constrain the outage behavior of the policy π, then constraint
Pr (Xπ(s0) > dth) ≤ ϵ0 should be considered, where Xπ(s0) is a random variable defined as
Xπ(s0) :=

∑∞
t=0 γ

tc(St, At) with S0 = s0, At ∼ π(·|St), St+1 ∼M(·|St, At) for t = 0, 1, · · · .
Most of the previous constrained RL works considered a constraint on the expectation of the cumula-
tive sum cost: Cπ(s0) ≤ dth [1, 12, 14, 24, 25, 28, 29]. In order to solve the constrained optimization
problem with this expectation-based constraint, researchers considered the Lagrangian multiplier
method [1, 21], Lyapunov-based methods [6, 7], projection-based methods [28], safety-layer methods
[10].

Table 1: Comparison of constrained RL with probabilistic constraints
Papers Algorithm Type Distribution Modeling Theory Deep RL

Risk-Const. RL [5] On-policy
(Trajectory-based)

No
(need only trajectory samples) Yes No

WCSAC [27] Off-policy Gaussian
(on all range of distribution) No Yes

QCPO
(This paper)

On-policy
(State-based)

LDP with Weibull
(only on tail) Yes Yes

Quantile (i.e., Value at Risk, VaR) and Conditional Value at Risk (CVaR) are two well-known tech-
niques to manage undesirable events in the domain of finance[18]. In the context of RL, the definitions
of the quantile and the CVaR for the distribution of the cumulative sum cost for a given π are given
by qπu(s0) := inf{x | Pr(Xπ(s0) ≤ x) ≥ u} and CVaRπu(s0) := Eπ [Xπ(s0) | Xπ(s0) ≥ qπu(s0)],
respectively.

The CVaR was previously used in RL to constrain undesirable events and the problem with a CVaR
constraint is explicitly formulated as

Maximize Eπ [
∑∞
t=0 γ

tr(st, at)]
Subject to CVaRπ1−ϵ0(s0) ≤ dth.

(CVaR-CP)

Note that the (1− ϵ0)-CVaR denoted as CVaRπ1−ϵ0(s) is always greater than or equal to the (1− ϵ0)-
quantile denoted as qπ1−ϵ0(s) for all s ∈ S because of the definition of the CVaR. Therefore, satisfying
the CVaR constraint CVaRπ1−ϵ0(s0) ≤ dth in (CVaR-CP) is a sufficient condition for satisfying the
probabilistic constraint Pr (Xπ(s0) > dth) ≤ ϵ0 in (ProbCP), and hence (CVaR-CP) is a stricter
problem than (ProbCP). Therefore, algorithms proposed to solve (CVaR-CP) can be used for solving
(ProbCP), and this should satisfy the probabilistic constraint in theory.

Chow et al. [5] proposed a trajectory-based CVaR method and provided convergence for their method.
They used trajectory-based policy gradient to their Lagrangian, and it is simple to compute. Like
most trajectory-based RL algorithms, however, it suffers from sample inefficiency since it collects
a number of trajectories and updates its parameter once. Recently, Yang et al. [27] proposed an
off-policy algorithm to solve (CVaR-CP). They only estimated the mean and variance of the cost
distribution using a technique in distributional RL and computed CVaRπu(s)

2 as the CVaR of the
Gaussian distribution of the estimated mean and variance. However, the distribution of Xπ(s) is
not Gaussian in general, and the Gaussian approximation has limited capability to capture the decay
rate of the tail probability because a Gaussian probability density function (PDF) has the form
of exp(−βx2) with fixed rate function x2. Therefore, this algorithm can yield a poor estimation

2They actually consider the CVaR CVaRπ
u(s, a) of the cumulative sum cost Xπ(s, a) for a given (s, a) pair.
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of the CVaR of the tail, especially for small tail probability, and cannot guarantee to satisfy the
CVaR constraint (see Section 5). Furthermore, note that the CVaR and the quantile are two different
measures for undesirable events, and the choice between the two depends on what we desire. For
example, an insurance company prefers the CVaR of undesirable events to determine an insurance
premium. On the other hand, a company developing an autonomous driving car system needs the
quantile of undesirable events to guarantee the accident probability for safety. Thus, in the context
of safe learning, our work focuses directly on the constraint on the quantile, which is an equivalent
(i.e., necessary and sufficient) constraint to the outage probability constraint in (ProbCP). To the best
of our knowledge, this is the first work that provides a state-based policy gradient for the quantile
and required theoretical results regarding the quantile-constrained RL problem. Moreover, our
implementation approximates the tail distribution of Xπ(s) with a Weibull distribution (a particular
case of generalized Gamma distribution), which is general enough to capture various rates of decay
of the tail probability. Table 1 summarizes the previous constrained RL methods and this paper.

