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Abstract

Neural diffusion on graphs is a novel class of graph neural networks that has
attracted increasing attention recently. The capability of graph neural partial differ-
ential equations (PDEs) in addressing common hurdles of graph neural networks
(GNNs), such as the problems of over-smoothing and bottlenecks, has been in-
vestigated but not their robustness to adversarial attacks. In this work, we explore
the robustness properties of graph neural PDEs. We empirically demonstrate that
graph neural PDEs are intrinsically more robust against topology perturbation as
compared to other GNNs. We provide insights into this phenomenon by exploiting
the stability of the heat semigroup under graph topology perturbations. We discuss
various graph diffusion operators and relate them to existing graph neural PDEs.
Furthermore, we propose a general graph neural PDE framework based on which a
new class of robust GNNs can be defined. We verify that the new model achieves
comparable state-of-the-art performance on several benchmark datasets.

1 Introduction

Deep learning on graphs and Graph Neural Networks (GNNs), in particular, have achieved remarkable
success in a variety of application areas such as those related to chemistry (molecules), finance (trading
networks) and the social media (the Facebook friend network) [1–5]. GNNs have been applied to
various tasks including node classification [3], link prediction [6], and recommender systems [7]. The
key to the success of GNNs is the neural message passing scheme [8] where messages are propagated
along edges and optimized toward a downstream task.

While aggregating neighboring nodes’ information is a powerful principle of representation learning,
the way that GNNs exchange information between nodes makes them vulnerable to adversarial
attacks [9]. Adversaries can perturb a graph’s topology by adding or removing edges [10–12] or by
injecting malicious nodes to the original graph [13–15]. Another common attack is to perturb node
attributes [9, 16–18]. Our paper will mainly tackle graph topology perturbation. Adversaries who can
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inject nodes to the original graph while not modifying the original graph directly are called injection
attacks [13–15]. Adversaries who can directly modify the original graph including edges and node
features are called modification attacks [10–12, 9, 16–18]. To defend against adversarial attacks,
several robust GNN models have been proposed. Examples include RobustGCN [19], GRAND
[20], and ProGNN [21]. In addition, pre-processing based defenders include GNN-SVD [22] and
GNNGuard [23].

Recent studies [24–27] have applied neural Ordinary Differential Equations (ODEs) [28] to defend
against adversarial attacks. Some works like [24, 27] have revealed interesting intrinsic properties of
ODEs that make them more stable than conventional convolutional neural networks (CNNs). Neural
Partial Differential Equations (PDEs) have also been applied to graph-structured data [29, 30]. Some
papers like [29] (GRAND) and [30] (BLEND) approach deep learning on graphs as a continuous
diffusion process and treat GNNs as spatial discretizations of an underlying PDE. However, robustness
to adversarial attack has not been studied on such graph neural PDEs. In this work, we demonstrate
that graph neural PDEs are intrinsically more robust against adversarial topological perturbations
compared to other GNNs. We investigate the heat diffusion on a general Riemannian manifold and
show that the diffusion process is essentially stable under small perturbations of the manifold metric.
In doing so, we provide insights into the underlining reasons why graph neural PDEs are stable under
graph topological perturbations. Such insights indicate that further improvements to the design of
graph neural PDEs are possible. We develop several such improved models under a general graph
neural PDE framework and show that these models are also robust to node attribute perturbations.

Main contributions. In this paper, our objective is to develop a general diffusion framework on
graphs and study the robustness properties of the induced graph neural PDEs. Our main contributions
are summarized as follows:

• We review the notion of heat diffusion on Riemannian manifolds and the stability of its
semigroup. We present analogous concepts of gradient, divergence, and Laplacian operators
for heat diffusion on a graph.

• We generalize heat flow to more general flow schemes, including mean curvature flow and
Beltrami flow, which are able to preserve inter-class edges in diffusion. A novel class of
graph neural PDEs is thereby induced.

• We show that the proposed graph neural PDEs are intrinsically robust to graph topology per-
turbations. We verify that the new model achieves comparable state-of-the-art performance
on several benchmark datasets.

The rest of this paper is organized as follows. In Section 2, we start with preliminaries on continuous
diffusion over a Riemannian manifold and the discrete graph. In Section 3, we present our main
results on the stability properties of heat flow on graphs and generalize heat flow to edge-preserving
flows from which a new class of graph neural PDEs is proposed. Our proposed model architecture
is detailed in Section 4. We summarize experimental results in Section 5 and conclude the paper in
Section 6. The proofs for all theoretical results in this paper are given in the supplementary material,
where more experiments are also presented.

2 Preliminaries

Similar to [29, 30], we consider a graph as a discretization of a Riemannian manifold. We introduce
concepts and notations for flows diffused over a general manifold and a discrete graph. Readers are
referred to [31] for more details. The stability of the heat kernel and heat semigroup of the heat
diffusion equation under perturbations of the manifold metric is considered. This discussion sheds
light on the diffusion stability of graphs under perturbation of the graph topology in the next section.