Large Deviation Principle (LDP) Large deviation principle (LDP) [11] is a technique for es-
timating the limiting behavior of a sequence of distributions, especially on the tail. A simple
example is the empirical mean X̄n = 1

n

∑n
k=1Xk of i.i.d. random variables Xi. We say that a

sequence {X̄n} satisfies LDP if the sequence of its log probability distribution 1
n log Pr

(
X̄n ∈ Γ

)
satisfies the following condition 1

n log Pr
(
X̄n ∈ Γ

) n→∞−→ − infx∈Γ I(x) for some function I(x).
The function I(x) satisfying such limiting behavior is called the rate function of X̄n. The
rate function I(x) is also related to the cumulative distribution function (CDF) FX̄n(x) since
1 − FX̄n(x0) = Pr

(
X̄n ∈ [x0,∞)

)
≈ exp

(
−n infx∈[x0,∞) I(x)

)
for some x0 > E[X] and suffi-

ciently large n. LDP can be applied to finite-state Markov chains, and there exists a rate function for
a given Markov chain [11]. In this paper, we consider the tail probability of the distribution of the cu-
mulative sum cost Xπ(s0) =

∑∞
t=0 γ

tc(st, at). Finding its analytic rate function is hard. Therefore,
we instead approximate the rate function directly as IXπ(s)(x) ≈ (x/β(s))α(s) with learnable param-
eters α(s) and β(s), which results in a Weibull distribution: 1−FXπ(s)(x) = exp

{
−(x/β(s))α(s)

}
.

We use this distribution to approximate the tail probability of pXπ(s)(x) of Xπ(s).

3 Quantile Constrained RL

In this section, we explain an equivalent form of (ProbCP) that we use to learn an optimal constrained
policy under the outage probability constraint and then explain the difficulty of applying the policy
gradient theorem to optimize the Lagrangian of the equivalent problem. Finally, we provide theoretical
results that circumvent this difficulty in Section 3.2.

3.1 Motivation: Problem of Applying Policy Gradient Theorem to Quantile

Solving (ProbCP) with a direct approach is too hard in making a loss function for π based on the
outage probability. Thus, we convert the probability constrained problem to an equivalent form of a
quantile constrained problem:

Maximize Eπ [
∑∞
t=0 γ

tr(st, at)]
Subject to qπ1−ϵ0(s0) ≤ dth,

(QuantCP)

where qπu(s) = inf{x | Pr(Xπ(s) ≤ x) ≥ u} is the u-quantile of the random variable Xπ(s) of the
cumulative sum cost: Xπ(s) =

∑∞
t=0 γ

tc(St, At) with S0 = s, At ∼ π(·|St), St+1 ∼M(·|St, At),
t = 0, 1, 2, · · · . Note that qπ1−ϵ0(s0) ≤ dth is equivalent to Pr [Xπ(s0) > dth] ≤ ϵ0 due to the
definition of the quantile. We propose a direct approach to solve the equivalent problem (QuantCP)
instead of (ProbCP). Although we have an equivalent form of (ProbCP), it is still difficult to solve
(QuantCP). We explain what makes solving the problem (QuantCP) still hard below.

In the case of (ExpCP), the Lagrange-based optimization of (ExpCP) is given by
minλ≥0 maxπ Lexp(π, λ) := V π(s0)− λ (Cπ(s0)− dth), where V π(s0) = Eπ [

∑∞
t=0 γ

tr(st, at)]
and Cπ(s0) = Eπ [

∑∞
t=0 γ

tc(st, at)]. Then, due to the form of Cπ(s0), the policy gradient theorem
[22] can directly be applied, and the gradient of the Lagrangian w.r.t. π is given by the expectation
form:

∇πLexp(π, λ) =
∑
s

ρπ(s)
∑
a

∇π(a|s) {Aπr (s, a)− λAπc (s, a)} , (2)
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where ρπ(s) :=
∑∞
t=0 γ

t Pr(St = s|s0, π), Aπr (s, a) := r(s, a) + γEs′∼M [V π(s′)] − V π(s), and
Aπc (s, a) := c(s, a) + γEs′∼M [Cπ(s′)] − Cπ(s). However, the gradient of the Lagrangian of the
problem (QuantCP)

min
λ≥0

max
π

Lquant(π, λ) := V π(s0)− λ
(
qπ1−ϵ0(s0)− dth

)
(3)

w.r.t. the policy π cannot be expressed as an expectation form:

∇πLquant(π, λ) ̸= Eπ
[
∇ log π(a|s)

{
Aπr (s, a)− λĀπ1−ϵ0(s, a)