2.1 Heat Equation and Solution Stability on Manifold

A Riemannian manifold (M, g) is a smooth manifold M endowed with a Riemannian metric g,
where the norms of tangent vectors and the angles between them are defined by an inner product. It
is the natural generalization of Euclidean space and correspondingly the divergence, gradient, and
Laplace operators are well-defined, analogous to their corresponding concepts in Euclidean space.
Let C∞

0 (M) denote the space of smooth functions on M with compact support and ◦ the composition
operation.
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Definition 1. The Laplace operator ∆ : C∞
0 (M) 7→ C∞

0 (M) on a d-dimensional Riemannian
manifold (M, g) is defined as

∆ = div ◦∇,
where div is the divergence defined for the C∞

0 vector fields on M and ∇ is the gradient operator. In
a local chart U with coordinates (x1, x2, . . . , xn), for function f and vector field ψ, we have

(∇f)i =
d∑

j=1

gij
∂f

∂xj
, divψ =

d∑
j=1

1√
det g

∂

∂xj

(√
det gψj

)
, (1)

where ψj is the j-th component of ψ, gij the components of the inverse metric of g, and det is the
determinant operator of a matrix. We also have

∆ =

d∑
i,j

1√
det g

∂

∂xi

(√
det ggij

∂

∂xj

)
. (2)

The classical Cauchy problem associated with the heat diffusion equation is to find a function
φ(t, x) ∈ C∞

0 (R+ ×M) such that {
∂φ
∂t = ∆φ, t > 0,
φ|t=0 = f,

(3)

where we only consider f ∈ C∞
0 and R+ is the space of positive real numbers.

We can extend the Laplace operator to the generalized Dirichlet Laplace operator, denoted as
L = −∆ and defined on a larger domain2 [31, section 4.2]. This operator is self-adjoint and non-
negative definite on L2(M), and it can be shown that the above problem (3) is solved by means of
the following family {Pt}t≥0 of operators:

Pt := e−tL =

∫
specL

e−tλ dEλ =

∫ ∞

0

e−tλ dEλ, (4)

where {Eλ}λ∈specL in L2(M) is the unique spectral resolution of the Dirichlet Laplace operator L
and specL is the spectrum set of L. The family {Pt}t≥0 is called the heat semigroup associated with
∆, and the solution is given by Ptf . It is also well-known that the solution of the above problem
has an integration form via the (minimal) heat kernel function kt(x, y) : R+ ×M ×M 7→ R [31,
Theorem 7.13]:

Ptf(x) =

∫
M

kt(x, y)f(y) dµ(y),

where dµ is the Riemannian measure [31, Section 3.4] on M .

For a Riemannian manifold M , different metrics g give rise to different structures. Let ∆̃ be the
Laplacian associated with another metric g̃ on M such that, for some α ≥ 1,

α−1g̃ ≤ g ≤ αg̃.

The new ∆̃ is said to be quasi-isometric [32] to g, and can be viewed as a perturbation of the metric g.
∆̃ can be also viewed as a uniformly elliptic operator [32] with respect to (w.r.t.) to g. The stability of
the heat semigroup and the heat kernel under perturbations of the Laplace operator (i.e., changes of g)
is well studied in [33]. In the special case of uniformly elliptic operators on Euclidean manifold Rd,
the uniformly elliptic operator can be written as div(A∇) with symmetric measurable coefficients
A(x) = (aij(x)) such that

∑
i,j aij(x)ξiξj ≥ λ0|ξ|2 for all ξ ∈ Rd and for some constant λ > 0

independent of x. The reference [33] shows the following theorem:

Theorem 1. On the Euclidean manifold Rn, let {Pt}t≥0 and {P̃t}t≥0 be two diffusion semigroups
on Rd (d ≥ 2) associated with uniformly elliptic operators div(A∇) and div(Ã∇) with symmetric
measurable coefficients A(x) = (aij(x)) and Ã(x) = (ãij(x)), respectively. The corresponding heat
kernels are denoted by pt(x, y) and p̃t(x, y). We then have that

2L is defined on the larger Sobolev space W 2
0 (M) [31], and is the (negative) extension of ∆. We have

L = −∆ on C∞
0 .
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i. There is a bounded, piecewise continuous function F1(t, z) on R+ × R+ with
limz→0 F1(t, z) = 0 for each t > 0 and a constant c > 0, both of which depend only
on d and α, such that

|pt(x, y)− p̃t(x, y)| ≤ t−d/2 exp

(
−∥x− y∥22

ct

)
F1

(
t, ∥A− Ã∥L2

loc

)
,

for any (t, x, y) ∈ R+ × Rd × Rd, ∥ · ∥2 is the Euclidean norm, and ∥ · ∥L2
loc

is the local
L2-norm distance defined in [33].

ii. Furthermore, we also have an Lp-operator norm bound for Pt − P̃t in terms of the local
L2-norm distance between aij and ãij: There is a bounded, piecewise continuous function
F2(t, z) on R+ × R+ with limz→0 F2(t, z) = 0 for each t > 0 that depends only on d and
α, such that for any p ∈ [1,∞], we have∥∥∥Pt − P̃t

∥∥∥
p
≤ F2

(
t, ∥A− Ã∥L2

loc

)
.

The above theorem shows the pointwise convergence of the heat kernel under perturbations of the
matrixA. It proves the stability of the solution under small perturbations of the Laplace operator. These
results can also be extended to general Riemannian manifolds [34] since every Riemannian manifold
can be isometrically embedded into some Euclidean space [35] and the kernel is isometrically
invariant [31, theorem 9.12]. We therefore know that if the difference between Ã and A (or more
generally g̃ and g) are small, the final solutions to (3) have small difference. An intuitive explanation
of the stability of the solution comes from the fact that the heat kernel kt(x, y) is the transition density
function of a Brownian motion on the manifold [36] since Brownian motion can be viewed as a
diffusion generated by half of the Laplace operator. This means that kt(x, y) is a weighted average
over all possible paths between x and y at time t, which does not change dramatically under small
perturbations of g. More specifically, for a Brownian motion on a domain M , if we perturb the g over
a subset P ⊂M then only the paths passing through P will be affected.

If we go one step further from the uniformly elliptic operators div(A∇) defined in Theorem 1 by
extending A(x)φ to A(x, t, φ,∇φ), we get the following general quasilinear parabolic equation:{

∂φ
∂t = div(A(x, t, φ,∇φ)), t > 0
φ|t=0 = f,

(5)

where the principle part A(x, t, φ,∇φ) is equipped with additional structure conditions as shown
in [37]. When A(x, t, φ,∇φ) = A(x, t) is a time-dependent diffusion process, analogous bounds to
Theorem 1 are shown in [38]. We leave the analysis of general A(x, t, φ,∇φ) for future work.

2.2 Gradient and Divergence Operators on Graphs

We consider a graph as a discretization of a Riemannian manifold. More specifically, consider an
undirected graph G = (V, E) consisting of a finite set V of vertices, together with a subset E ⊂ V ×V
of edges. A graph is weighted when it is associated with a function w : E 7→ R+ which is symmetric,
i.e., w([u, v]) = w([v, u]), for all [u, v] ∈ E .

Let H(V) denote the Hilbert space on V of real-valued functions with the inner product defined
as ⟨a, b⟩H(V) =

∑
v∈V a(v)b(v), for all a, b ∈ H(V). Similarly, we define a Hilbert space H(E)

with inner product ⟨c, d⟩H(E) =
∑

[u,v]∈E c([u, v])d([u, v]), for all c, d ∈ H(E). We next define the
gradient and divergence operators on graphs analogue to the general continuous manifold defined in
Definition 1 as follows [39].
Definition 2. Given an undirected graph G = (V, E), we define the following:

i. The graph gradient is an operator ∇ : H(V) 7→ H(E) defined by

∇φ([u, v]) =

√
w([u, v])

h(v)
φ(v)−

√
w([u, v])

h(u)
φ(u),∀ [u, v] ∈ E , (6)

where h(v) =
∑

[u,v]∈E w([u, v]) is the degree of node v.
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ii. The graph divergence is an operator div : H(E) 7→ H(V) defined by

(div ψ)(v) =
∑

[u,v]∈E

√
w([u, v])

h(v)
(ψ([v, u])− ψ([u, v])) . (7)

iii. The graph Laplacian is an operator ∆ : H(V) 7→ H(V) defined by

∆φ = −1

2
div(∇φ). (8)

The graph Laplacian defined above is identical to the normalized Laplacian matrix, i.e.,

∆ = D−1/2(D−W)D−1/2, (9)

where D is a diagonal matrix with D(v, v) = h(v), and W is the adjacency matrix satisfying
W(u, v) = w([u, v]) if [u, v] ∈ E and W(u, v) = 0 otherwise. Note that in (8) we have included
the negative sign. The analogue of the graph Laplacian ∆ in Section 2.1 is the Dirichlet Laplace
operator L. Note the use of the same notation ∆ for graphs. The manifold Laplace operator ∆ and
graph Laplacian ∆ will be apparent from the context.

3 Neural Diffusion and Stability on Graphs

We now consider neural diffusion on graphs by making use of concepts from Section 2. Various
parabolic-type equations on graphs are studied in this section. The solution stability against adversarial
attacks is linked to the stability of the solution for the heat diffusion equation under perturbation
of the manifold metric, introduced in Section 2.1. The general framework we consider is based on
parabolic-type equations on graphs:

∂φ(u, t)

∂t
= div(A(u, t, φ,∇φ)), t > 0 (10)

with φ(u, 0) being the initial node attribute at node u and where A(u, t, φ,∇φ) can take different
forms. We next provide some examples.

3.1 Continuous Diffusion on Graphs

Definition 3 (Heat diffusion). The heat diffusion on graphs is defined by
∂φ(u, t)

∂t
=

1

2
div(∇φ)(u, t). (11)

Definition 4 (GRAND/BLEND [29, 30]). According to [29, eq (1)] and [30, eq (7) and (9)], the
GRAND/BLEND flow is defined by

∂φ(u, t)

∂t
=

1

2
div(∇tφ)(u, t), (12)

where ∇t is an adaptive Laplace operator (with possible graph rewiring) depending on the evolved
node feature φ(·, t).

The gradient operator defined in GRAND/BLEND assumes constant edge weight. In Definition 4,
the weight function w([u, v]) defined in (6) is incorporated into the gradient definition, so it can be
absorbed in the time-dependent term ∇tφ. Note that BLEND degenerates to GRAND [29] when
there is no positional encoding. In this paper, for a fair comparison, we do not use positional encoding
for all GNNs.