}]
(4)

where Āπu(s, a) := c(s, a) + γEs′∼M [qπu(s
′)]− qπu(s). This is because the u-quantile qπu(s) is not

the expectation of the cumulative sum cost. However, if the u-quantile qπu(s) can be written as

qπu(s0) = Eπ

[ ∞∑
t=0

γt {c(st, at) + c̃u(st, at)}
]

(5)

for some function c̃u(s, a) that is independent of the policy π, we can apply the policy gradient
theorem by defining the advantage function for the quantile term:

Aπu(s, a) := c(s, a) + c̃u(s, a) + γEs′∼M [qπu(s
′)]− qπu(s). (6)

This fact motivates us to search for such c̃u(s, a). For this, under mild assumptions, we first show
the existence of a policy-dependent additional cost c̃πu(s, a) and then show that the additional cost
can be approximated by a cost c̃π

′

u (s, a) for some fixed π′ independent of π except the requirement
maxs KL(π′(·|s) ∥ π(·|s)) ≤ δ.

3.2 Theoretical Results

We here provide theoretical results showing the existence of an additional cost c̃πu(s, a) and showing
that this can be approximated as another cost c̃π

′

u (s, a) for a base policy π′ independent of π, only
requiring maxs KL

(
π′(·|s)

∥∥ π(·|s)) ≤ δ for some δ > 0. These theoretical results make the
quantile constrained policy optimization tractable by enabling application of the policy gradient
theorem. For the theoretical results, we assume that the CDF FXπ(s)(x) is strictly increasing on
[0,∞), and it is continuously differentiable for all s ∈ S . The proofs of the theoretical results are in
Appendix B.

We begin with deriving the temporal-difference (TD) relation between the u-quantiles of Xπ(s) at st
and st+1. Theorem 1 states the TD relation for the u-quantile under the following assumptions of
boundness of quantile difference and smoothness of CDF of Xπ(s).
Assumption 1 (Boundness of quantile difference). For a given policy π, the following two quantities
are bounded

|c(s, a) + γqπu(s
′)− qπu(s)| ≤ γR (7)∣∣∣∣qπu(s)− F−1

Xπ(s)

(
FXπ(s′)

(
qπu(s)− c(s, a)

γ

))∣∣∣∣ ≤ R (8)

for all (s, a, s′) ∈ S ×A× S such that π(a|s) ·M(s′|s, a) > 0.
Assumption 2 (Smoothness of CDF of Xπ(s)). For each state s, the average slope of FXπ(s)(x)
between qπu(s) and y ∈ [qπu(s)−R, qπu(s) +R] is bounded by

1

1 + ϵ
· pXπ(s) (qπu(s)) ≤

FXπ(s) (q
π
u(s))− FXπ(s) (y)
qπu(s)− y

≤ 1

1− ϵ · pXπ(s) (q
π
u(s)) (9)

for small 0 < ϵ < 1
2 .

Theorem 1. Under Assumptions 1 and 2, the u-quantile of the random variable Xπ(st) satisfies the
following temporal-difference (TD) relation. For some constant R and small ϵ > 0,∣∣∣∣Eπ[µπu (st, at, st+1)

{
c(st, at) + γqπu(st+1)− qπu(st)

}]∣∣∣∣ ≤ ϵ

1− ϵR, (10)

where µπu (s, a, s
′) = pXπ(s′)

(
qπu(s)−c(s,a)

γ

) /
γpXπ(s) (q

π
u(s)). Here, the expectation is for the

action at ∼ π(·|st) and the next state st+1 ∼M(·|st, at). (st is given.)
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Note that for the expectation of the cumulative sum costCπ(s) considered in (ExpCP), the expectation
of TD under the policy π follows

Eπ [c(st, at) + γCπ(st+1)− Cπ(st)] = 0 (11)
by the Bellman equation. The TD relation (11) for expectation has a similar form to that for the
u-quantile (10), but the difference is that (10) is the weighted expectation of the TD (c(st, at) +
γqπu(st+1) − qπu(st)). The numerator pXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
of the weight µπu(st, at, st+1) in

(10) involves two quantities: 1) a target quantile qπu(st)−c(st,at)
γ and 2) the PDF of the sum of costs

Xπ(st+1) =
∑∞
k=0 γ

kc(st+k+1, at+k+1) starting from state st+1. Here, the value qπu(st)−c(st,at)
γ is

the target value of the sum of costs
∑∞
k=0 γ

kc(st+k+1, at+k+1) from the next state st+1 such that
the sum of costs

∑∞
k=0 γ

kc(st+k, at+k) for a given pair (st, at) at t is the u-quantile qπu(st). Thus,

the numerator pXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
of the weight µπu(st, at, st+1) in (10) is the probability of

the event that the cumulative sum cost starting from (st, at) becomes the u-quantile qπu(st) at st from
the perspective of the next state st+1. Based on Theorem 1, we obtain the following corollary:
Corollary 1. Under Assumptions 1 and 2, the u-quantile qπu(st) of the random variable Xπ(st) is
bounded as ∣∣∣∣qπu(st)− Eπ