Analogous to [40], we can define mean curvature flow and Beltrami flow as follows.
Definition 5. The mean curvature diffusion on graphs is defined by

∂φ(u, t)

∂t
=

1

2
div

(
∇φ
∥∇φ∥

)
(u, t), (13)

where −1

2
div

(
∇φ

∥∇φ∥

)
is a discrete analogue of the mean curvature operator, ∥∇φ∥ =

⟨∇φ,∇φ⟩1/2H(E) and ∥∇φ(u, t)∥ =
(∑

[v,u]∈E(∇φ([u, v], t))2
)1/2

.
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Definition 6. The Beltrami diffusion on graphs is defined by

∂φ(u, t)

∂t
=

1

2

1

∥∇φ∥
div

(
∇φ

∥∇φ∥

)
(u, t). (14)

Intuitively, the term ∥∇φ(u, t)∥, which appears in (13) and (14) but not in (11), measures the
smoothness of the signals in the neighborhood around vertex u at time t. The diffusion using (13)
or (14) at vertex u is small when ∥∇φ(u, t)∥ is large, i.e., signals are less smooth around vertex u.
Hence, mean curvature flow and Beltrami flow are able to preserve the non-smooth graph signals.
This phenomenon is visualized in Fig. 1, where mean curvature flow and Beltrami flow are capable
of preserving inter-class edges whose weights are much larger than those in heat flow.

Figure 1: Effect of using different diffusion equations visualized using t-SNE with attention weights.
Left: heat flow, middle: mean curvature flow, right: Beltrami flow. The darker the edge, the larger the
attention weight.

3.2 Stability against Graph Topology Perturbation

Attackers can modify the original graph by adding or removing edges [10–12] and perturbing
node attributes. Adding or removing edges leads to a different graph Laplacian ∆ defined in (8).
Consequently, the solution to (11) is altered. Using the language of Section 2.1, the edge perturbations
correspond to the perturbation of the metric g (or equivalently A in Theorem 1). According to
Theorem 1, the stability of the heat semigroup and the solutions under small perturbations of the
Laplace operator is guaranteed. Consequently, the solution is not affected significantly by the edge
perturbations. This is different from the notion of stability in [20], where the output φ(u, t) is shown
to be stable after perturbation of node attributes φ(u, 0) with fixed graph edges. The stability studied
in [20] is called Lyapunov stability, which is addressed in Proposition 2. These two notions of stability
combined lead to a graph neural PDE in Section 4 that is robust against both edge and node attacks.

The following result shows the stability of the solution of (11), i.e., ∂φ(u,t)
∂t = −∆φ(u, t), under

graph topology or Laplacian perturbation. If the change in the graph topology with respect to any
matrix norm is small, the semigroup perturbation can be bounded similarly as the result in Theorem 1.
This result considers only the case where the Laplace operator is time-invariant. The time-variant
analogy of [38] as discussed after (5) is provided in the supplementary material.

Proposition 1. Consider ∆ = D−1/2(D − W)D−1/2 in (9) and suppose ∆̃ = D̃−1/2(D̃ −
W̃)D̃−1/2 with D̃ being the diagonal degree matrix defined analogously to (9) for W̃ = W + E.
Suppose ε := ~E~ = o(1) for a matrix norm ~·~, and D and D̃ are non-singular. Then, ∥φ(u, t)−
φ̃(u, t)∥ = O(ε).

3.3 Neural Flows on Graphs

Substituting (6) and (7) into (14), and ignoring the degree variable h(u) for simplicity, we propose
the neural Beltrami flow as

∂φ(u, t)

∂t
=

1

2

1

∥∇φ(u)∥
∑

[v,u]∈E

w([u, v])

(
1

∥∇φ(u)∥
+

1

∥∇φ(v)∥

)
(φ(u)− φ(v)) , (15)

where ∥∇φ(u)∥ =
√∑

[v,u]∈E(∇φ([u, v]))2. Here, we further assume φ(u), for all nodes u are

time-independent for the sake of simplicity. Suppose |V| = n. The function φ : V 7→ Rd maps each
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node to a feature vector. Stacking all the feature vectors together, we obtain Z ∈ Rn×d. Let the
weight function w([u, v]) be the scaled dot product attention function [41] given by

w([u, v]) = softmax

(
(WKzu)

⊺(WQzv)√
dK

)
, (16)

where WK and WQ are the key and query learnable matrices, respectively, and dK denotes the
number of rows WK has. If multi-head attention is applied and denote Ah as the attention matrix
associated with head h, then A(Z) = 1

h

∑
h Ah(Z) with Ah(u, v) = wh([u, v]) where wh is the

weight function for head h. The diffusion equation (15) can be compactly written in matrix form as
∂Z(t)

∂t
= (A(Z(t))⊙B(Z(t))−Ψ(Z(t)))Z(t), (17)

where ⊙ denotes element-wise multiplication, B(u, v) = softmax
(

1
∥∇φ(u)∥2 + 1

∥∇φ(u)∥∥∇φ(v)∥

)
and Ψ(Z(t)) is a diagonal matrix with Ψ(u, u) =

∑
v (A⊙B) (u, v).