[
µπu (st, at, st+1)

{
c(st, at) + γqπu(st+1)

}]∣∣∣∣ ≤ ϵ

1− ϵR. (12)

Proof: Note that the term qπu(st) can go outside the expectation in (10) since the expectation is over
(at, st+1). From eq. (26) in Appendix A.1, the expectation of the numerator of µπu (st, at, st+1)

is the same as the the denominator of the weight, i.e., Eπ
[
pXπ(st+1)

(
qπu(st)−c(st,at)

γ

)]
=

γpXπ(st) (q
π
u(st)), and this leads to Eπ[µπu(st, at, st+1)] = 1. So, we have the claim. □

As seen in Corollary 1, the u-quantile at st can be approximated as a weighted expectation of
c(st, at) + γqπu(st+1), and the weight is proportional to pXπ(st+1)

(
qπu(st)−c(st,at)

γ

)
. This means

that the more probable is the pair (st, at, st+1) to achieve qπu(st), the higher weight is multiplied
to c(st, at) + γqπu(st+1) for approximating qπu(st). Furthermore, if we assume that the transition
dynamics of CMDP are deterministic, i.e., st+1 = h(st, at) as in many real-world control problem,
we can approximate the u-quantile qπu(s0) at s0 as the expectation of the sum of costs under a
distorted policy π̃u, as stated in the following lemma:
Lemma 1. Suppose that the state transition dynamics are deterministic, i.e., st+1 = h(st, at). Then,
under Assumptions 1 and 2, the u-quantile qπu(s0) of the random variable Xπ(s0) is expressed as∣∣∣∣∣qπu(s0)− Eπ̃u

[ ∞∑
t=0

γtc(st, at)

]∣∣∣∣∣ ≤ ϵR

(1− ϵ)(1− γ) , (13)

where π̃u(a|s) = π(a|s) · µπu (s, a, h(s, a)) ∝ π(a|s) · pXπ(h(s,a))
(
qπu(s)−c(s,a)

γ

)
.

Now, plugging (13) into the quantile term in the Lagrangian (3) of the problem (QuantCP), we may
apply the policy gradient theorem based on the chain rule since the u-quantile qπu(s0) is expressed
as the expectation of the sum of costs. However, the gradient of π̃u w.r.t. π for chain rule is too
complicated due to the µπu term in Lemma 1. Thus, we find another expectation form of qπu(s0) using
an additional cost function c̃πu(s, a), as stated in the following theorem:
Theorem 2. Under deterministic dynamics st+1 = h(st, at) and Assumptions 1 and 2, qπu(s) can be
expressed as ∣∣∣∣∣qπu(s0)− Eπ

[ ∞∑
t=0

γt {c(st, at) + c̃πu(st, at)}
]∣∣∣∣∣ ≤ ϵR

(1− ϵ)(1− γ) , (14)

where c̃πu(s, a) = (µπu (s, a, h(s, a))− 1) · [c(s, a) + γqπu(h(s, a))].

Note that the additional cost c̃πu(st, at) in Theorem 2 is a policy-dependent cost function. Under an
additional mild assumption, we can find an upper bound of (14) which replaces the policy-dependent
cost function c̃πu(s, a) with another cost c̃π

′

u (s, a) for some fixed π′ independent of π, only requiring
maxs KL

(
π′(·|s)

∥∥ π(·|s)) ≤ δ for some δ > 0. The additional assumption is as follows:
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Assumption 3 (Lipschitz continuity of c̃πu(s, a) over π). For any given fixed u ∈ (0, 1) and any
policies π and π′, there exists a coefficient Cu such that∣∣∣c̃π′

u (s, a)− c̃πu(s, a)
∣∣∣ ≤ Cu ·max

s′
KL
(
π′(·|s′)

∥∥ π(·|s′)) , ∀s ∈ S, a ∈ A. (15)

Basically, Assumption 3 is that the function c̃πu as a function of π is continuous, which is expected
to be satisfied if there is no abrupt change in the associated distributions. With Assumption 3 and
Theorem 2, we obtain an expression for the quantile qπu(s0) as a form of desired expected sum:
Theorem 3. Under deterministic dynamics st+1 = h(st, at) and Assumptions 1, 2, and 3, the
u-quantile qπu(s0) is expressed as the expectation of the sum of actual cost and a π-independent
additional cost c̃π

′

u (s, a) for π′ satisfying maxs KL(π′(·|s) ∥ π(·|s)) ≤ δ:∣∣∣∣∣qπu(s0)− Eπ

[ ∞∑
t=0

γt
{
c(st, at) + c̃π

′

u (st, at)
}]∣∣∣∣∣ ≤ ϵR

(1− ϵ)(1− γ) +
Cu

1− γ δ. (16)