Similarly, the diffusion equations using mean curvature flow (13) and heat flow (11) can be written as:
∂Z(t)

∂t
= (A(Z(t))⊙B(Z(t))−Ψ(Z(t)))Z(t), (18)

where B(u, v) = softmax
(

1
∥∇φ(u)∥ + 1

∥∇φ(v)∥

)
and

∂Z(t)

∂t
= (A(Z(t))− I)Z(t), (19)

respectively. Although the BLEND model in [30] is inspired from Beltrami flow, its final formulation
(equation (8) in [30] where Z(t) contains positional and node feature embeddings) is indeed (19),
i.e., heat flow using attention weight function.
Proposition 2. Diffusion equations (17), (18) and (19) are all Lyapunov stable [42].

4 Model Architecture with Lipschitz Constraint

In this section, we propose a general graph neural PDE network based on the discussion in Section 3.
A layer of graph neural PDE is illustrated in Fig. 2. Since we may stack up multiple such layers, the
diffusion is performed in a hierarchical manner, where the high-dimensional features are diffused
over the graph at the front layers and the low-dimensional features are diffused at the back layers.

One important ingredient in our model is that we perform spectral normalization on WK and WQ

in (16). This is motivated by the fact that attention models have poor performance when the depth
increases. In other words, attention weights tend to be uniformly distributed for excessive message
exchanges. This phenomenon becomes even more obvious when the nodes’ features are diffused
according to (17), (18) or (19) as solving such a PDE normally requires many discrete steps. To
overcome this over-smoothing problem, we utilize the strategy proposed in [43] to enforce Lipschitz
continuity by normalizing the attention scores. Besides, enforcing Lipschitz continuity can also help
improve the robustness of the model because the Lipschitz constant controls the perturbation of the
output given a bounded input perturbation. Fig. 3 illustrates that attention weights become overly
smooth if no spectral normalization is applied.

Zi = ΦZi−1 ∂Z(t)
∂t

= QZ(t)
Z(0) = Z

i
Z

i = Z(T )Z
i−1

Figure 2: Graph neural PDE at the i-th layer, where each node’s feature vector are linearly transformed
before being diffused over the graph. We have Q = A(Z(t))⊙B(Z(t))−Ψ(Z(t)) for mean curvature
flow and Beltrami flow, while Q = A(Z(t))− I for heat flow.

5 Experiments

In this section, we compare graph neural PDEs under different flows to popular GNN architectures:
GAT [41], GraphSAGE [45], GIN [46], APPNP [47], and the state-of-the-art GNN defenders: Robust-
GCN [19], GNNGuard [23], GCNSVD [22], on standard node classification benchmarks. In our ex-
periments,3 we use the following datasets: Cora (citation networks) [44], Citeseer (citation networks)

3Our experiments are run on a GeForce RTX 3090 GPU.

7



Figure 3: Impact of applying spectral normalization visualized using t-SNE with attention weights
using Cora dataset [44]. Left: graph neural PDE with no spectral normalization, right: graph neural
PDE with spectral normalization. The darker the edge, the larger the attention weight.

[48] and PubMed (biomedical literature) [49]. We use a refined version of these datasets provided by
[50]. We refer the readers to the supplementary material for more details. Our experiment codes are
provided in https://github.com/zknus/Robustness-of-Graph-Neural-Diffusion.

Table 1: Node classification accuracy (%) on adversarial examples using different GNNs. The implicit
Adam PDE solver with step size 2 is used for Beltrami. We denote those experiments that are
computationally too heavy to run by “-”. The best and the second-best result for each criterion are
highlighted in red and blue respectively.

Dataset Attack Beltrami in (17) RobustGCN GNNGuard GCNSVD GAT GraphSAGE GIN APPNP

Cora
clean 75.93 ± 1.46 81.34 ± 0.66 79.44 ± 1.18 69.28±1.37 79.74 ± 1.59 76.75 ± 1.52 76.79 ± 1.35 83.06 ± 1.06

SPEIT 61.87 ± 0.49 36.16 ± 0.41 78.50 ± 2.27 37.50 ± 0.74 38.10 ± 2.48 35.82 ± 0.01 35.82 ± 0.01 36.79 ± 0.61
TDGIA 62.84 ± 1.17 53.28 ± 8.61 78.92 ± 1.80 40.77 ± 3.34 35.64 ± 12.91 39.78 ± 6.46 39.63 ± 2.38 60.52 ± 4.43

Citeseer
clean 70.14 ± 1.80 70.72 ± 1.15 69.69 ± 1.83 66.93 ± 1.07 69.81 ± 1.43 69.78 ± 1.31 68.81 ± 1.58 70.75 ± 0.86

SPEIT 66.46 ± 1.33 28.56 ± 7.87 69.72 ± 1.84 21.16 ± 1.32 26.00 ± 11.14 19.75 ± 1.82 23.54 ± 5.30 22.19 ± 0.86
TDGIA 65.77 ± 1.28 38.81 ± 10.84 69.50 ± 1.86 20.77 ± 2.52 19.63 ± 6.53 28.77 ± 7.73 28.65 ± 5.08 54.48 ± 8.56

PubMed
clean 86.94 ± 0.25 75.55 ± 0.32 84.80 ± 0.51 - 84.91 ± 0.76 89.22 ± 0.25 76.71 ± 0.14 77.50 ± 0.54

SPEIT 86.66 ± 0.68 75.54 ± 0.54 84.36 ± 0.58 - 40.94 ± 2.47 39.22 ± 0.00 76.71 ± 0.14 77.55 ± 0.54
TDGIA 85.56 ± 0.91 75.53 ± 0.36 84.00 ± 1.12 - 39.78 ± 0.29 60.40 ± 11.23 77.58 ± 0.71 77.45 ± 0.68

5.1 Attack Setup

We apply the setup introduced in the graph robustness benchmark (GRB) [50]. Based on the assump-
tion that nodes with lower degrees are easier to attack, GRB constructs three test subsets of nodes
with different degree distributions. According to the average degrees, GRB defines these subsets of
nodes as Easy, Medium, Hard, or Full. In the Easy subset, attacks are easy to succeed and hence the
worst performance is expected. The remaining nodes are divided into a train set (60%) and val set
(10%), for training and validation respectively. In our experiments, we choose the Easy subset, i.e.,
the most challenging mode.

Following GRB, in this paper, we mainly consider the following real-world adversarial attack settings:
Black-box: The attacker does not know the defender’s method and vice versa. Attackers firstly attack
a pre-trained GCN [3] and then transfer the perturbed graphs to the target model. Evasion: Attacks
will only happen during the inference phase. Inductive: GNNs are used to classify unseen data (e.g.,
new users), i.e., validation or test data are unseen during training. Injection: Attackers can only inject
new nodes but not modify the target nodes directly. This reflects applications like in online social
networks where it is usually hard to hack into users’ accounts and modify their profiles. However, it
is easier to create fake accounts and connect them to existing users. For other attack settings such as
white-box attacks and modification attacks, relevant experiments and discussions are provided in the
supplementary material.

Table 2: Node classification accuracy (%) on adversarial examples using BeltramiGuard.
Model Attack Cora Citeseer PubMed

BeltramiGuard
clean 73.01 ± 2.01 69.90 ± 0.44 87.77 ± 0.14

SPEIT 73.01 ± 2.62 69.90 ± 0.44 87.68 ± 0.03
TDGIA 72.14 ± 1.20 69.90 ± 0.44 88.16 ± 0.61
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We apply two state-of-the-art injection attack methods: SPEIT [14] and Topological Defective Graph
Injection Attack (TDGIA) [15]. These two attacks are the two strongest attacks reported in the GRB.
For both attacks, both the maximum allowable injected nodes and the maximum allowable injected
edges are set to 50 for Cora and Citeseer, and 300 for PubMed. We provide more details about how
these two attacks work under evasion, black-box, and injection setting in the supplemental material.

Table 1 indicates that graph neural PDE induced from Beltrami flow is more robust than all other
GNNs except for GNNGuard, which is specifically designed to remove malicious edges and is thus
robust against injection attacks. This suggests that the output features from a graph PDE are stable
under topology perturbations, as suggested by Proposition 1.

Furthermore, the heat diffusion process on a manifold tends to diffuse differently under different
geometries. For example, it diffuses slower at points with positive curvature, and faster at points
with negative curvature [34, 51]. In [52] and [53], the authors show different datasets have different
geometric properties like hyperbolicity distribution or Balanced Forman curvature. Our theoretical
analysis only shows a loose uniform bound in terms of the adjacency matrix, while the performance
is very much dataset-dependent. More advanced theoretical analysis for different datasets is highly
non-trivial and needs further investigations.

Our graph neural PDE can be combined with GNNGuard. We denote this model as BeltramiGuard.
Table 2 demonstrates that BeltramiGuard renders attacks in vain and exceeds GNNGuard on the
Citeseer and PubMed datasets. Note from Table 1 that the vanilla Beltrami model already surpasses
GNNGuard on the large PubMed dataset. More details are provided in the supplementary material.

5.2 Ablation Studies

Diffusion Schemes

We compare different diffusion equations: heat flow (19) where w([u, v]) = 1 for all [u, v] ∈ E ,
GRAND/BLEND [29, 30] which is another heat flow where w([u, v]) in (19) is the attention function
defined in (16), mean curvature flow (18), and Beltrami flow (17). For GRAND/BLEND, we stack
three neural PDE layers using the architecture proposed in Fig. 2 since the original GRAND/BLEND
in [29, 30], which has only one PDE layer, does not perform well.

Table 3: Node classification accuracy (%) on adversarial examples using graph neural PDEs induced
from different flows, where implicit Adam PDE solver with step size 2 is used.