By Theorem 3, we can approximate the u-quantile qπu(s0) as the expectation of the sum of costs
plus π-independent additional costs c̃π

′

u (s, a) for a base policy π′, and this approximation is tighter
when the distance between the current policy π and the base policy π′ is smaller. Theorem 3 can be
interpreted the other way around. As in the case of PPO [20], if we first simply set π′ as the policy
before the update, denoted as πold, then the updated π is near from the base policy πold = π′, and we
can compute the corresponding KL distance between πold (= π′) and π. Then, still, the inequality
(16) holds for δ = maxsKL (πold(·|s)||π(·|s)). Now, this result enables us to solve the quantile
constrained problem (QuantCP) by applying the policy gradient theorem.

4 Quantile Constrained Policy Optimization

qπ0.1 q
π
0.3 q

π
0.5 q

π
0.7q

π
0.8 q

π
0.9

Weibull(α, β)

Figure 3: Illustration of the quantile approximation
and tail-probability approximation. Green-dash
curve is the unknown PDF pXπ(s)(x) and up-arrow
points are the estimated u-quantiles qπu(s). We
approximate the PDF pXπ(s)(x) on the right tail
by a Weibull distribution (blue curve) and this is
approximated using the 4 rightmost quantile points
(blue arrow).

Using the theoretical results in Section 3, we
now construct an algorithm named quantile con-
strained policy optimization (QCPO) to solve
(QuantCP) based on an on-policy RL algorithm:
PPO [20]. The QCPO is a direct method to
constrain the outage probability and consists
of three parts: 1) estimation of the u-quantile
qπu(s) of Xπ(s) for a given policy π, 2) estima-
tion of PDF of Xπ(s) to compute the additional
cost c̃π

′

u (s, a), and 3) updating method of the
Lagrange multiplier to control the outage prob-
ability. We first explain the overall structure of
QCPO and the base loss function for the policy,
which has a similar form to that in [19]. Then,
we provide a condition for policy improvement
for the proposed method. The implementation
of the proposed algorithm is based on the imple-
mentation of [21], and details of the implemen-
tation, including the network structure, the loss functions, the Lagrangian multiplier update method,
and the hyper-parameters, are in Appendix E. The implementation code of QCPO is available at
github.com/wyjung0625/QCPO.

4.1 Overall Structure of QCPO

The agent of QCPO uses function approximators for the policy π, the value function V π(s) =

Eπ [
∑∞
t=0 γ

tr(st, at)] and the quantile function qπ(s) =
[
qπu1

(s), qπu2
(s), . . . , qπunq (s)

]
of Xπ(s) =∑∞

t=0 γ
tc(st, at) for the policy π. These functions are parameterized by deep neural networks with

parameters θ, ϕ, and ψ, respectively. We denote θold, ϕold, and ψold as their old parameters. Note
that the quantile function qψ(s) outputs nq values, and the i-th value represents an estimate of the ui-
quantile qπui(s) of Xπ(s) for fixed target CDF values

[
u1, u2, . . . , unq

]
with u1 < u2 < · · · < unq .
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In addition to these parameterized functions, we need another function that approximates the PDF
of Xπ(s) on the right tail. (Here, the right-tail probability most matters since the target outage
probability is typically small.)

As aforementioned in Section 2, we know that Xπ(s) follows LDP with a rate function IXπ(s)(x).
However, finding the rate function IXπ(s)(x) in an analytic approach is hard. Therefore, in QCPO,
the agent approximates the rate function of the form of IXπ(s)(x) ≈ (x/β(s))

α(s) and learns the
state-dependent parameters α(s) and β(s) by using the quantiles on the right tail approximated by
its quantile function for the right tail: qπunq−k+1

(s), . . . , qπunq (s). This approximation of the rate
function results in approximation probability on the right tail as a Weibull distribution, whose tail
distribution is 1−FXπ(s)(x) = e−(x/β(s))α(s)

. In order to obtain the state-dependent parameters α(s)
and β(s) for right-tail distribution approximation, we again parameterize them by neural networks
with parameters ξ and ζ, respectively. Fig. 3 shows both the quantile approximation and right-tail
approximation of QCPO. Note that our approach actually learns the rate function governing the
tail-probability decay rate, whereas the previous Gaussian approximation [27] on the PDF of Xπ(s)
fixes the rate function as quadratic x2, which is not the correct rate function in general.

The overall procedure of QCPO is as follows: 1) estimate the value function V π(s) for return
and estimate the quantile function qπu(s), u ∈

[
u1, u2, . . . , unq

]
for the cumulative sum cost, 2)

approximate tail distribution pXπ(s)(x) on the right tail using a Weibull distribution with parameters
α(s), β(s), 3) compute the additional cost for the base policy π′, c̃π

′

1−ϵ0(s, a) for the quantile
advantage Aπ1−ϵ0(s, a) := c(s, a) + c̃π

′

1−ϵ0(s, a) + γqπ1−ϵ0(s
′) − qπ1−ϵ0(s) , 4) take policy gradient

using the sum of the value advantage and the quantile advantage Ar(s, a)− λAπ1−ϵ0(s, a), 5) update
the Lagrange multiplier λ. Since QCPO is based on PPO [20], the loss functions for the policy and
the value function are similar to those of PPO [20]. Please see Appendix E.2 and E.3 for detail.

4.2 Policy Loss Function and Policy Improvement Condition

Let us consider the policy loss function of QCPO to solve (QuantCP). The basic loss function of
QCPO for a given Lagrange multiplier λ is given by

Lπold(πθ)− C̃1 max
s

KL(πold(·|s) ∥ πθ(·|s)) (17)

where

Lπold(πθ) =
(
V πold(s0)− λqπold1−ϵ0(s0)

)
+ Es∼ρπold ,a∼πθ

[
Aπoldr (st, a)− λAπold1−ϵ0(st, a)

]
(18)

Aπoldr (s, a) = r(s, a) + γEs′∼M(·|s,a) [V
πold(s′)]− V πold(s) (19)

Aπold1−ϵ0(s, a) = c(s, a) + c̃πold1−ϵ0(s, a) + γEs′∼M(·|s,a)
[
qπold1−ϵ0(s

′)
]
− qπold1−ϵ0(s), (20)

and πold := πθold is the policy that collects the most recent batch of samples, ρπold(s) :=∑∞
t=0 γ

t Pr(St = s|s0, πold) is the stationary state distribution under πold, C̃1 is a constant (see
Appendix B.5), Now, we consider the relationship between the actually-desired maximization ob-
jective Lquant(π, λ) = V π(s0) − λ

(
qπ1−ϵ0(s0)− dth

)
in (3) and the practical QCPO objective

Lπold(θ)− C̃1 maxs KL(πold(·|s) ∥ πθ(·|s)) in (17). The relationship between the two is given by
the following theorem.
Theorem 4. Let πnew := πθnew be the solution of the problem of maximizing

Lπold(πθ)− C̃1 max
s

KL(πold(·|s) ∥ πθ(·|s)) (21)

for some constant C̃1 > 0. Then, under deterministic dynamics st+1 = h(st, at) and Assumptions 1,
2, and 3, the following inequality holds:

Lquant(πnew, λ)− Lquant(πold, λ) (22)

≥ Lπold(πnew)− Lπold(πold)− C̃1KLmax(πold||πnew)− C̃2
ϵ

1− ϵ︸ ︷︷ ︸
approximation loss

(23)

for a given Lagrange multiplier λ > 0, some constant C̃2 and small ϵ > 0.
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Note that the term C̃2
ϵ

1−ϵ in (23) is due to our approximation of the quantile as an expected sum to
apply policy gradient. Therefore, by Theorem 4, when the improvement Lπold(πnew)−Lπold(πold)−
C̃1KLmax(πold||πnew) (> 0) by the policy update from the QCPO loss function is large enough to
compensate for the approximation loss, the desired quantity will also be improved by our policy
update. That is, the Lagrangian for the quantile constrained problem for πnew will be higher than that
for πold.

5 Experiments

5.1 Environments
(a) SimpleButtonEnv (b) DynamicEnv (c) GremlinEnv

Figure 4: The considered environments
We examined the performance
of the proposed QCPO and com-
pared it to that of WCSAC,
which uses the CVaR constraint. The environments we considered are SimpleButtonEnv, Dy-
namicEnv [27], and GremlinEnv, which are based on Safety Gym [17], MuJoCo [23], and OpenAI
Gym [4]. The environments can be considered as simplified versions of a real environment of an
automatic serving robot and are illustrated in Fig. 4. The goal of these environments is for a robot
(red sphere) to reach a goal (orange sphere wrapped by a grey translucent pillar, or green pillar) while
avoiding the non-goal button (orange sphere), hazards (blue circle) or moving gremlins (purple box).
Once the robot reaches the current goal, the environments generate the next goal deterministically
(SimpleButtonEnv) or randomly (DynamicEnv, GremlinEnv), so the task complexity increases in the
order of SimpleButtonEnv, DynamicEnv, and GremlinEnv. When the robot performs an action at time
t, it receives a reward

{
∥pt+1 − pgoal∥2 − ∥pt − pgoal∥2

}
+ 1goal reached, where pt is the position (x,

y) of the robot at time t and pgoal is the current goal position at time t. It also receives a cost +1 if the
robot touches a non-goal object (the non-goal button, a hazard, or a gremlin) and 0 otherwise. Thus,
for the robot, it receives a higher return when the robot touches more goals in maximum timesteps
T = 1000, and a higher sum of costs when the robot touches one of the other objects more often. A
more detailed explanation of the environments is in Appendix C.