Dataset Attack Heat GRAND/BLEND Mean Curvature Beltrami

Cora
clean 78.86 ± 1.78 74.89 ± 1.29 76.01 ± 2.20 75.93 ± 1.46

SPEIT 38.66 ± 2.40 55.67 ± 3.60 60.67 ± 1.31 61.87 ± 0.49
TDGIA 60.26 ± 5.19 59.55 ± 6.41 62.01 ± 2.37 62.84 ± 1.17

Citeseer
clean 69.47 ± 1.22 69.45 ± 0.91 70.50 ± 1.63 70.14 ± 1.80

SPEIT 22.95 ± 5.07 39.94 ± 6.94 65.39 ± 1.62 66.46 ± 1.33
TDGIA 52.42 ± 11.2 54.92 ± 7.64 66.83 ± 1.59 65.77 ± 1.28

PubMed
clean 86.31 ± 0.46 88.89 ± 0.38 88.45 ± 0.32 86.94 ± 0.25

SPEIT 40.77 ± 1.78 39.39 ± 0.26 87.13 ± 0.33 86.66 ± 0.68
TDGIA 42.63 ± 5.28 63.91 ± 11.61 85.79 ± 0.82 85.56 ± 0.91

From Table 3, we observe that even the vanilla time-invariant heat flow preserves some robustness as
compared to non-PDE GNNs in Table 1. This further validates our theoretical analysis in Proposition 1,
which suggests that if the topology perturbation is bounded, the learned representations are close to
those under the “clean” scenario. We can observe that 1) the flows which are capable of preserving
non-smooth features are generally more robust than heat flow, 2) the proposed mean curvature flow
and Beltrami flow are more robust than GRAND/BLEND, and 3) these two flows generally suffer
less performance variance than the other methods.

More Experiments

Due to space constraint, we refer the reader to the supplementary material for more ablation studies in-
cluding the impact of the Lipschitz constraint, PDE solvers, the number of layers, and time complexity.
The model performance under other attacks is also presented in the supplementary material.
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6 Conclusion

In this paper, we have introduced a general graph neural PDE framework from which several graph
neural PDEs are proposed. We analyzed the robustness of the graph neural PDEs and showed that
graph neural PDEs are inherently robust against topology perturbations and are also Lyapunov stable.
We provided theoretical evidence showing that the robustness of graph neural PDEs stems from the
stability of the heat kernel and semigroup during the diffusion process. Moreover, we conducted
extensive experiments that empirically verify the robustness of the proposed graph neural PDEs when
compared with an existing graph neural PDE induced from approximated heat flow, popular GNNs
and the state-of-the-art GNN defenders.

7 Acknowledgement

This research is supported by the Singapore Ministry of Education Academic Research Fund Tier
2 grant MOE-T2EP20220-0002 and A*STAR under its RIE2020 Advanced Manufacturing and
Engineering (AME) Industry Alignment Fund – Pre Positioning (IAF-PP) (Grant No. A19D6a0053).

References
[1] X. Yue, Z. Wang, J. Huang, S. Parthasarathy, S. Moosavinasab, Y. Huang, S. M. Lin, W. Zhang,

P. Zhang, and H. Sun, “Graph embedding on biomedical networks: methods, applications and
evaluations,” Bioinformatics, vol. 36, no. 4, pp. 1241–1251, 2019.

[2] H. Ashoor, X. Chen, W. Rosikiewicz, J. Wang, A. Cheng, P. Wang, Y. Ruan, and S. Li, “Graph
embedding and unsupervised learning predict genomic sub-compartments from hic chromatin
interaction data,” Nat. Commun., vol. 11, 2020.

[3] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,”
in Proc. Int. Conf. Learn. Representations, 2017.

[4] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” IEEE Trans. Knowl. Data
Eng., vol. 34, no. 1, pp. 249–270, Jan 2022.

[5] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on graph
neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 1, pp. 4–24, 2021.

[6] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” in Advances Neural Inf. Process.
Syst. Workshop, 2016.

[7] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph convo-
lutional neural networks for web-scale recommender systems,” in Proc. Int. Conf. Knowledge
Discovery and Data Mining, 2018.

[8] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing
for quantum chemistry,” in Proc. Int. Conf. Mach. Learn., 2017.

[9] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on neural networks for
graph data,” in Proc. Int. Conf. Knowl. Discovery Data Mining, 2018.

[10] J. Chen, Y. Wu, X. Xu, Y. Chen, H. Zheng, and Q. Xuan, “Fast gradient attack on network
embedding,” ArXiv, 2018.

[11] M. Waniek, T. P. Michalak, M. J. Wooldridge, and T. Rahwan, “Hiding individuals and commu-
nities in a social network,” Nature Human Behaviour, vol. 2, no. 1, pp. 139–147, 2018.

[12] J. Du, S. Zhang, G. Wu, J. M. F. Moura, and S. Kar, “Topology adaptive graph convolutional
networks,” ArXiv, vol. abs/1710.10370, 2017.

[13] J. Wang, M. Luo, F. Suya, J. Li, Z. Yang, and Q. Zheng, “Scalable attack on graph data by
injecting vicious nodes,” Data Mining Knowl. Discovery, pp. 1 – 27, 2020.

10



[14] Q. Zheng, Y. Fei, Y. Li, Q. Liu, M. Hu, and Q. Sun. Kdd cup 2020 ml track 2 adversarial attacks
and defense on academic graph 1st place solution. Accessed: May 1, 2022. [Online]. Available:
https://github.com/Stanislas0/KDD_CUP_2020_MLTrack2_SPEIT

[15] X. Zou, Q. Zheng, Y. Dong, X. Guan, E. Kharlamov, J. Lu, and J. Tang, “Tdgia: Effective
injection attacks on graph neural networks,” in Proc. Int. Conf. Knowl. Discovery Data Mining,
2021, p. 2461–2471.

[16] D. Zügner and S. Günnemann, “Adversarial attacks on graph neural networks via meta learning,”
in Proc. Int. Conf. Learn. Representations, 2019.

[17] Y. Ma, S. Wang, T. Derr, L. Wu, and J. Tang, “Graph adversarial attack via rewiring,” in Proc.
Int. Conf. Knowl. Discovery Data Mining, 2021, p. 1161–1169.

[18] Y. Sun, S. Wang, X. Tang, T.-Y. Hsieh, and V. Honavar, “Adversarial attacks on graph neural
networks via node injections: A hierarchical reinforcement learning approach,” in Proc. Web
Conf., 2020, p. 673–683.

[19] D. Zhu, Z. Zhang, P. Cui, and W. Zhu, “Robust graph convolutional networks against adversarial
attacks,” in Proc. Int. Conf. Knowl. Discovery Data Mining, 2019, p. 1399–1407.

[20] W. Feng, J. Zhang, Y. Dong, Y. Han, H. Luan, Q. Xu, Q. Yang, E. Kharlamov, and J. Tang,
“Graph random neural networks for semi-supervised learning on graphs,” in Advances Neural
Inf. Process. Syst., 2020.

[21] W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang, “Graph structure learning for robust graph
neural networks,” in Proc. Int. Conf. Knowl. Discovery Data Mining, 2020, p. 66–74.

[22] N. Entezari, S. A. Al-Sayouri, A. Darvishzadeh, and E. E. Papalexakis, “All you need is low
(rank): Defending against adversarial attacks on graphs,” in Proc. Int. Conf. Web Search Data
Mining, 2020, p. 169–177.

[23] X. Zhang and M. Zitnik, “GNNGUARD: Defending graph neural networks against adversarial
attacks,” in Advances Neural Inf. Process. Syst., 2020.

[24] H. Yan, J. Du, V. Y. Tan, and J. Feng, “On robustness of neural ordinary differential equations,”
in Advances Neural Inf. Process. Syst., 2018, pp. 1–13.

[25] E. Haber and L. Ruthotto, “Stable architectures for deep neural networks,” Inverse Problems,
vol. 34, no. 1, pp. 1–23, Dec. 2017.

[26] X. Liu, S. Si, Q. Cao, S. Kumar, and C.-J. Hsieh, “How does noise help robustness? Explanation
and exploration under the neural sde framework,” in Proc. Conf. Comput. Vision Pattern
Recognition, 2020, pp. 282–290.

[27] Q. Kang, Y. Song, Q. Ding, and W. P. Tay, “Stable neural ODE with Lyapunov-stable equilibrium
points for defending against adversarial attacks,” in Advances Neural Inf. Process. Syst., 2021.

[28] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural ordinary differential
equations,” arXiv preprint arXiv:1806.07366, 2018.

[29] B. P. Chamberlain, J. Rowbottom, M. Goronova, S. Webb, E. Rossi, and M. M. Bronstein,
“Grand: Graph neural diffusion,” in Proc. Int. Conf. Mach. Learn., 2021.

[30] B. P. Chamberlain, J. Rowbottom, D. Eynard, F. Di Giovanni, D. Xiaowen, and M. M. Bronstein,
“Beltrami flow and neural diffusion on graphs,” in Advances Neural Inf. Process. Syst., 2021.

[31] A. Grigoryan, Heat kernel and analysis on manifolds. Providence: American Mathematical
Soc., 2009.

[32] L. Saloff-Coste, “Uniformly elliptic operators on Riemannian manifolds,” J. Differ. Geometry,
vol. 36, no. 2, pp. 417–450, 1992.

[33] Z.-Q. Chen, Z. Qian, Y. Hu, and W. Zheng, “Stability and approximations of symmetric diffusion
semigroups and kernels,” J. functional anal., vol. 152, no. 1, pp. 255–280, 1998.

11

https://github.com/Stanislas0/KDD_CUP_2020_MLTrack2_SPEIT


[34] J. Sun, M. Ovsjanikov, and L. Guibas, “A concise and provably informative multi-scale signature
based on heat diffusion,” Computer graphics forum, vol. 28, no. 5, pp. 1383–1392, 2009.

[35] J. Nash, “The imbedding problem for Riemannian manifolds,” Ann. math., vol. 63, no. 1, pp.
20–63, 1956.

[36] E. P. Hsu, Stochastic analysis on manifolds. Providence: American Mathematical Soc., 2002.

[37] E. DiBenedetto, U. P. Gianazza, and V. Vespri, Harnack’s inequality for degenerate and singular
parabolic equations. London: Springer Science & Business Media, 2011.

[38] W. Zheng, “Stability of time-dependent diffusion semigroups and kernels,” Acta Math. Sinica,
vol. 15, no. 4, pp. 575–586, 1999.

[39] D. Zhou and B. Schölkopf, “Regularization on discrete spaces,” in Joint Pattern Recognition
Symposium. Springer, 2005, pp. 361–368.

[40] N. Sochen, R. Kimmel, and R. Malladi, “A general framework for low level vision,” IEEE Trans.
Image Process., vol. 7, no. 3, pp. 310–318, 1998.
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