5.2 Empirical Results

We compared the performance of the proposed algorithm (QCPO) with that of PPO with the La-
grangian multiplier method (PPO_Lag)3 for (ExpCP) and that of WCSAC [27]4 for (CVaR-CP)
which is a stricter problem than (ProbCP). We set the threshold dth = 15 in (ExpCP), (CVaR-CP),
and (QuantCP) and the target outage probability ϵ0 = 0.1, 0.2 in (CVaR-CP) and (QuantCP).

Fig. 5 shows the results of the considered algorithms on SimpleButtonEnv, DynamicEnv, and Gremli-
nEnv. All experiments were done with 10 different random seeds, and the real line and the shaded
area represent the average and average ± standard deviation, respectively. PPO with the Lagrangian
multiplier method for (ExpCP) (green) keeps the average of the sum cost around the threshold
dth = 15 well (please see the graph in Appendix D.3), and its outage probability becomes around
0.35 as we can observe in Fig. 5d, 5e, and 5f. As aforementioned, the CVaR approach (WCSAC)
should satisfy a sufficient condition for satisfying the outage probability constraint in (ProbCP). It is
seen that WCSAC (ϵ0 = 0.2 (purple), ϵ0 = 0.1 (red)) achieves a lower or similar outage probability
to the threshold ϵ0 in Fig. 5d, but the algorithm does not satisfy the outage probability constraint
exactly in Fig. 5e and 5f. This means that the Gaussian distribution approximation of the distribution
of Xπ(s) has limited capability to capture the decay rate of the tail probability. On the other hand,
the proposed QCPO (ϵ0 = 0.2 (blue), ϵ0 = 0.1 (orange)) maintains the outage probability around the
desired target outage probability very well, as shown in Fig. 5d, 5e, and 5f.

Now consider the average return of these algorithms. In constrained RL, in general, if an algorithm is
allowed to have a higher sum of costs, then it has a higher return. Thus, as seen in Fig. 5d, 5e, and
5f, PPO_Lag induces the highest outage probability, so it has the highest average return, as shown
in Fig. 5a, 5b, and 5c. The direct comparison between WCSAC and QCPO is less meaningful in

3We used the implementation code in https://github.com/astooke/rlpyt/tree/master/rlpyt/
projects/safe, (MIT License)

4We used the github code that the authors of the paper uploaded: https://github.com/AlgTUDelft/
WCSAC, (MIT License)
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Figure 5: (left) SimpleButtonEnv, (middle) DynamicEnv, and (right) GremlinEnv: (upper row)
average return and (lower row) outage probability of the most current 100 episodes.

DynamicEnv and GremlinEnv, since WCSAC does not satisfy the outage probability constraint, but
it is fair in SimpleButtonEnv because both algorithms satisfy the outage probability constraint. As
seen in Fig. 5a, QCPO achieves a higher average return than WCSAC for the same target probability
constraint ϵ0 = 0.1, 0.2. This is because QCPO satisfies the target outage probability exactly, i.e.,
uses the given cost budget fully for a higher return. We provided more results in Appendix D.

6 Conclusion

We have proposed the framework of quantile-constrained RL to constrain the outage probability by
adopting a constraint on the quantile, which is equivalent to the outage probability constraint. We
have investigated issues in applying the policy gradient theorem to the Lagrangian of the quantile-
constrained RL problem and have converted the quantile into an additive form of costs so that the
application of the policy gradient theorem is feasible. Based on our derivation, we have constructed
the QCPO algorithm, which uses distributional RL techniques to learn the u-quantile of the cumulative
sum cost Xπ(s), and Weibull distribution to approximate the tail distribution of Xπ(s). We also
proved the policy improvement condition for QCPO and showed that there exists an approximation
loss due to our approximation of the quantile. Empirical results show that QCPO constrains the
outage probability well as the desired target value. The meaning of such exact satisfaction of the
outage probability is two-fold: First, the constraint on the outage probability is satisfied to control
the probability of unsafe events, and second, the exact satisfaction of the cost constraint enables
us to exploit the cost budget fully and obtain a higher return. Empirical results demonstrated the
effectiveness of the proposed scheme.

Acknowledgments and Disclosure of Funding

This work was supported by Institute of Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2022-0-00469, Development of
Core Technologies for Task-oriented Reinforcement Learning for Commercialization of Autonomous
Drones, 50%) and by Institute of Information & Communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) (No.2022-0-00124, Development of Artificial
Intelligence Technology for Self-Improving Competency-Aware Learning Capabilities, 50%)

10



References
[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization.

In International Conference on Machine Learning, pages 22–31. PMLR, 2017.

[2] Gabriel Barth-Maron, Matthew W. Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva
TB, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deter-
ministic policy gradients. In International Conference on Learning Representations, Apr 2018.
URL https://openreview.net/forum?id=SyZipzbCb.

[3] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-
ment learning. In International Conference on Machine Learning, pages 449–458. PMLR,
2017.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[5] Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained
reinforcement learning with percentile risk criteria. The Journal of Machine Learning Research,
18(1):6070–6120, 2017.

[6] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A
Lyapunov-based approach to safe reinforcement learning. In Advances in Neural Information
Processing Systems, volume 31, Dec 2018.

[7] Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. Lyapunov-based safe policy optimization for continuous control. arXiv preprint
arXiv:1901.10031, 2019.

[8] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks
for distributional reinforcement learning. In International Conference on Machine Learning,
volume 80, pages 1096–1105. PMLR, Jul 2018.

[9] Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[10] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

[11] Amir Dembo and Ofer Zeitouni. Large Deviations Techniques and Applications. Springer,
1998.

[12] Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, and Mihailo Jovanovic. Provably
efficient safe exploration via primal-dual policy optimization. In International Conference on
Artificial Intelligence and Statistics, pages 3304–3312. PMLR, 2021.

[13] Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling
overestimation bias with truncated mixture of continuous distributional quantile critics. In
International Conference on Machine Learning, volume 119, pages 5556–5566. PMLR, 2020.

[14] Yongshuai Liu, Jiaxin Ding, and Xin Liu. IPO: Interior-point policy optimization under
constraints. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
4940–4947, 2020.

[15] Yecheng Ma, Dinesh Jayaraman, and Osbert Bastani. Conservative offline distributional
reinforcement learning. In Advances in Neural Information Processing Systems, volume 34,
2021.

[16] Borislav Mavrin, Hengshuai Yao, Linglong Kong, Kaiwen Wu, and Yaoliang Yu. Distributional
reinforcement learning for efficient exploration. In International Conference on Machine
Learning, pages 4424–4434. PMLR, 2019.

[17] Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep rein-
forcement learning. 2019.

11

https://openreview.net/forum?id=SyZipzbCb


[18] R Tyrrell Rockafellar and Stanislav Uryasev. Conditional value-at-risk for general loss distribu-
tions. Journal of Banking & Finance, 26(7):1443–1471, 2002.

[19] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, volume 37, pages
1889–1897. PMLR, 2015.

[20] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[21] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning
by PID Lagrangian methods. In International Conference on Machine Learning, volume 119,
pages 9133–9143. PMLR, 2020.

[22] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press,
2018.

[23] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

[24] Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, and Alekh Agarwal. Safe
reinforcement learning via curriculum induction. In Advances in Neural Information Processing
Systems, volume 33, 2020.

[25] Tengyu Xu, Yingbin Liang, and Guanghui Lan. CRPO: A new approach for safe reinforcement
learning with convergence guarantee. In International Conference on Machine Learning, pages
11480–11491. PMLR, 2021.

[26] Derek Yang, Li Zhao, Zichuan Lin, Tao Qin, Jiang Bian, and Tie-Yan Liu. Fully parameterized
quantile function for distributional reinforcement learning. In Advances in neural information
processing systems, volume 32, pages 6193–6202, 2019.

[27] Qisong Yang, Thiago D. Simão, Simon H Tindemans, and Matthijs T. J. Spaan. WCSAC:
Worst-case soft actor critic for safety-constrained reinforcement learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages 10639–10646, 2021.

[28] Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J. Ramadge. Projection-based
constrained policy optimization. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=rke3TJrtPS.

[29] Ming Yu, Zhuoran Yang, Mladen Kolar, and Zhaoran Wang. Convergent policy optimization for
safe reinforcement learning. In Advances in Neural Information Processing Systems, volume 32,
pages 3127–3139, 2019.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We mentioned theoretical bound

and approximation loss in Section 3 and 4.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] I have read the guidelines.
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Please see
Appendix B.

(b) Did you include complete proofs of all theoretical results? [Yes] Please see Appendix
B.

12

https://openreview.net/forum?id=rke3TJrtPS


3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] The implemen-
tation code and instructions are uploaded in github. Please see github address in page
7.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Please see Appendix E.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Experimental results show mean and standard deviation
with 10 random seeds.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Please see Appendix C.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Please see footnotes

in page 9.
(b) Did you mention the license of the assets? [Yes] Please see footnotes in page 9.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Please see github address in page 7.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13


